| Metamath
Proof Explorer Theorem List (p. 298 of 494) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30937) |
(30938-32460) |
(32461-49324) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | wlkdlem2 29701* | Lemma 2 for wlkd 29704. (Contributed by AV, 7-Feb-2021.) |
| ⊢ (𝜑 → 𝑃 ∈ Word V) & ⊢ (𝜑 → 𝐹 ∈ Word V) & ⊢ (𝜑 → (♯‘𝑃) = ((♯‘𝐹) + 1)) & ⊢ (𝜑 → ∀𝑘 ∈ (0..^(♯‘𝐹)){(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘))) ⇒ ⊢ (𝜑 → (((♯‘𝐹) ∈ ℕ → (𝑃‘(♯‘𝐹)) ∈ (𝐼‘(𝐹‘((♯‘𝐹) − 1)))) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝑃‘𝑘) ∈ (𝐼‘(𝐹‘𝑘)))) | ||
| Theorem | wlkdlem3 29702* | Lemma 3 for wlkd 29704. (Contributed by Alexander van der Vekens, 10-Nov-2017.) (Revised by AV, 7-Feb-2021.) |
| ⊢ (𝜑 → 𝑃 ∈ Word V) & ⊢ (𝜑 → 𝐹 ∈ Word V) & ⊢ (𝜑 → (♯‘𝑃) = ((♯‘𝐹) + 1)) & ⊢ (𝜑 → ∀𝑘 ∈ (0..^(♯‘𝐹)){(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘))) ⇒ ⊢ (𝜑 → 𝐹 ∈ Word dom 𝐼) | ||
| Theorem | wlkdlem4 29703* | Lemma 4 for wlkd 29704. (Contributed by Alexander van der Vekens, 1-Feb-2018.) (Revised by AV, 23-Jan-2021.) |
| ⊢ (𝜑 → 𝑃 ∈ Word V) & ⊢ (𝜑 → 𝐹 ∈ Word V) & ⊢ (𝜑 → (♯‘𝑃) = ((♯‘𝐹) + 1)) & ⊢ (𝜑 → ∀𝑘 ∈ (0..^(♯‘𝐹)){(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘))) & ⊢ (𝜑 → ∀𝑘 ∈ (0..^(♯‘𝐹))(𝑃‘𝑘) ≠ (𝑃‘(𝑘 + 1))) ⇒ ⊢ (𝜑 → ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘)))) | ||
| Theorem | wlkd 29704* | Two words representing a walk in a graph. (Contributed by AV, 7-Feb-2021.) |
| ⊢ (𝜑 → 𝑃 ∈ Word V) & ⊢ (𝜑 → 𝐹 ∈ Word V) & ⊢ (𝜑 → (♯‘𝑃) = ((♯‘𝐹) + 1)) & ⊢ (𝜑 → ∀𝑘 ∈ (0..^(♯‘𝐹)){(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘))) & ⊢ (𝜑 → ∀𝑘 ∈ (0..^(♯‘𝐹))(𝑃‘𝑘) ≠ (𝑃‘(𝑘 + 1))) & ⊢ (𝜑 → 𝐺 ∈ 𝑊) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ (𝜑 → ∀𝑘 ∈ (0...(♯‘𝐹))(𝑃‘𝑘) ∈ 𝑉) ⇒ ⊢ (𝜑 → 𝐹(Walks‘𝐺)𝑃) | ||
| Theorem | lfgrwlkprop 29705* | Two adjacent vertices in a walk are different in a loop-free graph. (Contributed by AV, 28-Jan-2021.) |
| ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) → ∀𝑘 ∈ (0..^(♯‘𝐹))(𝑃‘𝑘) ≠ (𝑃‘(𝑘 + 1))) | ||
| Theorem | lfgriswlk 29706* | Conditions for a pair of functions to be a walk in a loop-free graph. (Contributed by AV, 28-Jan-2021.) |
| ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝐺 ∈ 𝑊 ∧ 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) → (𝐹(Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))((𝑃‘𝑘) ≠ (𝑃‘(𝑘 + 1)) ∧ {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘)))))) | ||
| Theorem | lfgrwlknloop 29707* | In a loop-free graph, each walk has no loops! (Contributed by AV, 2-Feb-2021.) |
| ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ∧ 𝐹(Walks‘𝐺)𝑃) → ∀𝑘 ∈ (0..^(♯‘𝐹))(𝑃‘𝑘) ≠ (𝑃‘(𝑘 + 1))) | ||
| Syntax | ctrls 29708 | Extend class notation with trails (within a graph). |
| class Trails | ||
| Syntax | ctrlson 29709 | Extend class notation with trails between two vertices (within a graph). |
| class TrailsOn | ||
| Definition | df-trls 29710* |
Define the set of all Trails (in an undirected graph).
According to Wikipedia ("Path (graph theory)", https://en.wikipedia.org/wiki/Path_(graph_theory), 3-Oct-2017): "A trail is a walk in which all edges are distinct. According to Bollobas: "... walk is called a trail if all its edges are distinct.", see Definition of [Bollobas] p. 5. Therefore, a trail can be represented by an injective mapping f from { 1 , ... , n } and a mapping p from { 0 , ... , n }, where f enumerates the (indices of the) different edges, and p enumerates the vertices. So the trail is also represented by the following sequence: p(0) e(f(1)) p(1) e(f(2)) ... p(n-1) e(f(n)) p(n). (Contributed by Alexander van der Vekens and Mario Carneiro, 4-Oct-2017.) (Revised by AV, 28-Dec-2020.) |
| ⊢ Trails = (𝑔 ∈ V ↦ {〈𝑓, 𝑝〉 ∣ (𝑓(Walks‘𝑔)𝑝 ∧ Fun ◡𝑓)}) | ||
| Definition | df-trlson 29711* | Define the collection of trails with particular endpoints (in an undirected graph). (Contributed by Alexander van der Vekens and Mario Carneiro, 4-Oct-2017.) (Revised by AV, 28-Dec-2020.) |
| ⊢ TrailsOn = (𝑔 ∈ V ↦ (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {〈𝑓, 𝑝〉 ∣ (𝑓(𝑎(WalksOn‘𝑔)𝑏)𝑝 ∧ 𝑓(Trails‘𝑔)𝑝)})) | ||
| Theorem | reltrls 29712 | The set (Trails‘𝐺) of all trails on 𝐺 is a set of pairs by our definition of a trail, and so is a relation. (Contributed by AV, 29-Oct-2021.) |
| ⊢ Rel (Trails‘𝐺) | ||
| Theorem | trlsfval 29713* | The set of trails (in an undirected graph). (Contributed by Alexander van der Vekens, 20-Oct-2017.) (Revised by AV, 28-Dec-2020.) (Revised by AV, 29-Oct-2021.) |
| ⊢ (Trails‘𝐺) = {〈𝑓, 𝑝〉 ∣ (𝑓(Walks‘𝐺)𝑝 ∧ Fun ◡𝑓)} | ||
| Theorem | istrl 29714 | Conditions for a pair of classes/functions to be a trail (in an undirected graph). (Contributed by Alexander van der Vekens, 20-Oct-2017.) (Revised by AV, 28-Dec-2020.) (Revised by AV, 29-Oct-2021.) |
| ⊢ (𝐹(Trails‘𝐺)𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ Fun ◡𝐹)) | ||
| Theorem | trliswlk 29715 | A trail is a walk. (Contributed by Alexander van der Vekens, 20-Oct-2017.) (Revised by AV, 7-Jan-2021.) (Proof shortened by AV, 29-Oct-2021.) |
| ⊢ (𝐹(Trails‘𝐺)𝑃 → 𝐹(Walks‘𝐺)𝑃) | ||
| Theorem | trlf1 29716 | The enumeration 𝐹 of a trail 〈𝐹, 𝑃〉 is injective. (Contributed by AV, 20-Feb-2021.) (Proof shortened by AV, 29-Oct-2021.) |
| ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ (𝐹(Trails‘𝐺)𝑃 → 𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼) | ||
| Theorem | trlreslem 29717 | Lemma for trlres 29718. Formerly part of proof of eupthres 30234. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Mario Carneiro, 3-May-2015.) (Revised by AV, 6-Mar-2021.) Hypothesis revised using the prefix operation. (Revised by AV, 30-Nov-2022.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ (𝜑 → 𝐹(Trails‘𝐺)𝑃) & ⊢ (𝜑 → 𝑁 ∈ (0..^(♯‘𝐹))) & ⊢ 𝐻 = (𝐹 prefix 𝑁) ⇒ ⊢ (𝜑 → 𝐻:(0..^(♯‘𝐻))–1-1-onto→dom (𝐼 ↾ (𝐹 “ (0..^𝑁)))) | ||
| Theorem | trlres 29718 | The restriction 〈𝐻, 𝑄〉 of a trail 〈𝐹, 𝑃〉 to an initial segment of the trail (of length 𝑁) forms a trail on the subgraph 𝑆 consisting of the edges in the initial segment. (Contributed by AV, 6-Mar-2021.) Hypothesis revised using the prefix operation. (Revised by AV, 30-Nov-2022.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ (𝜑 → 𝐹(Trails‘𝐺)𝑃) & ⊢ (𝜑 → 𝑁 ∈ (0..^(♯‘𝐹))) & ⊢ 𝐻 = (𝐹 prefix 𝑁) & ⊢ (𝜑 → (Vtx‘𝑆) = 𝑉) & ⊢ (𝜑 → (iEdg‘𝑆) = (𝐼 ↾ (𝐹 “ (0..^𝑁)))) & ⊢ 𝑄 = (𝑃 ↾ (0...𝑁)) ⇒ ⊢ (𝜑 → 𝐻(Trails‘𝑆)𝑄) | ||
| Theorem | upgrtrls 29719* | The set of trails in a pseudograph, definition of walks expanded. (Contributed by Alexander van der Vekens, 20-Oct-2017.) (Revised by AV, 7-Jan-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ (𝐺 ∈ UPGraph → (Trails‘𝐺) = {〈𝑓, 𝑝〉 ∣ ((𝑓 ∈ Word dom 𝐼 ∧ Fun ◡𝑓) ∧ 𝑝:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))(𝐼‘(𝑓‘𝑘)) = {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))})}) | ||
| Theorem | upgristrl 29720* | Properties of a pair of functions to be a trail in a pseudograph, definition of walks expanded. (Contributed by Alexander van der Vekens, 20-Oct-2017.) (Revised by AV, 7-Jan-2021.) (Revised by AV, 29-Oct-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ (𝐺 ∈ UPGraph → (𝐹(Trails‘𝐺)𝑃 ↔ ((𝐹 ∈ Word dom 𝐼 ∧ Fun ◡𝐹) ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}))) | ||
| Theorem | upgrf1istrl 29721* | Properties of a pair of a one-to-one function into the set of indices of edges and a function into the set of vertices to be a trail in a pseudograph. (Contributed by Alexander van der Vekens, 20-Oct-2017.) (Revised by AV, 7-Jan-2021.) (Revised by AV, 29-Oct-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ (𝐺 ∈ UPGraph → (𝐹(Trails‘𝐺)𝑃 ↔ (𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}))) | ||
| Theorem | wksonproplem 29722* | Lemma for theorems for properties of walks between two vertices, e.g., trlsonprop 29726. (Contributed by AV, 16-Jan-2021.) Remove is-walk hypothesis. (Revised by SN, 13-Dec-2024.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ (((𝐺 ∈ V ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) → (𝐹(𝐴(𝑊‘𝐺)𝐵)𝑃 ↔ (𝐹(𝐴(𝑂‘𝐺)𝐵)𝑃 ∧ 𝐹(𝑄‘𝐺)𝑃))) & ⊢ 𝑊 = (𝑔 ∈ V ↦ (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {〈𝑓, 𝑝〉 ∣ (𝑓(𝑎(𝑂‘𝑔)𝑏)𝑝 ∧ 𝑓(𝑄‘𝑔)𝑝)})) ⇒ ⊢ (𝐹(𝐴(𝑊‘𝐺)𝐵)𝑃 → ((𝐺 ∈ V ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(𝐴(𝑂‘𝐺)𝐵)𝑃 ∧ 𝐹(𝑄‘𝐺)𝑃))) | ||
| Theorem | wksonproplemOLD 29723* | Obsolete version of wksonproplem 29722 as of 13-Dec-2024. (Contributed by AV, 16-Jan-2021.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ (((𝐺 ∈ V ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) → (𝐹(𝐴(𝑊‘𝐺)𝐵)𝑃 ↔ (𝐹(𝐴(𝑂‘𝐺)𝐵)𝑃 ∧ 𝐹(𝑄‘𝐺)𝑃))) & ⊢ 𝑊 = (𝑔 ∈ V ↦ (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {〈𝑓, 𝑝〉 ∣ (𝑓(𝑎(𝑂‘𝑔)𝑏)𝑝 ∧ 𝑓(𝑄‘𝑔)𝑝)})) & ⊢ (((𝐺 ∈ V ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝑓(𝑄‘𝐺)𝑝) → 𝑓(Walks‘𝐺)𝑝) ⇒ ⊢ (𝐹(𝐴(𝑊‘𝐺)𝐵)𝑃 → ((𝐺 ∈ V ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(𝐴(𝑂‘𝐺)𝐵)𝑃 ∧ 𝐹(𝑄‘𝐺)𝑃))) | ||
| Theorem | trlsonfval 29724* | The set of trails between two vertices. (Contributed by Alexander van der Vekens, 4-Nov-2017.) (Revised by AV, 7-Jan-2021.) (Proof shortened by AV, 15-Jan-2021.) (Revised by AV, 21-Mar-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐴(TrailsOn‘𝐺)𝐵) = {〈𝑓, 𝑝〉 ∣ (𝑓(𝐴(WalksOn‘𝐺)𝐵)𝑝 ∧ 𝑓(Trails‘𝐺)𝑝)}) | ||
| Theorem | istrlson 29725 | Properties of a pair of functions to be a trail between two given vertices. (Contributed by Alexander van der Vekens, 3-Nov-2017.) (Revised by AV, 7-Jan-2021.) (Revised by AV, 21-Mar-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐹 ∈ 𝑈 ∧ 𝑃 ∈ 𝑍)) → (𝐹(𝐴(TrailsOn‘𝐺)𝐵)𝑃 ↔ (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃 ∧ 𝐹(Trails‘𝐺)𝑃))) | ||
| Theorem | trlsonprop 29726 | Properties of a trail between two vertices. (Contributed by Alexander van der Vekens, 5-Nov-2017.) (Revised by AV, 7-Jan-2021.) (Proof shortened by AV, 16-Jan-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (𝐹(𝐴(TrailsOn‘𝐺)𝐵)𝑃 → ((𝐺 ∈ V ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃 ∧ 𝐹(Trails‘𝐺)𝑃))) | ||
| Theorem | trlsonistrl 29727 | A trail between two vertices is a trail. (Contributed by Alexander van der Vekens, 12-Dec-2017.) (Revised by AV, 7-Jan-2021.) |
| ⊢ (𝐹(𝐴(TrailsOn‘𝐺)𝐵)𝑃 → 𝐹(Trails‘𝐺)𝑃) | ||
| Theorem | trlsonwlkon 29728 | A trail between two vertices is a walk between these vertices. (Contributed by Alexander van der Vekens, 5-Nov-2017.) (Revised by AV, 7-Jan-2021.) |
| ⊢ (𝐹(𝐴(TrailsOn‘𝐺)𝐵)𝑃 → 𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃) | ||
| Theorem | trlontrl 29729 | A trail is a trail between its endpoints. (Contributed by AV, 31-Jan-2021.) |
| ⊢ (𝐹(Trails‘𝐺)𝑃 → 𝐹((𝑃‘0)(TrailsOn‘𝐺)(𝑃‘(♯‘𝐹)))𝑃) | ||
| Syntax | cpths 29730 | Extend class notation with paths (of a graph). |
| class Paths | ||
| Syntax | cspths 29731 | Extend class notation with simple paths (of a graph). |
| class SPaths | ||
| Syntax | cpthson 29732 | Extend class notation with paths between two vertices (within a graph). |
| class PathsOn | ||
| Syntax | cspthson 29733 | Extend class notation with simple paths between two vertices (within a graph). |
| class SPathsOn | ||
| Definition | df-pths 29734* |
Define the set of all paths (in an undirected graph).
According to Wikipedia ("Path (graph theory)", https://en.wikipedia.org/wiki/Path_(graph_theory), 3-Oct-2017): "A path is a trail in which all vertices (except possibly the first and last) are distinct. ... use the term simple path to refer to a path which contains no repeated vertices." According to Bollobas: "... a path is a walk with distinct vertices.", see Notation of [Bollobas] p. 5. (A walk with distinct vertices is actually a simple path, see upgrwlkdvspth 29759). Therefore, a path can be represented by an injective mapping f from { 1 , ... , n } and a mapping p from { 0 , ... , n }, which is injective restricted to the set { 1 , ... , n }, where f enumerates the (indices of the) different edges, and p enumerates the vertices. So the path is also represented by the following sequence: p(0) e(f(1)) p(1) e(f(2)) ... p(n-1) e(f(n)) p(n). (Contributed by Alexander van der Vekens and Mario Carneiro, 4-Oct-2017.) (Revised by AV, 9-Jan-2021.) |
| ⊢ Paths = (𝑔 ∈ V ↦ {〈𝑓, 𝑝〉 ∣ (𝑓(Trails‘𝑔)𝑝 ∧ Fun ◡(𝑝 ↾ (1..^(♯‘𝑓))) ∧ ((𝑝 “ {0, (♯‘𝑓)}) ∩ (𝑝 “ (1..^(♯‘𝑓)))) = ∅)}) | ||
| Definition | df-spths 29735* |
Define the set of all simple paths (in an undirected graph).
According to Wikipedia ("Path (graph theory)", https://en.wikipedia.org/wiki/Path_(graph_theory), 3-Oct-2017): "A path is a trail in which all vertices (except possibly the first and last) are distinct. ... use the term simple path to refer to a path which contains no repeated vertices." Therefore, a simple path can be represented by an injective mapping f from { 1 , ... , n } and an injective mapping p from { 0 , ... , n }, where f enumerates the (indices of the) different edges, and p enumerates the vertices. So the simple path is also represented by the following sequence: p(0) e(f(1)) p(1) e(f(2)) ... p(n-1) e(f(n)) p(n). (Contributed by Alexander van der Vekens, 20-Oct-2017.) (Revised by AV, 9-Jan-2021.) |
| ⊢ SPaths = (𝑔 ∈ V ↦ {〈𝑓, 𝑝〉 ∣ (𝑓(Trails‘𝑔)𝑝 ∧ Fun ◡𝑝)}) | ||
| Definition | df-pthson 29736* | Define the collection of paths with particular endpoints (in an undirected graph). (Contributed by Alexander van der Vekens and Mario Carneiro, 4-Oct-2017.) (Revised by AV, 9-Jan-2021.) |
| ⊢ PathsOn = (𝑔 ∈ V ↦ (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {〈𝑓, 𝑝〉 ∣ (𝑓(𝑎(TrailsOn‘𝑔)𝑏)𝑝 ∧ 𝑓(Paths‘𝑔)𝑝)})) | ||
| Definition | df-spthson 29737* | Define the collection of simple paths with particular endpoints (in an undirected graph). (Contributed by Alexander van der Vekens, 1-Mar-2018.) (Revised by AV, 9-Jan-2021.) |
| ⊢ SPathsOn = (𝑔 ∈ V ↦ (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {〈𝑓, 𝑝〉 ∣ (𝑓(𝑎(TrailsOn‘𝑔)𝑏)𝑝 ∧ 𝑓(SPaths‘𝑔)𝑝)})) | ||
| Theorem | relpths 29738 | The set (Paths‘𝐺) of all paths on 𝐺 is a set of pairs by our definition of a path, and so is a relation. (Contributed by AV, 30-Oct-2021.) |
| ⊢ Rel (Paths‘𝐺) | ||
| Theorem | pthsfval 29739* | The set of paths (in an undirected graph). (Contributed by Alexander van der Vekens, 20-Oct-2017.) (Revised by AV, 9-Jan-2021.) (Revised by AV, 29-Oct-2021.) |
| ⊢ (Paths‘𝐺) = {〈𝑓, 𝑝〉 ∣ (𝑓(Trails‘𝐺)𝑝 ∧ Fun ◡(𝑝 ↾ (1..^(♯‘𝑓))) ∧ ((𝑝 “ {0, (♯‘𝑓)}) ∩ (𝑝 “ (1..^(♯‘𝑓)))) = ∅)} | ||
| Theorem | spthsfval 29740* | The set of simple paths (in an undirected graph). (Contributed by Alexander van der Vekens, 21-Oct-2017.) (Revised by AV, 9-Jan-2021.) (Revised by AV, 29-Oct-2021.) |
| ⊢ (SPaths‘𝐺) = {〈𝑓, 𝑝〉 ∣ (𝑓(Trails‘𝐺)𝑝 ∧ Fun ◡𝑝)} | ||
| Theorem | ispth 29741 | Conditions for a pair of classes/functions to be a path (in an undirected graph). (Contributed by Alexander van der Vekens, 21-Oct-2017.) (Revised by AV, 9-Jan-2021.) (Revised by AV, 29-Oct-2021.) |
| ⊢ (𝐹(Paths‘𝐺)𝑃 ↔ (𝐹(Trails‘𝐺)𝑃 ∧ Fun ◡(𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅)) | ||
| Theorem | isspth 29742 | Conditions for a pair of classes/functions to be a simple path (in an undirected graph). (Contributed by Alexander van der Vekens, 21-Oct-2017.) (Revised by AV, 9-Jan-2021.) (Revised by AV, 29-Oct-2021.) |
| ⊢ (𝐹(SPaths‘𝐺)𝑃 ↔ (𝐹(Trails‘𝐺)𝑃 ∧ Fun ◡𝑃)) | ||
| Theorem | pthistrl 29743 | A path is a trail (in an undirected graph). (Contributed by Alexander van der Vekens, 21-Oct-2017.) (Revised by AV, 9-Jan-2021.) (Proof shortened by AV, 30-Oct-2021.) |
| ⊢ (𝐹(Paths‘𝐺)𝑃 → 𝐹(Trails‘𝐺)𝑃) | ||
| Theorem | spthispth 29744 | A simple path is a path (in an undirected graph). (Contributed by Alexander van der Vekens, 21-Oct-2017.) (Revised by AV, 9-Jan-2021.) (Proof shortened by AV, 30-Oct-2021.) |
| ⊢ (𝐹(SPaths‘𝐺)𝑃 → 𝐹(Paths‘𝐺)𝑃) | ||
| Theorem | pthiswlk 29745 | A path is a walk (in an undirected graph). (Contributed by AV, 6-Feb-2021.) |
| ⊢ (𝐹(Paths‘𝐺)𝑃 → 𝐹(Walks‘𝐺)𝑃) | ||
| Theorem | spthiswlk 29746 | A simple path is a walk (in an undirected graph). (Contributed by AV, 16-May-2021.) |
| ⊢ (𝐹(SPaths‘𝐺)𝑃 → 𝐹(Walks‘𝐺)𝑃) | ||
| Theorem | pthdivtx 29747 | The inner vertices of a path are distinct from all other vertices. (Contributed by AV, 5-Feb-2021.) (Proof shortened by AV, 31-Oct-2021.) |
| ⊢ ((𝐹(Paths‘𝐺)𝑃 ∧ (𝐼 ∈ (1..^(♯‘𝐹)) ∧ 𝐽 ∈ (0...(♯‘𝐹)) ∧ 𝐼 ≠ 𝐽)) → (𝑃‘𝐼) ≠ (𝑃‘𝐽)) | ||
| Theorem | pthdadjvtx 29748 | The adjacent vertices of a path of length at least 2 are distinct. (Contributed by AV, 5-Feb-2021.) |
| ⊢ ((𝐹(Paths‘𝐺)𝑃 ∧ 1 < (♯‘𝐹) ∧ 𝐼 ∈ (0..^(♯‘𝐹))) → (𝑃‘𝐼) ≠ (𝑃‘(𝐼 + 1))) | ||
| Theorem | dfpth2 29749 | Alternate definition for a pair of classes/functions to be a path (in an undirected graph). (Contributed by AV, 4-Oct-2025.) |
| ⊢ (𝐹(Paths‘𝐺)𝑃 ↔ (𝐹(Trails‘𝐺)𝑃 ∧ Fun ◡(𝑃 ↾ (1...(♯‘𝐹))) ∧ (𝑃‘0) ∉ (𝑃 “ (1..^(♯‘𝐹))))) | ||
| Theorem | pthdifv 29750 | The vertices of a path are distinct (except the first and last vertex), so the restricted vertex function is one-to-one. (Contributed by AV, 2-Oct-2025.) |
| ⊢ (𝐹(Paths‘𝐺)𝑃 → (𝑃 ↾ (1...(♯‘𝐹))):(1...(♯‘𝐹))–1-1→(Vtx‘𝐺)) | ||
| Theorem | 2pthnloop 29751* | A path of length at least 2 does not contain a loop. In contrast, a path of length 1 can contain/be a loop, see lppthon 30170. (Contributed by AV, 6-Feb-2021.) |
| ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ ((𝐹(Paths‘𝐺)𝑃 ∧ 1 < (♯‘𝐹)) → ∀𝑖 ∈ (0..^(♯‘𝐹))2 ≤ (♯‘(𝐼‘(𝐹‘𝑖)))) | ||
| Theorem | upgr2pthnlp 29752* | A path of length at least 2 in a pseudograph does not contain a loop. (Contributed by AV, 6-Feb-2021.) |
| ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ ((𝐺 ∈ UPGraph ∧ 𝐹(Paths‘𝐺)𝑃 ∧ 1 < (♯‘𝐹)) → ∀𝑖 ∈ (0..^(♯‘𝐹))(♯‘(𝐼‘(𝐹‘𝑖))) = 2) | ||
| Theorem | spthdifv 29753 | The vertices of a simple path are distinct, so the vertex function is one-to-one. (Contributed by Alexander van der Vekens, 26-Jan-2018.) (Revised by AV, 5-Jun-2021.) (Proof shortened by AV, 30-Oct-2021.) |
| ⊢ (𝐹(SPaths‘𝐺)𝑃 → 𝑃:(0...(♯‘𝐹))–1-1→(Vtx‘𝐺)) | ||
| Theorem | spthdep 29754 | A simple path (at least of length 1) has different start and end points (in an undirected graph). (Contributed by AV, 31-Jan-2021.) (Proof shortened by AV, 30-Oct-2021.) |
| ⊢ ((𝐹(SPaths‘𝐺)𝑃 ∧ (♯‘𝐹) ≠ 0) → (𝑃‘0) ≠ (𝑃‘(♯‘𝐹))) | ||
| Theorem | pthdepisspth 29755 | A path with different start and end points is a simple path (in an undirected graph). (Contributed by Alexander van der Vekens, 31-Oct-2017.) (Revised by AV, 12-Jan-2021.) (Proof shortened by AV, 30-Oct-2021.) |
| ⊢ ((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) ≠ (𝑃‘(♯‘𝐹))) → 𝐹(SPaths‘𝐺)𝑃) | ||
| Theorem | upgrwlkdvdelem 29756* | Lemma for upgrwlkdvde 29757. (Contributed by Alexander van der Vekens, 27-Oct-2017.) (Proof shortened by AV, 17-Jan-2021.) |
| ⊢ ((𝑃:(0...(♯‘𝐹))–1-1→𝑉 ∧ 𝐹 ∈ Word dom 𝐼) → (∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} → Fun ◡𝐹)) | ||
| Theorem | upgrwlkdvde 29757 | In a pseudograph, all edges of a walk consisting of different vertices are different. Notice that this theorem would not hold for arbitrary hypergraphs, see the counterexample given in the comment of upgrspthswlk 29758. (Contributed by AV, 17-Jan-2021.) |
| ⊢ ((𝐺 ∈ UPGraph ∧ 𝐹(Walks‘𝐺)𝑃 ∧ Fun ◡𝑃) → Fun ◡𝐹) | ||
| Theorem | upgrspthswlk 29758* | The set of simple paths in a pseudograph, expressed as walk. Notice that this theorem would not hold for arbitrary hypergraphs, since a walk with distinct vertices does not need to be a trail: let E = { p0, p1, p2 } be a hyperedge, then ( p0, e, p1, e, p2 ) is walk with distinct vertices, but not with distinct edges. Therefore, E is not a trail and, by definition, also no path. (Contributed by AV, 11-Jan-2021.) (Proof shortened by AV, 17-Jan-2021.) (Proof shortened by AV, 30-Oct-2021.) |
| ⊢ (𝐺 ∈ UPGraph → (SPaths‘𝐺) = {〈𝑓, 𝑝〉 ∣ (𝑓(Walks‘𝐺)𝑝 ∧ Fun ◡𝑝)}) | ||
| Theorem | upgrwlkdvspth 29759 | A walk consisting of different vertices is a simple path. Notice that this theorem would not hold for arbitrary hypergraphs, see the counterexample given in the comment of upgrspthswlk 29758. (Contributed by Alexander van der Vekens, 27-Oct-2017.) (Revised by AV, 17-Jan-2021.) |
| ⊢ ((𝐺 ∈ UPGraph ∧ 𝐹(Walks‘𝐺)𝑃 ∧ Fun ◡𝑃) → 𝐹(SPaths‘𝐺)𝑃) | ||
| Theorem | pthsonfval 29760* | The set of paths between two vertices (in an undirected graph). (Contributed by Alexander van der Vekens, 8-Nov-2017.) (Revised by AV, 16-Jan-2021.) (Revised by AV, 21-Mar-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐴(PathsOn‘𝐺)𝐵) = {〈𝑓, 𝑝〉 ∣ (𝑓(𝐴(TrailsOn‘𝐺)𝐵)𝑝 ∧ 𝑓(Paths‘𝐺)𝑝)}) | ||
| Theorem | spthson 29761* | The set of simple paths between two vertices (in an undirected graph). (Contributed by Alexander van der Vekens, 1-Mar-2018.) (Revised by AV, 16-Jan-2021.) (Revised by AV, 21-Mar-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐴(SPathsOn‘𝐺)𝐵) = {〈𝑓, 𝑝〉 ∣ (𝑓(𝐴(TrailsOn‘𝐺)𝐵)𝑝 ∧ 𝑓(SPaths‘𝐺)𝑝)}) | ||
| Theorem | ispthson 29762 | Properties of a pair of functions to be a path between two given vertices. (Contributed by Alexander van der Vekens, 8-Nov-2017.) (Revised by AV, 16-Jan-2021.) (Revised by AV, 21-Mar-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐹 ∈ 𝑈 ∧ 𝑃 ∈ 𝑍)) → (𝐹(𝐴(PathsOn‘𝐺)𝐵)𝑃 ↔ (𝐹(𝐴(TrailsOn‘𝐺)𝐵)𝑃 ∧ 𝐹(Paths‘𝐺)𝑃))) | ||
| Theorem | isspthson 29763 | Properties of a pair of functions to be a simple path between two given vertices. (Contributed by Alexander van der Vekens, 1-Mar-2018.) (Revised by AV, 16-Jan-2021.) (Revised by AV, 21-Mar-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐹 ∈ 𝑈 ∧ 𝑃 ∈ 𝑍)) → (𝐹(𝐴(SPathsOn‘𝐺)𝐵)𝑃 ↔ (𝐹(𝐴(TrailsOn‘𝐺)𝐵)𝑃 ∧ 𝐹(SPaths‘𝐺)𝑃))) | ||
| Theorem | pthsonprop 29764 | Properties of a path between two vertices. (Contributed by Alexander van der Vekens, 12-Dec-2017.) (Revised by AV, 16-Jan-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (𝐹(𝐴(PathsOn‘𝐺)𝐵)𝑃 → ((𝐺 ∈ V ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(𝐴(TrailsOn‘𝐺)𝐵)𝑃 ∧ 𝐹(Paths‘𝐺)𝑃))) | ||
| Theorem | spthonprop 29765 | Properties of a simple path between two vertices. (Contributed by Alexander van der Vekens, 1-Mar-2018.) (Revised by AV, 16-Jan-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (𝐹(𝐴(SPathsOn‘𝐺)𝐵)𝑃 → ((𝐺 ∈ V ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(𝐴(TrailsOn‘𝐺)𝐵)𝑃 ∧ 𝐹(SPaths‘𝐺)𝑃))) | ||
| Theorem | pthonispth 29766 | A path between two vertices is a path. (Contributed by Alexander van der Vekens, 12-Dec-2017.) (Revised by AV, 17-Jan-2021.) |
| ⊢ (𝐹(𝐴(PathsOn‘𝐺)𝐵)𝑃 → 𝐹(Paths‘𝐺)𝑃) | ||
| Theorem | pthontrlon 29767 | A path between two vertices is a trail between these vertices. (Contributed by AV, 24-Jan-2021.) |
| ⊢ (𝐹(𝐴(PathsOn‘𝐺)𝐵)𝑃 → 𝐹(𝐴(TrailsOn‘𝐺)𝐵)𝑃) | ||
| Theorem | pthonpth 29768 | A path is a path between its endpoints. (Contributed by AV, 31-Jan-2021.) |
| ⊢ (𝐹(Paths‘𝐺)𝑃 → 𝐹((𝑃‘0)(PathsOn‘𝐺)(𝑃‘(♯‘𝐹)))𝑃) | ||
| Theorem | isspthonpth 29769 | A pair of functions is a simple path between two given vertices iff it is a simple path starting and ending at the two vertices. (Contributed by Alexander van der Vekens, 9-Mar-2018.) (Revised by AV, 17-Jan-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐹 ∈ 𝑊 ∧ 𝑃 ∈ 𝑍)) → (𝐹(𝐴(SPathsOn‘𝐺)𝐵)𝑃 ↔ (𝐹(SPaths‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵))) | ||
| Theorem | spthonisspth 29770 | A simple path between to vertices is a simple path. (Contributed by Alexander van der Vekens, 2-Mar-2018.) (Revised by AV, 18-Jan-2021.) |
| ⊢ (𝐹(𝐴(SPathsOn‘𝐺)𝐵)𝑃 → 𝐹(SPaths‘𝐺)𝑃) | ||
| Theorem | spthonpthon 29771 | A simple path between two vertices is a path between these vertices. (Contributed by AV, 24-Jan-2021.) |
| ⊢ (𝐹(𝐴(SPathsOn‘𝐺)𝐵)𝑃 → 𝐹(𝐴(PathsOn‘𝐺)𝐵)𝑃) | ||
| Theorem | spthonepeq 29772 | The endpoints of a simple path between two vertices are equal iff the path is of length 0. (Contributed by Alexander van der Vekens, 1-Mar-2018.) (Revised by AV, 18-Jan-2021.) (Proof shortened by AV, 31-Oct-2021.) |
| ⊢ (𝐹(𝐴(SPathsOn‘𝐺)𝐵)𝑃 → (𝐴 = 𝐵 ↔ (♯‘𝐹) = 0)) | ||
| Theorem | uhgrwkspthlem1 29773 | Lemma 1 for uhgrwkspth 29775. (Contributed by AV, 25-Jan-2021.) |
| ⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ (♯‘𝐹) = 1) → Fun ◡𝐹) | ||
| Theorem | uhgrwkspthlem2 29774 | Lemma 2 for uhgrwkspth 29775. (Contributed by AV, 25-Jan-2021.) |
| ⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ ((♯‘𝐹) = 1 ∧ 𝐴 ≠ 𝐵) ∧ ((𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵)) → Fun ◡𝑃) | ||
| Theorem | uhgrwkspth 29775 | Any walk of length 1 between two different vertices is a simple path. (Contributed by AV, 25-Jan-2021.) (Proof shortened by AV, 31-Oct-2021.) (Revised by AV, 7-Jul-2022.) |
| ⊢ ((𝐺 ∈ 𝑊 ∧ (♯‘𝐹) = 1 ∧ 𝐴 ≠ 𝐵) → (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃 ↔ 𝐹(𝐴(SPathsOn‘𝐺)𝐵)𝑃)) | ||
| Theorem | usgr2wlkneq 29776 | The vertices and edges are pairwise different in a walk of length 2 in a simple graph. (Contributed by Alexander van der Vekens, 2-Mar-2018.) (Revised by AV, 26-Jan-2021.) |
| ⊢ (((𝐺 ∈ USGraph ∧ 𝐹(Walks‘𝐺)𝑃) ∧ ((♯‘𝐹) = 2 ∧ (𝑃‘0) ≠ (𝑃‘(♯‘𝐹)))) → (((𝑃‘0) ≠ (𝑃‘1) ∧ (𝑃‘0) ≠ (𝑃‘2) ∧ (𝑃‘1) ≠ (𝑃‘2)) ∧ (𝐹‘0) ≠ (𝐹‘1))) | ||
| Theorem | usgr2wlkspthlem1 29777 | Lemma 1 for usgr2wlkspth 29779. (Contributed by Alexander van der Vekens, 2-Mar-2018.) (Revised by AV, 26-Jan-2021.) |
| ⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ (𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2 ∧ (𝑃‘0) ≠ (𝑃‘(♯‘𝐹)))) → Fun ◡𝐹) | ||
| Theorem | usgr2wlkspthlem2 29778 | Lemma 2 for usgr2wlkspth 29779. (Contributed by Alexander van der Vekens, 2-Mar-2018.) (Revised by AV, 27-Jan-2021.) |
| ⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ (𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2 ∧ (𝑃‘0) ≠ (𝑃‘(♯‘𝐹)))) → Fun ◡𝑃) | ||
| Theorem | usgr2wlkspth 29779 | In a simple graph, any walk of length 2 between two different vertices is a simple path. (Contributed by Alexander van der Vekens, 2-Mar-2018.) (Revised by AV, 27-Jan-2021.) (Proof shortened by AV, 31-Oct-2021.) |
| ⊢ ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2 ∧ 𝐴 ≠ 𝐵) → (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃 ↔ 𝐹(𝐴(SPathsOn‘𝐺)𝐵)𝑃)) | ||
| Theorem | usgr2trlncl 29780 | In a simple graph, any trail of length 2 does not start and end at the same vertex. (Contributed by AV, 5-Jun-2021.) (Proof shortened by AV, 31-Oct-2021.) |
| ⊢ ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2) → (𝐹(Trails‘𝐺)𝑃 → (𝑃‘0) ≠ (𝑃‘2))) | ||
| Theorem | usgr2trlspth 29781 | In a simple graph, any trail of length 2 is a simple path. (Contributed by AV, 5-Jun-2021.) |
| ⊢ ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2) → (𝐹(Trails‘𝐺)𝑃 ↔ 𝐹(SPaths‘𝐺)𝑃)) | ||
| Theorem | usgr2pthspth 29782 | In a simple graph, any path of length 2 is a simple path. (Contributed by Alexander van der Vekens, 25-Jan-2018.) (Revised by AV, 5-Jun-2021.) |
| ⊢ ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2) → (𝐹(Paths‘𝐺)𝑃 ↔ 𝐹(SPaths‘𝐺)𝑃)) | ||
| Theorem | usgr2pthlem 29783* | Lemma for usgr2pth 29784. (Contributed by Alexander van der Vekens, 27-Jan-2018.) (Revised by AV, 5-Jun-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ ((𝐹:(0..^(♯‘𝐹))–1-1→dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))}) → ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2) → ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧})))) | ||
| Theorem | usgr2pth 29784* | In a simple graph, there is a path of length 2 iff there are three distinct vertices so that one of them is connected to each of the two others by an edge. (Contributed by Alexander van der Vekens, 27-Jan-2018.) (Revised by AV, 5-Jun-2021.) (Proof shortened by AV, 31-Oct-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ (𝐺 ∈ USGraph → ((𝐹(Paths‘𝐺)𝑃 ∧ (♯‘𝐹) = 2) ↔ (𝐹:(0..^2)–1-1→dom 𝐼 ∧ 𝑃:(0...2)–1-1→𝑉 ∧ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑦 ∧ (𝑃‘2) = 𝑧) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑦} ∧ (𝐼‘(𝐹‘1)) = {𝑦, 𝑧}))))) | ||
| Theorem | usgr2pth0 29785* | In a simply graph, there is a path of length 2 iff there are three distinct vertices so that one of them is connected to each of the two others by an edge. (Contributed by Alexander van der Vekens, 27-Jan-2018.) (Revised by AV, 5-Jun-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ (𝐺 ∈ USGraph → ((𝐹(Paths‘𝐺)𝑃 ∧ (♯‘𝐹) = 2) ↔ (𝐹:(0..^2)–1-1→dom 𝐼 ∧ 𝑃:(0...2)–1-1→𝑉 ∧ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})∃𝑧 ∈ (𝑉 ∖ {𝑥, 𝑦})(((𝑃‘0) = 𝑥 ∧ (𝑃‘1) = 𝑧 ∧ (𝑃‘2) = 𝑦) ∧ ((𝐼‘(𝐹‘0)) = {𝑥, 𝑧} ∧ (𝐼‘(𝐹‘1)) = {𝑧, 𝑦}))))) | ||
| Theorem | pthdlem1 29786* | Lemma 1 for pthd 29789. (Contributed by Alexander van der Vekens, 13-Nov-2017.) (Revised by AV, 9-Feb-2021.) |
| ⊢ (𝜑 → 𝑃 ∈ Word V) & ⊢ 𝑅 = ((♯‘𝑃) − 1) & ⊢ (𝜑 → ∀𝑖 ∈ (0..^(♯‘𝑃))∀𝑗 ∈ (1..^𝑅)(𝑖 ≠ 𝑗 → (𝑃‘𝑖) ≠ (𝑃‘𝑗))) ⇒ ⊢ (𝜑 → Fun ◡(𝑃 ↾ (1..^𝑅))) | ||
| Theorem | pthdlem2lem 29787* | Lemma for pthdlem2 29788. (Contributed by AV, 10-Feb-2021.) |
| ⊢ (𝜑 → 𝑃 ∈ Word V) & ⊢ 𝑅 = ((♯‘𝑃) − 1) & ⊢ (𝜑 → ∀𝑖 ∈ (0..^(♯‘𝑃))∀𝑗 ∈ (1..^𝑅)(𝑖 ≠ 𝑗 → (𝑃‘𝑖) ≠ (𝑃‘𝑗))) ⇒ ⊢ ((𝜑 ∧ (♯‘𝑃) ∈ ℕ ∧ (𝐼 = 0 ∨ 𝐼 = 𝑅)) → (𝑃‘𝐼) ∉ (𝑃 “ (1..^𝑅))) | ||
| Theorem | pthdlem2 29788* | Lemma 2 for pthd 29789. (Contributed by Alexander van der Vekens, 11-Nov-2017.) (Revised by AV, 10-Feb-2021.) |
| ⊢ (𝜑 → 𝑃 ∈ Word V) & ⊢ 𝑅 = ((♯‘𝑃) − 1) & ⊢ (𝜑 → ∀𝑖 ∈ (0..^(♯‘𝑃))∀𝑗 ∈ (1..^𝑅)(𝑖 ≠ 𝑗 → (𝑃‘𝑖) ≠ (𝑃‘𝑗))) ⇒ ⊢ (𝜑 → ((𝑃 “ {0, 𝑅}) ∩ (𝑃 “ (1..^𝑅))) = ∅) | ||
| Theorem | pthd 29789* | Two words representing a trail which also represent a path in a graph. (Contributed by AV, 10-Feb-2021.) (Proof shortened by AV, 30-Oct-2021.) |
| ⊢ (𝜑 → 𝑃 ∈ Word V) & ⊢ 𝑅 = ((♯‘𝑃) − 1) & ⊢ (𝜑 → ∀𝑖 ∈ (0..^(♯‘𝑃))∀𝑗 ∈ (1..^𝑅)(𝑖 ≠ 𝑗 → (𝑃‘𝑖) ≠ (𝑃‘𝑗))) & ⊢ (♯‘𝐹) = 𝑅 & ⊢ (𝜑 → 𝐹(Trails‘𝐺)𝑃) ⇒ ⊢ (𝜑 → 𝐹(Paths‘𝐺)𝑃) | ||
| Syntax | cclwlks 29790 | Extend class notation with closed walks (of a graph). |
| class ClWalks | ||
| Definition | df-clwlks 29791* |
Define the set of all closed walks (in an undirected graph).
According to definition 4 in [Huneke] p. 2: "A walk of length n on (a graph) G is an ordered sequence v0 , v1 , ... v(n) of vertices such that v(i) and v(i+1) are neighbors (i.e are connected by an edge). We say the walk is closed if v(n) = v0". According to the definition of a walk as two mappings f from { 0 , ... , ( n - 1 ) } and p from { 0 , ... , n }, where f enumerates the (indices of the) edges, and p enumerates the vertices, a closed walk is represented by the following sequence: p(0) e(f(0)) p(1) e(f(1)) ... p(n-1) e(f(n-1)) p(n)=p(0). Notice that by this definition, a single vertex can be considered as a closed walk of length 0, see also 0clwlk 30149. (Contributed by Alexander van der Vekens, 12-Mar-2018.) (Revised by AV, 16-Feb-2021.) |
| ⊢ ClWalks = (𝑔 ∈ V ↦ {〈𝑓, 𝑝〉 ∣ (𝑓(Walks‘𝑔)𝑝 ∧ (𝑝‘0) = (𝑝‘(♯‘𝑓)))}) | ||
| Theorem | clwlks 29792* | The set of closed walks (in an undirected graph). (Contributed by Alexander van der Vekens, 15-Mar-2018.) (Revised by AV, 16-Feb-2021.) (Revised by AV, 29-Oct-2021.) |
| ⊢ (ClWalks‘𝐺) = {〈𝑓, 𝑝〉 ∣ (𝑓(Walks‘𝐺)𝑝 ∧ (𝑝‘0) = (𝑝‘(♯‘𝑓)))} | ||
| Theorem | isclwlk 29793 | A pair of functions represents a closed walk iff it represents a walk in which the first vertex is equal to the last vertex. (Contributed by Alexander van der Vekens, 24-Jun-2018.) (Revised by AV, 16-Feb-2021.) (Proof shortened by AV, 30-Oct-2021.) |
| ⊢ (𝐹(ClWalks‘𝐺)𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹)))) | ||
| Theorem | clwlkiswlk 29794 | A closed walk is a walk (in an undirected graph). (Contributed by Alexander van der Vekens, 15-Mar-2018.) (Revised by AV, 16-Feb-2021.) (Proof shortened by AV, 30-Oct-2021.) |
| ⊢ (𝐹(ClWalks‘𝐺)𝑃 → 𝐹(Walks‘𝐺)𝑃) | ||
| Theorem | clwlkwlk 29795 | Closed walks are walks (in an undirected graph). (Contributed by Alexander van der Vekens, 23-Jun-2018.) (Revised by AV, 16-Feb-2021.) (Proof shortened by AV, 30-Oct-2021.) |
| ⊢ (𝑊 ∈ (ClWalks‘𝐺) → 𝑊 ∈ (Walks‘𝐺)) | ||
| Theorem | clwlkswks 29796 | Closed walks are walks (in an undirected graph). (Contributed by Alexander van der Vekens, 25-Aug-2018.) (Revised by AV, 16-Feb-2021.) |
| ⊢ (ClWalks‘𝐺) ⊆ (Walks‘𝐺) | ||
| Theorem | isclwlke 29797* | Properties of a pair of functions to be a closed walk (in an undirected graph). (Contributed by Alexander van der Vekens, 24-Jun-2018.) (Revised by AV, 16-Feb-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ (𝐺 ∈ 𝑋 → (𝐹(ClWalks‘𝐺)𝑃 ↔ ((𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉) ∧ (∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘))) ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹)))))) | ||
| Theorem | isclwlkupgr 29798* | Properties of a pair of functions to be a closed walk (in a pseudograph). (Contributed by Alexander van der Vekens, 24-Jun-2018.) (Revised by AV, 11-Apr-2021.) (Revised by AV, 28-Oct-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ (𝐺 ∈ UPGraph → (𝐹(ClWalks‘𝐺)𝑃 ↔ ((𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉) ∧ (∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹)))))) | ||
| Theorem | clwlkcomp 29799* | A closed walk expressed by properties of its components. (Contributed by Alexander van der Vekens, 24-Jun-2018.) (Revised by AV, 17-Feb-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ 𝐹 = (1st ‘𝑊) & ⊢ 𝑃 = (2nd ‘𝑊) ⇒ ⊢ ((𝐺 ∈ 𝑋 ∧ 𝑊 ∈ (𝑆 × 𝑇)) → (𝑊 ∈ (ClWalks‘𝐺) ↔ ((𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉) ∧ (∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘))) ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹)))))) | ||
| Theorem | clwlkcompim 29800* | Implications for the properties of the components of a closed walk. (Contributed by Alexander van der Vekens, 24-Jun-2018.) (Revised by AV, 17-Feb-2021.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ 𝐹 = (1st ‘𝑊) & ⊢ 𝑃 = (2nd ‘𝑊) ⇒ ⊢ (𝑊 ∈ (ClWalks‘𝐺) → ((𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉) ∧ (∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘))) ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))))) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |