| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ax-flt | Structured version Visualization version GIF version | ||
| Description: This factoid is e.g. useful for nrt2irr 30492. Andrew has a proof, I'll have a go at formalizing it after my coffee break. In the mean time let's add it as an axiom. (Contributed by Prof. Loof Lirpa, 1-Apr-2025.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ax-flt | ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ (𝑋 ∈ ℕ ∧ 𝑌 ∈ ℕ ∧ 𝑍 ∈ ℕ)) → ((𝑋↑𝑁) + (𝑌↑𝑁)) ≠ (𝑍↑𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cN | . . . 4 class 𝑁 | |
| 2 | c3 12322 | . . . . 5 class 3 | |
| 3 | cuz 12878 | . . . . 5 class ℤ≥ | |
| 4 | 2, 3 | cfv 6561 | . . . 4 class (ℤ≥‘3) |
| 5 | 1, 4 | wcel 2108 | . . 3 wff 𝑁 ∈ (ℤ≥‘3) |
| 6 | cX | . . . . 5 class 𝑋 | |
| 7 | cn 12266 | . . . . 5 class ℕ | |
| 8 | 6, 7 | wcel 2108 | . . . 4 wff 𝑋 ∈ ℕ |
| 9 | cY | . . . . 5 class 𝑌 | |
| 10 | 9, 7 | wcel 2108 | . . . 4 wff 𝑌 ∈ ℕ |
| 11 | cZ | . . . . 5 class 𝑍 | |
| 12 | 11, 7 | wcel 2108 | . . . 4 wff 𝑍 ∈ ℕ |
| 13 | 8, 10, 12 | w3a 1087 | . . 3 wff (𝑋 ∈ ℕ ∧ 𝑌 ∈ ℕ ∧ 𝑍 ∈ ℕ) |
| 14 | 5, 13 | wa 395 | . 2 wff (𝑁 ∈ (ℤ≥‘3) ∧ (𝑋 ∈ ℕ ∧ 𝑌 ∈ ℕ ∧ 𝑍 ∈ ℕ)) |
| 15 | cexp 14102 | . . . . 5 class ↑ | |
| 16 | 6, 1, 15 | co 7431 | . . . 4 class (𝑋↑𝑁) |
| 17 | 9, 1, 15 | co 7431 | . . . 4 class (𝑌↑𝑁) |
| 18 | caddc 11158 | . . . 4 class + | |
| 19 | 16, 17, 18 | co 7431 | . . 3 class ((𝑋↑𝑁) + (𝑌↑𝑁)) |
| 20 | 11, 1, 15 | co 7431 | . . 3 class (𝑍↑𝑁) |
| 21 | 19, 20 | wne 2940 | . 2 wff ((𝑋↑𝑁) + (𝑌↑𝑁)) ≠ (𝑍↑𝑁) |
| 22 | 14, 21 | wi 4 | 1 wff ((𝑁 ∈ (ℤ≥‘3) ∧ (𝑋 ∈ ℕ ∧ 𝑌 ∈ ℕ ∧ 𝑍 ∈ ℕ)) → ((𝑋↑𝑁) + (𝑌↑𝑁)) ≠ (𝑍↑𝑁)) |
| Colors of variables: wff setvar class |
| This axiom is referenced by: nrt2irr 30492 |
| Copyright terms: Public domain | W3C validator |