![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-axsn | Structured version Visualization version GIF version |
Description: Two ways of stating the axiom of singleton (which is the universal closure of either side, see ax-bj-sn 36643). (Contributed by BJ, 12-Jan-2025.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-axsn | ⊢ ({𝑥} ∈ V ↔ ∃𝑦∀𝑧(𝑧 ∈ 𝑦 ↔ 𝑧 = 𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | velsn 4646 | . 2 ⊢ (𝑧 ∈ {𝑥} ↔ 𝑧 = 𝑥) | |
2 | 1 | bj-clex 36641 | 1 ⊢ ({𝑥} ∈ V ↔ ∃𝑦∀𝑧(𝑧 ∈ 𝑦 ↔ 𝑧 = 𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∀wal 1531 ∃wex 1773 ∈ wcel 2098 Vcvv 3461 {csn 4630 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 |
This theorem depends on definitions: df-bi 206 df-an 395 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-v 3463 df-sn 4631 |
This theorem is referenced by: bj-snexg 36644 |
Copyright terms: Public domain | W3C validator |