Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-snexg Structured version   Visualization version   GIF version

Theorem bj-snexg 37000
Description: A singleton built on a set is a set. Contrary to bj-snex 37001, this proof is intuitionistically valid and does not require ax-nul 5324. (Contributed by NM, 7-Aug-1994.) Extract it from snex 5451 and prove it from ax-bj-sn 36999. (Revised by BJ, 12-Jan-2025.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-snexg (𝐴𝑉 → {𝐴} ∈ V)

Proof of Theorem bj-snexg
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sneq 4658 . . 3 (𝑥 = 𝐴 → {𝑥} = {𝐴})
2 ax-bj-sn 36999 . . . . 5 𝑥𝑦𝑧(𝑧𝑦𝑧 = 𝑥)
32spi 2185 . . . 4 𝑦𝑧(𝑧𝑦𝑧 = 𝑥)
4 bj-axsn 36998 . . . 4 ({𝑥} ∈ V ↔ ∃𝑦𝑧(𝑧𝑦𝑧 = 𝑥))
53, 4mpbir 231 . . 3 {𝑥} ∈ V
61, 5eqeltrrdi 2853 . 2 (𝑥 = 𝐴 → {𝐴} ∈ V)
76vtocleg 3565 1 (𝐴𝑉 → {𝐴} ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1535   = wceq 1537  wex 1777  wcel 2108  Vcvv 3488  {csn 4648
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-12 2178  ax-ext 2711  ax-bj-sn 36999
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-v 3490  df-sn 4649
This theorem is referenced by:  bj-snex  37001  bj-prexg  37005  bj-adjfrombun  37012
  Copyright terms: Public domain W3C validator