|   | Mathbox for BJ | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ax-bj-sn | Structured version Visualization version GIF version | ||
| Description: Axiom of singleton. (Contributed by BJ, 12-Jan-2025.) | 
| Ref | Expression | 
|---|---|
| ax-bj-sn | ⊢ ∀𝑥∃𝑦∀𝑧(𝑧 ∈ 𝑦 ↔ 𝑧 = 𝑥) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | vz | . . . . . 6 setvar 𝑧 | |
| 2 | vy | . . . . . 6 setvar 𝑦 | |
| 3 | 1, 2 | wel 2109 | . . . . 5 wff 𝑧 ∈ 𝑦 | 
| 4 | vx | . . . . . 6 setvar 𝑥 | |
| 5 | 1, 4 | weq 1962 | . . . . 5 wff 𝑧 = 𝑥 | 
| 6 | 3, 5 | wb 206 | . . . 4 wff (𝑧 ∈ 𝑦 ↔ 𝑧 = 𝑥) | 
| 7 | 6, 1 | wal 1538 | . . 3 wff ∀𝑧(𝑧 ∈ 𝑦 ↔ 𝑧 = 𝑥) | 
| 8 | 7, 2 | wex 1779 | . 2 wff ∃𝑦∀𝑧(𝑧 ∈ 𝑦 ↔ 𝑧 = 𝑥) | 
| 9 | 8, 4 | wal 1538 | 1 wff ∀𝑥∃𝑦∀𝑧(𝑧 ∈ 𝑦 ↔ 𝑧 = 𝑥) | 
| Colors of variables: wff setvar class | 
| This axiom is referenced by: bj-snexg 37035 | 
| Copyright terms: Public domain | W3C validator |