| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-axsn | Structured version Visualization version GIF version | ||
| Description: Two ways of stating the axiom of singleton (which is the universal closure of either side, see ax-bj-sn 37077). (Contributed by BJ, 12-Jan-2025.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-axsn | ⊢ ({𝑥} ∈ V ↔ ∃𝑦∀𝑧(𝑧 ∈ 𝑦 ↔ 𝑧 = 𝑥)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | velsn 4589 | . 2 ⊢ (𝑧 ∈ {𝑥} ↔ 𝑧 = 𝑥) | |
| 2 | 1 | bj-clex 37075 | 1 ⊢ ({𝑥} ∈ V ↔ ∃𝑦∀𝑧(𝑧 ∈ 𝑦 ↔ 𝑧 = 𝑥)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∀wal 1539 ∃wex 1780 ∈ wcel 2111 Vcvv 3436 {csn 4573 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-sn 4574 |
| This theorem is referenced by: bj-snexg 37078 |
| Copyright terms: Public domain | W3C validator |