| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-snexg | Structured version Visualization version GIF version | ||
| Description: A singleton built on a set is a set. Contrary to bj-snex 37068, this proof is intuitionistically valid and does not require ax-nul 5244. (Contributed by NM, 7-Aug-1994.) Extract it from snex 5374 and prove it from ax-bj-sn 37066. (Revised by BJ, 12-Jan-2025.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-snexg | ⊢ (𝐴 ∈ 𝑉 → {𝐴} ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sneq 4586 | . . 3 ⊢ (𝑥 = 𝐴 → {𝑥} = {𝐴}) | |
| 2 | ax-bj-sn 37066 | . . . . 5 ⊢ ∀𝑥∃𝑦∀𝑧(𝑧 ∈ 𝑦 ↔ 𝑧 = 𝑥) | |
| 3 | 2 | spi 2187 | . . . 4 ⊢ ∃𝑦∀𝑧(𝑧 ∈ 𝑦 ↔ 𝑧 = 𝑥) |
| 4 | bj-axsn 37065 | . . . 4 ⊢ ({𝑥} ∈ V ↔ ∃𝑦∀𝑧(𝑧 ∈ 𝑦 ↔ 𝑧 = 𝑥)) | |
| 5 | 3, 4 | mpbir 231 | . . 3 ⊢ {𝑥} ∈ V |
| 6 | 1, 5 | eqeltrrdi 2840 | . 2 ⊢ (𝑥 = 𝐴 → {𝐴} ∈ V) |
| 7 | 6 | vtocleg 3508 | 1 ⊢ (𝐴 ∈ 𝑉 → {𝐴} ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1539 = wceq 1541 ∃wex 1780 ∈ wcel 2111 Vcvv 3436 {csn 4576 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-12 2180 ax-ext 2703 ax-bj-sn 37066 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-sn 4577 |
| This theorem is referenced by: bj-snex 37068 bj-prexg 37072 bj-adjfrombun 37079 |
| Copyright terms: Public domain | W3C validator |