Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-snexg Structured version   Visualization version   GIF version

Theorem bj-snexg 36219
Description: A singleton built on a set is a set. Contrary to bj-snex 36220, this proof is intuitionistically valid and does not require ax-nul 5306. (Contributed by NM, 7-Aug-1994.) Extract it from snex 5431 and prove it from ax-bj-sn 36218. (Revised by BJ, 12-Jan-2025.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-snexg (𝐴𝑉 → {𝐴} ∈ V)

Proof of Theorem bj-snexg
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sneq 4638 . . 3 (𝑥 = 𝐴 → {𝑥} = {𝐴})
2 ax-bj-sn 36218 . . . . 5 𝑥𝑦𝑧(𝑧𝑦𝑧 = 𝑥)
32spi 2176 . . . 4 𝑦𝑧(𝑧𝑦𝑧 = 𝑥)
4 bj-axsn 36217 . . . 4 ({𝑥} ∈ V ↔ ∃𝑦𝑧(𝑧𝑦𝑧 = 𝑥))
53, 4mpbir 230 . . 3 {𝑥} ∈ V
61, 5eqeltrrdi 2841 . 2 (𝑥 = 𝐴 → {𝐴} ∈ V)
76vtocleg 3541 1 (𝐴𝑉 → {𝐴} ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1538   = wceq 1540  wex 1780  wcel 2105  Vcvv 3473  {csn 4628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-12 2170  ax-ext 2702  ax-bj-sn 36218
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1543  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-v 3475  df-sn 4629
This theorem is referenced by:  bj-snex  36220  bj-prexg  36224  bj-adjfrombun  36231
  Copyright terms: Public domain W3C validator