Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-axsn Structured version   Visualization version   GIF version

Theorem bj-axsn 37027
Description: Two ways of stating the axiom of singleton (which is the universal closure of either side, see ax-bj-sn 37028). (Contributed by BJ, 12-Jan-2025.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-axsn ({𝑥} ∈ V ↔ ∃𝑦𝑧(𝑧𝑦𝑧 = 𝑥))
Distinct variable group:   𝑥,𝑦,𝑧

Proof of Theorem bj-axsn
StepHypRef Expression
1 velsn 4608 . 2 (𝑧 ∈ {𝑥} ↔ 𝑧 = 𝑥)
21bj-clex 37026 1 ({𝑥} ∈ V ↔ ∃𝑦𝑧(𝑧𝑦𝑧 = 𝑥))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wal 1538  wex 1779  wcel 2109  Vcvv 3450  {csn 4592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-v 3452  df-sn 4593
This theorem is referenced by:  bj-snexg  37029
  Copyright terms: Public domain W3C validator