![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ax-flt | Structured version Visualization version GIF version |
Description: This factoid is e.g. useful for nrt2irr 29757. Andrew has a proof, I'll have a go at formalizing it after my coffee break. In the mean time let's add it as an axiom. (Contributed by Prof. Loof Lirpa, 1-Apr-2025.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ax-flt | ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ (𝑋 ∈ ℕ ∧ 𝑌 ∈ ℕ ∧ 𝑍 ∈ ℕ)) → ((𝑋↑𝑁) + (𝑌↑𝑁)) ≠ (𝑍↑𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cN | . . . 4 class 𝑁 | |
2 | c3 12268 | . . . . 5 class 3 | |
3 | cuz 12822 | . . . . 5 class ℤ≥ | |
4 | 2, 3 | cfv 6544 | . . . 4 class (ℤ≥‘3) |
5 | 1, 4 | wcel 2107 | . . 3 wff 𝑁 ∈ (ℤ≥‘3) |
6 | cX | . . . . 5 class 𝑋 | |
7 | cn 12212 | . . . . 5 class ℕ | |
8 | 6, 7 | wcel 2107 | . . . 4 wff 𝑋 ∈ ℕ |
9 | cY | . . . . 5 class 𝑌 | |
10 | 9, 7 | wcel 2107 | . . . 4 wff 𝑌 ∈ ℕ |
11 | cZ | . . . . 5 class 𝑍 | |
12 | 11, 7 | wcel 2107 | . . . 4 wff 𝑍 ∈ ℕ |
13 | 8, 10, 12 | w3a 1088 | . . 3 wff (𝑋 ∈ ℕ ∧ 𝑌 ∈ ℕ ∧ 𝑍 ∈ ℕ) |
14 | 5, 13 | wa 397 | . 2 wff (𝑁 ∈ (ℤ≥‘3) ∧ (𝑋 ∈ ℕ ∧ 𝑌 ∈ ℕ ∧ 𝑍 ∈ ℕ)) |
15 | cexp 14027 | . . . . 5 class ↑ | |
16 | 6, 1, 15 | co 7409 | . . . 4 class (𝑋↑𝑁) |
17 | 9, 1, 15 | co 7409 | . . . 4 class (𝑌↑𝑁) |
18 | caddc 11113 | . . . 4 class + | |
19 | 16, 17, 18 | co 7409 | . . 3 class ((𝑋↑𝑁) + (𝑌↑𝑁)) |
20 | 11, 1, 15 | co 7409 | . . 3 class (𝑍↑𝑁) |
21 | 19, 20 | wne 2941 | . 2 wff ((𝑋↑𝑁) + (𝑌↑𝑁)) ≠ (𝑍↑𝑁) |
22 | 14, 21 | wi 4 | 1 wff ((𝑁 ∈ (ℤ≥‘3) ∧ (𝑋 ∈ ℕ ∧ 𝑌 ∈ ℕ ∧ 𝑍 ∈ ℕ)) → ((𝑋↑𝑁) + (𝑌↑𝑁)) ≠ (𝑍↑𝑁)) |
Colors of variables: wff setvar class |
This axiom is referenced by: nrt2irr 29757 |
Copyright terms: Public domain | W3C validator |