Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-snexg Structured version   Visualization version   GIF version

Theorem bj-snexg 36508
Description: A singleton built on a set is a set. Contrary to bj-snex 36509, this proof is intuitionistically valid and does not require ax-nul 5301. (Contributed by NM, 7-Aug-1994.) Extract it from snex 5428 and prove it from ax-bj-sn 36507. (Revised by BJ, 12-Jan-2025.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-snexg (𝐴𝑉 → {𝐴} ∈ V)

Proof of Theorem bj-snexg
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sneq 4635 . . 3 (𝑥 = 𝐴 → {𝑥} = {𝐴})
2 ax-bj-sn 36507 . . . . 5 𝑥𝑦𝑧(𝑧𝑦𝑧 = 𝑥)
32spi 2173 . . . 4 𝑦𝑧(𝑧𝑦𝑧 = 𝑥)
4 bj-axsn 36506 . . . 4 ({𝑥} ∈ V ↔ ∃𝑦𝑧(𝑧𝑦𝑧 = 𝑥))
53, 4mpbir 230 . . 3 {𝑥} ∈ V
61, 5eqeltrrdi 2838 . 2 (𝑥 = 𝐴 → {𝐴} ∈ V)
76vtocleg 3538 1 (𝐴𝑉 → {𝐴} ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1532   = wceq 1534  wex 1774  wcel 2099  Vcvv 3470  {csn 4625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-12 2167  ax-ext 2699  ax-bj-sn 36507
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1537  df-ex 1775  df-sb 2061  df-clab 2706  df-cleq 2720  df-clel 2806  df-v 3472  df-sn 4626
This theorem is referenced by:  bj-snex  36509  bj-prexg  36513  bj-adjfrombun  36520
  Copyright terms: Public domain W3C validator