![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-snexg | Structured version Visualization version GIF version |
Description: A singleton built on a set is a set. Contrary to bj-snex 36509, this proof is intuitionistically valid and does not require ax-nul 5301. (Contributed by NM, 7-Aug-1994.) Extract it from snex 5428 and prove it from ax-bj-sn 36507. (Revised by BJ, 12-Jan-2025.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-snexg | ⊢ (𝐴 ∈ 𝑉 → {𝐴} ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sneq 4635 | . . 3 ⊢ (𝑥 = 𝐴 → {𝑥} = {𝐴}) | |
2 | ax-bj-sn 36507 | . . . . 5 ⊢ ∀𝑥∃𝑦∀𝑧(𝑧 ∈ 𝑦 ↔ 𝑧 = 𝑥) | |
3 | 2 | spi 2173 | . . . 4 ⊢ ∃𝑦∀𝑧(𝑧 ∈ 𝑦 ↔ 𝑧 = 𝑥) |
4 | bj-axsn 36506 | . . . 4 ⊢ ({𝑥} ∈ V ↔ ∃𝑦∀𝑧(𝑧 ∈ 𝑦 ↔ 𝑧 = 𝑥)) | |
5 | 3, 4 | mpbir 230 | . . 3 ⊢ {𝑥} ∈ V |
6 | 1, 5 | eqeltrrdi 2838 | . 2 ⊢ (𝑥 = 𝐴 → {𝐴} ∈ V) |
7 | 6 | vtocleg 3538 | 1 ⊢ (𝐴 ∈ 𝑉 → {𝐴} ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1532 = wceq 1534 ∃wex 1774 ∈ wcel 2099 Vcvv 3470 {csn 4625 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-12 2167 ax-ext 2699 ax-bj-sn 36507 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1537 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-v 3472 df-sn 4626 |
This theorem is referenced by: bj-snex 36509 bj-prexg 36513 bj-adjfrombun 36520 |
Copyright terms: Public domain | W3C validator |