| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-snexg | Structured version Visualization version GIF version | ||
| Description: A singleton built on a set is a set. Contrary to bj-snex 37100, this proof is intuitionistically valid and does not require ax-nul 5246. (Contributed by NM, 7-Aug-1994.) Extract it from snex 5376 and prove it from ax-bj-sn 37098. (Revised by BJ, 12-Jan-2025.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-snexg | ⊢ (𝐴 ∈ 𝑉 → {𝐴} ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sneq 4585 | . . 3 ⊢ (𝑥 = 𝐴 → {𝑥} = {𝐴}) | |
| 2 | ax-bj-sn 37098 | . . . . 5 ⊢ ∀𝑥∃𝑦∀𝑧(𝑧 ∈ 𝑦 ↔ 𝑧 = 𝑥) | |
| 3 | 2 | spi 2189 | . . . 4 ⊢ ∃𝑦∀𝑧(𝑧 ∈ 𝑦 ↔ 𝑧 = 𝑥) |
| 4 | bj-axsn 37097 | . . . 4 ⊢ ({𝑥} ∈ V ↔ ∃𝑦∀𝑧(𝑧 ∈ 𝑦 ↔ 𝑧 = 𝑥)) | |
| 5 | 3, 4 | mpbir 231 | . . 3 ⊢ {𝑥} ∈ V |
| 6 | 1, 5 | eqeltrrdi 2842 | . 2 ⊢ (𝑥 = 𝐴 → {𝐴} ∈ V) |
| 7 | 6 | vtocleg 3507 | 1 ⊢ (𝐴 ∈ 𝑉 → {𝐴} ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1539 = wceq 1541 ∃wex 1780 ∈ wcel 2113 Vcvv 3437 {csn 4575 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-12 2182 ax-ext 2705 ax-bj-sn 37098 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-v 3439 df-sn 4576 |
| This theorem is referenced by: bj-snex 37100 bj-prexg 37104 bj-adjfrombun 37111 |
| Copyright terms: Public domain | W3C validator |