MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax-flt Structured version   Visualization version   GIF version

Axiom ax-flt 29756
Description: This factoid is e.g. useful for nrt2irr 29757. Andrew has a proof, I'll have a go at formalizing it after my coffee break. In the mean time let's add it as an axiom. (Contributed by Prof. Loof Lirpa, 1-Apr-2025.) (New usage is discouraged.)
Assertion
Ref Expression
ax-flt ((𝑁 ∈ (ℤ‘3) ∧ (𝑋 ∈ ℕ ∧ 𝑌 ∈ ℕ ∧ 𝑍 ∈ ℕ)) → ((𝑋𝑁) + (𝑌𝑁)) ≠ (𝑍𝑁))

Detailed syntax breakdown of Axiom ax-flt
StepHypRef Expression
1 cN . . . 4 class 𝑁
2 c3 12268 . . . . 5 class 3
3 cuz 12822 . . . . 5 class
42, 3cfv 6544 . . . 4 class (ℤ‘3)
51, 4wcel 2107 . . 3 wff 𝑁 ∈ (ℤ‘3)
6 cX . . . . 5 class 𝑋
7 cn 12212 . . . . 5 class
86, 7wcel 2107 . . . 4 wff 𝑋 ∈ ℕ
9 cY . . . . 5 class 𝑌
109, 7wcel 2107 . . . 4 wff 𝑌 ∈ ℕ
11 cZ . . . . 5 class 𝑍
1211, 7wcel 2107 . . . 4 wff 𝑍 ∈ ℕ
138, 10, 12w3a 1088 . . 3 wff (𝑋 ∈ ℕ ∧ 𝑌 ∈ ℕ ∧ 𝑍 ∈ ℕ)
145, 13wa 397 . 2 wff (𝑁 ∈ (ℤ‘3) ∧ (𝑋 ∈ ℕ ∧ 𝑌 ∈ ℕ ∧ 𝑍 ∈ ℕ))
15 cexp 14027 . . . . 5 class
166, 1, 15co 7409 . . . 4 class (𝑋𝑁)
179, 1, 15co 7409 . . . 4 class (𝑌𝑁)
18 caddc 11113 . . . 4 class +
1916, 17, 18co 7409 . . 3 class ((𝑋𝑁) + (𝑌𝑁))
2011, 1, 15co 7409 . . 3 class (𝑍𝑁)
2119, 20wne 2941 . 2 wff ((𝑋𝑁) + (𝑌𝑁)) ≠ (𝑍𝑁)
2214, 21wi 4 1 wff ((𝑁 ∈ (ℤ‘3) ∧ (𝑋 ∈ ℕ ∧ 𝑌 ∈ ℕ ∧ 𝑍 ∈ ℕ)) → ((𝑋𝑁) + (𝑌𝑁)) ≠ (𝑍𝑁))
Colors of variables: wff setvar class
This axiom is referenced by:  nrt2irr  29757
  Copyright terms: Public domain W3C validator