![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-axsn | Structured version Visualization version GIF version |
Description: Two ways of stating the axiom of singleton (which is the universal closure of either side, see ax-bj-sn 36217). (Contributed by BJ, 12-Jan-2025.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-axsn | ⊢ ({𝑥} ∈ V ↔ ∃𝑦∀𝑧(𝑧 ∈ 𝑦 ↔ 𝑧 = 𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | velsn 4644 | . 2 ⊢ (𝑧 ∈ {𝑥} ↔ 𝑧 = 𝑥) | |
2 | 1 | bj-clex 36215 | 1 ⊢ ({𝑥} ∈ V ↔ ∃𝑦∀𝑧(𝑧 ∈ 𝑦 ↔ 𝑧 = 𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∀wal 1539 ∃wex 1781 ∈ wcel 2106 Vcvv 3474 {csn 4628 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1544 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-v 3476 df-sn 4629 |
This theorem is referenced by: bj-snexg 36218 |
Copyright terms: Public domain | W3C validator |