Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-axsn Structured version   Visualization version   GIF version

Theorem bj-axsn 36216
Description: Two ways of stating the axiom of singleton (which is the universal closure of either side, see ax-bj-sn 36217). (Contributed by BJ, 12-Jan-2025.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-axsn ({𝑥} ∈ V ↔ ∃𝑦𝑧(𝑧𝑦𝑧 = 𝑥))
Distinct variable group:   𝑥,𝑦,𝑧

Proof of Theorem bj-axsn
StepHypRef Expression
1 velsn 4644 . 2 (𝑧 ∈ {𝑥} ↔ 𝑧 = 𝑥)
21bj-clex 36215 1 ({𝑥} ∈ V ↔ ∃𝑦𝑧(𝑧𝑦𝑧 = 𝑥))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wal 1539  wex 1781  wcel 2106  Vcvv 3474  {csn 4628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1544  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-v 3476  df-sn 4629
This theorem is referenced by:  bj-snexg  36218
  Copyright terms: Public domain W3C validator