Home | Metamath
Proof Explorer Theorem List (p. 298 of 457) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-28790) |
Hilbert Space Explorer
(28791-30313) |
Users' Mathboxes
(30314-45688) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | ho02i 29701* | A condition implying that a Hilbert space operator is identically zero. Lemma 3.2(S10) of [Beran] p. 95. (Contributed by NM, 28-Jan-2006.) (New usage is discouraged.) |
⊢ 𝑇: ℋ⟶ ℋ ⇒ ⊢ (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = 0 ↔ 𝑇 = 0hop ) | ||
Theorem | hoeq1 29702* | A condition implying that two Hilbert space operators are equal. Lemma 3.2(S9) of [Beran] p. 95. (Contributed by NM, 15-Feb-2006.) (New usage is discouraged.) |
⊢ ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑆‘𝑥) ·ih 𝑦) = ((𝑇‘𝑥) ·ih 𝑦) ↔ 𝑆 = 𝑇)) | ||
Theorem | hoeq2 29703* | A condition implying that two Hilbert space operators are equal. Lemma 3.2(S11) of [Beran] p. 95. (Contributed by NM, 15-Feb-2006.) (New usage is discouraged.) |
⊢ ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑆‘𝑦)) = (𝑥 ·ih (𝑇‘𝑦)) ↔ 𝑆 = 𝑇)) | ||
Theorem | adjmo 29704* | Every Hilbert space operator has at most one adjoint. (Contributed by NM, 18-Feb-2006.) (New usage is discouraged.) |
⊢ ∃*𝑢(𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑢‘𝑥) ·ih 𝑦)) | ||
Theorem | adjsym 29705* | Symmetry property of an adjoint. (Contributed by NM, 18-Feb-2006.) (New usage is discouraged.) |
⊢ ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑆‘𝑦)) = ((𝑇‘𝑥) ·ih 𝑦) ↔ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑆‘𝑥) ·ih 𝑦))) | ||
Theorem | eigrei 29706 | A necessary and sufficient condition (that holds when 𝑇 is a Hermitian operator) for an eigenvalue 𝐵 to be real. Generalization of Equation 1.30 of [Hughes] p. 49. (Contributed by NM, 21-Jan-2005.) (New usage is discouraged.) |
⊢ 𝐴 ∈ ℋ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ (((𝑇‘𝐴) = (𝐵 ·ℎ 𝐴) ∧ 𝐴 ≠ 0ℎ) → ((𝐴 ·ih (𝑇‘𝐴)) = ((𝑇‘𝐴) ·ih 𝐴) ↔ 𝐵 ∈ ℝ)) | ||
Theorem | eigre 29707 | A necessary and sufficient condition (that holds when 𝑇 is a Hermitian operator) for an eigenvalue 𝐵 to be real. Generalization of Equation 1.30 of [Hughes] p. 49. (Contributed by NM, 19-Mar-2006.) (New usage is discouraged.) |
⊢ (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ) ∧ ((𝑇‘𝐴) = (𝐵 ·ℎ 𝐴) ∧ 𝐴 ≠ 0ℎ)) → ((𝐴 ·ih (𝑇‘𝐴)) = ((𝑇‘𝐴) ·ih 𝐴) ↔ 𝐵 ∈ ℝ)) | ||
Theorem | eigposi 29708 | A sufficient condition (first conjunct pair, that holds when 𝑇 is a positive operator) for an eigenvalue 𝐵 (second conjunct pair) to be nonnegative. Remark (ii) in [Hughes] p. 137. (Contributed by NM, 2-Jul-2005.) (New usage is discouraged.) |
⊢ 𝐴 ∈ ℋ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ ((((𝐴 ·ih (𝑇‘𝐴)) ∈ ℝ ∧ 0 ≤ (𝐴 ·ih (𝑇‘𝐴))) ∧ ((𝑇‘𝐴) = (𝐵 ·ℎ 𝐴) ∧ 𝐴 ≠ 0ℎ)) → (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) | ||
Theorem | eigorthi 29709 | A necessary and sufficient condition (that holds when 𝑇 is a Hermitian operator) for two eigenvectors 𝐴 and 𝐵 to be orthogonal. Generalization of Equation 1.31 of [Hughes] p. 49. (Contributed by NM, 23-Jan-2005.) (New usage is discouraged.) |
⊢ 𝐴 ∈ ℋ & ⊢ 𝐵 ∈ ℋ & ⊢ 𝐶 ∈ ℂ & ⊢ 𝐷 ∈ ℂ ⇒ ⊢ ((((𝑇‘𝐴) = (𝐶 ·ℎ 𝐴) ∧ (𝑇‘𝐵) = (𝐷 ·ℎ 𝐵)) ∧ 𝐶 ≠ (∗‘𝐷)) → ((𝐴 ·ih (𝑇‘𝐵)) = ((𝑇‘𝐴) ·ih 𝐵) ↔ (𝐴 ·ih 𝐵) = 0)) | ||
Theorem | eigorth 29710 | A necessary and sufficient condition (that holds when 𝑇 is a Hermitian operator) for two eigenvectors 𝐴 and 𝐵 to be orthogonal. Generalization of Equation 1.31 of [Hughes] p. 49. (Contributed by NM, 23-Mar-2006.) (New usage is discouraged.) |
⊢ ((((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) ∧ (((𝑇‘𝐴) = (𝐶 ·ℎ 𝐴) ∧ (𝑇‘𝐵) = (𝐷 ·ℎ 𝐵)) ∧ 𝐶 ≠ (∗‘𝐷))) → ((𝐴 ·ih (𝑇‘𝐵)) = ((𝑇‘𝐴) ·ih 𝐵) ↔ (𝐴 ·ih 𝐵) = 0)) | ||
Definition | df-nmop 29711* | Define the norm of a Hilbert space operator. (Contributed by NM, 18-Jan-2006.) (New usage is discouraged.) |
⊢ normop = (𝑡 ∈ ( ℋ ↑m ℋ) ↦ sup({𝑥 ∣ ∃𝑧 ∈ ℋ ((normℎ‘𝑧) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑡‘𝑧)))}, ℝ*, < )) | ||
Definition | df-cnop 29712* | Define the set of continuous operators on Hilbert space. For every "epsilon" (𝑦) there is a "delta" (𝑧) such that... (Contributed by NM, 28-Jan-2006.) (New usage is discouraged.) |
⊢ ContOp = {𝑡 ∈ ( ℋ ↑m ℋ) ∣ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ ℋ ((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑧 → (normℎ‘((𝑡‘𝑤) −ℎ (𝑡‘𝑥))) < 𝑦)} | ||
Definition | df-lnop 29713* | Define the set of linear operators on Hilbert space. (See df-hosum 29602 for definition of operator.) (Contributed by NM, 18-Jan-2006.) (New usage is discouraged.) |
⊢ LinOp = {𝑡 ∈ ( ℋ ↑m ℋ) ∣ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ (𝑡‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) = ((𝑥 ·ℎ (𝑡‘𝑦)) +ℎ (𝑡‘𝑧))} | ||
Definition | df-bdop 29714 | Define the set of bounded linear Hilbert space operators. (See df-hosum 29602 for definition of operator.) (Contributed by NM, 18-Jan-2006.) (New usage is discouraged.) |
⊢ BndLinOp = {𝑡 ∈ LinOp ∣ (normop‘𝑡) < +∞} | ||
Definition | df-unop 29715* | Define the set of unitary operators on Hilbert space. (Contributed by NM, 18-Jan-2006.) (New usage is discouraged.) |
⊢ UniOp = {𝑡 ∣ (𝑡: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑡‘𝑥) ·ih (𝑡‘𝑦)) = (𝑥 ·ih 𝑦))} | ||
Definition | df-hmop 29716* | Define the set of Hermitian operators on Hilbert space. Some books call these "symmetric operators" and others call them "self-adjoint operators", sometimes with slightly different technical meanings. (Contributed by NM, 18-Jan-2006.) (New usage is discouraged.) |
⊢ HrmOp = {𝑡 ∈ ( ℋ ↑m ℋ) ∣ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑡‘𝑦)) = ((𝑡‘𝑥) ·ih 𝑦)} | ||
Definition | df-nmfn 29717* | Define the norm of a Hilbert space functional. (Contributed by NM, 11-Feb-2006.) (New usage is discouraged.) |
⊢ normfn = (𝑡 ∈ (ℂ ↑m ℋ) ↦ sup({𝑥 ∣ ∃𝑧 ∈ ℋ ((normℎ‘𝑧) ≤ 1 ∧ 𝑥 = (abs‘(𝑡‘𝑧)))}, ℝ*, < )) | ||
Definition | df-nlfn 29718 | Define the null space of a Hilbert space functional. (Contributed by NM, 11-Feb-2006.) (New usage is discouraged.) |
⊢ null = (𝑡 ∈ (ℂ ↑m ℋ) ↦ (◡𝑡 “ {0})) | ||
Definition | df-cnfn 29719* | Define the set of continuous functionals on Hilbert space. For every "epsilon" (𝑦) there is a "delta" (𝑧) such that... (Contributed by NM, 11-Feb-2006.) (New usage is discouraged.) |
⊢ ContFn = {𝑡 ∈ (ℂ ↑m ℋ) ∣ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ ℋ ((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑧 → (abs‘((𝑡‘𝑤) − (𝑡‘𝑥))) < 𝑦)} | ||
Definition | df-lnfn 29720* | Define the set of linear functionals on Hilbert space. (Contributed by NM, 11-Feb-2006.) (New usage is discouraged.) |
⊢ LinFn = {𝑡 ∈ (ℂ ↑m ℋ) ∣ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ (𝑡‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) = ((𝑥 · (𝑡‘𝑦)) + (𝑡‘𝑧))} | ||
Definition | df-adjh 29721* | Define the adjoint of a Hilbert space operator (if it exists). The domain of adjℎ is the set of all adjoint operators. Definition of adjoint in [Kalmbach2] p. 8. Unlike Kalmbach (and most authors), we do not demand that the operator be linear, but instead show (in adjbdln 29955) that the adjoint exists for a bounded linear operator. (Contributed by NM, 20-Feb-2006.) (New usage is discouraged.) |
⊢ adjℎ = {〈𝑡, 𝑢〉 ∣ (𝑡: ℋ⟶ ℋ ∧ 𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑡‘𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑢‘𝑦)))} | ||
Definition | df-bra 29722* |
Define the bra of a vector used by Dirac notation. Based on definition
of bra in [Prugovecki] p. 186 (p.
180 in 1971 edition). In Dirac
bra-ket notation, 〈𝐴 ∣ 𝐵〉 is a complex number equal to
the inner
product (𝐵 ·ih 𝐴). But physicists like
to talk about the
individual components 〈𝐴 ∣ and ∣
𝐵〉, called bra
and ket
respectively. In order for their properties to make sense formally, we
define the ket ∣ 𝐵〉 as the vector 𝐵 itself,
and the bra
〈𝐴 ∣ as a functional from ℋ to ℂ. We represent the
Dirac notation 〈𝐴 ∣ 𝐵〉 by ((bra‘𝐴)‘𝐵); see
braval 29816. The reversal of the inner product
arguments not only makes
the bra-ket behavior consistent with physics literature (see comments
under ax-his3 28956) but is also required in order for the
associative law
kbass2 29989 to work.
Our definition of bra and the associated outer product df-kb 29723 differs from, but is equivalent to, a common approach in the literature that makes use of mappings to a dual space. Our approach eliminates the need to have a parallel development of this dual space and instead keeps everything in Hilbert space. For an extensive discussion about how our notation maps to the bra-ket notation in physics textbooks, see mmnotes.txt 29723, under the 17-May-2006 entry. (Contributed by NM, 15-May-2006.) (New usage is discouraged.) |
⊢ bra = (𝑥 ∈ ℋ ↦ (𝑦 ∈ ℋ ↦ (𝑦 ·ih 𝑥))) | ||
Definition | df-kb 29723* | Define a commuted bra and ket juxtaposition used by Dirac notation. In Dirac notation, ∣ 𝐴〉〈𝐵 ∣ is an operator known as the outer product of 𝐴 and 𝐵, which we represent by (𝐴 ketbra 𝐵). Based on Equation 8.1 of [Prugovecki] p. 376. This definition, combined with Definition df-bra 29722, allows any legal juxtaposition of bras and kets to make sense formally and also to obey the associative law when mapped back to Dirac notation. (Contributed by NM, 15-May-2006.) (New usage is discouraged.) |
⊢ ketbra = (𝑥 ∈ ℋ, 𝑦 ∈ ℋ ↦ (𝑧 ∈ ℋ ↦ ((𝑧 ·ih 𝑦) ·ℎ 𝑥))) | ||
Definition | df-leop 29724* | Define positive operator ordering. Definition VI.1 of [Retherford] p. 49. Note that ( ℋ × 0ℋ) ≤op 𝑇 means that 𝑇 is a positive operator. (Contributed by NM, 23-Jul-2006.) (New usage is discouraged.) |
⊢ ≤op = {〈𝑡, 𝑢〉 ∣ ((𝑢 −op 𝑡) ∈ HrmOp ∧ ∀𝑥 ∈ ℋ 0 ≤ (((𝑢 −op 𝑡)‘𝑥) ·ih 𝑥))} | ||
Definition | df-eigvec 29725* | Define the eigenvector function. Theorem eleigveccl 29831 shows that eigvec‘𝑇, the set of eigenvectors of Hilbert space operator 𝑇, are Hilbert space vectors. (Contributed by NM, 11-Mar-2006.) (New usage is discouraged.) |
⊢ eigvec = (𝑡 ∈ ( ℋ ↑m ℋ) ↦ {𝑥 ∈ ( ℋ ∖ 0ℋ) ∣ ∃𝑧 ∈ ℂ (𝑡‘𝑥) = (𝑧 ·ℎ 𝑥)}) | ||
Definition | df-eigval 29726* | Define the eigenvalue function. The range of eigval‘𝑇 is the set of eigenvalues of Hilbert space operator 𝑇. Theorem eigvalcl 29833 shows that (eigval‘𝑇)‘𝐴, the eigenvalue associated with eigenvector 𝐴, is a complex number. (Contributed by NM, 11-Mar-2006.) (New usage is discouraged.) |
⊢ eigval = (𝑡 ∈ ( ℋ ↑m ℋ) ↦ (𝑥 ∈ (eigvec‘𝑡) ↦ (((𝑡‘𝑥) ·ih 𝑥) / ((normℎ‘𝑥)↑2)))) | ||
Definition | df-spec 29727* | Define the spectrum of an operator. Definition of spectrum in [Halmos] p. 50. (Contributed by NM, 11-Apr-2006.) (New usage is discouraged.) |
⊢ Lambda = (𝑡 ∈ ( ℋ ↑m ℋ) ↦ {𝑥 ∈ ℂ ∣ ¬ (𝑡 −op (𝑥 ·op ( I ↾ ℋ))): ℋ–1-1→ ℋ}) | ||
Theorem | nmopval 29728* | Value of the norm of a Hilbert space operator. (Contributed by NM, 18-Jan-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
⊢ (𝑇: ℋ⟶ ℋ → (normop‘𝑇) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦)))}, ℝ*, < )) | ||
Theorem | elcnop 29729* | Property defining a continuous Hilbert space operator. (Contributed by NM, 28-Jan-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
⊢ (𝑇 ∈ ContOp ↔ (𝑇: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ ℋ ((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑧 → (normℎ‘((𝑇‘𝑤) −ℎ (𝑇‘𝑥))) < 𝑦))) | ||
Theorem | ellnop 29730* | Property defining a linear Hilbert space operator. (Contributed by NM, 18-Jan-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
⊢ (𝑇 ∈ LinOp ↔ (𝑇: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ (𝑇‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) = ((𝑥 ·ℎ (𝑇‘𝑦)) +ℎ (𝑇‘𝑧)))) | ||
Theorem | lnopf 29731 | A linear Hilbert space operator is a Hilbert space operator. (Contributed by NM, 18-Jan-2006.) (New usage is discouraged.) |
⊢ (𝑇 ∈ LinOp → 𝑇: ℋ⟶ ℋ) | ||
Theorem | elbdop 29732 | Property defining a bounded linear Hilbert space operator. (Contributed by NM, 18-Jan-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
⊢ (𝑇 ∈ BndLinOp ↔ (𝑇 ∈ LinOp ∧ (normop‘𝑇) < +∞)) | ||
Theorem | bdopln 29733 | A bounded linear Hilbert space operator is a linear operator. (Contributed by NM, 18-Feb-2006.) (New usage is discouraged.) |
⊢ (𝑇 ∈ BndLinOp → 𝑇 ∈ LinOp) | ||
Theorem | bdopf 29734 | A bounded linear Hilbert space operator is a Hilbert space operator. (Contributed by NM, 2-Feb-2006.) (New usage is discouraged.) |
⊢ (𝑇 ∈ BndLinOp → 𝑇: ℋ⟶ ℋ) | ||
Theorem | nmopsetretALT 29735* | The set in the supremum of the operator norm definition df-nmop 29711 is a set of reals. (Contributed by NM, 2-Feb-2006.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ (𝑇: ℋ⟶ ℋ → {𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦)))} ⊆ ℝ) | ||
Theorem | nmopsetretHIL 29736* | The set in the supremum of the operator norm definition df-nmop 29711 is a set of reals. (Contributed by NM, 2-Feb-2006.) (New usage is discouraged.) |
⊢ (𝑇: ℋ⟶ ℋ → {𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦)))} ⊆ ℝ) | ||
Theorem | nmopsetn0 29737* | The set in the supremum of the operator norm definition df-nmop 29711 is nonempty. (Contributed by NM, 9-Feb-2006.) (New usage is discouraged.) |
⊢ (normℎ‘(𝑇‘0ℎ)) ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑇‘𝑦)))} | ||
Theorem | nmopxr 29738 | The norm of a Hilbert space operator is an extended real. (Contributed by NM, 9-Feb-2006.) (New usage is discouraged.) |
⊢ (𝑇: ℋ⟶ ℋ → (normop‘𝑇) ∈ ℝ*) | ||
Theorem | nmoprepnf 29739 | The norm of a Hilbert space operator is either real or plus infinity. (Contributed by NM, 5-Feb-2006.) (New usage is discouraged.) |
⊢ (𝑇: ℋ⟶ ℋ → ((normop‘𝑇) ∈ ℝ ↔ (normop‘𝑇) ≠ +∞)) | ||
Theorem | nmopgtmnf 29740 | The norm of a Hilbert space operator is not minus infinity. (Contributed by NM, 2-Feb-2006.) (New usage is discouraged.) |
⊢ (𝑇: ℋ⟶ ℋ → -∞ < (normop‘𝑇)) | ||
Theorem | nmopreltpnf 29741 | The norm of a Hilbert space operator is real iff it is less than infinity. (Contributed by NM, 14-Feb-2006.) (New usage is discouraged.) |
⊢ (𝑇: ℋ⟶ ℋ → ((normop‘𝑇) ∈ ℝ ↔ (normop‘𝑇) < +∞)) | ||
Theorem | nmopre 29742 | The norm of a bounded operator is a real number. (Contributed by NM, 29-Jan-2006.) (New usage is discouraged.) |
⊢ (𝑇 ∈ BndLinOp → (normop‘𝑇) ∈ ℝ) | ||
Theorem | elbdop2 29743 | Property defining a bounded linear Hilbert space operator. (Contributed by NM, 14-Feb-2006.) (New usage is discouraged.) |
⊢ (𝑇 ∈ BndLinOp ↔ (𝑇 ∈ LinOp ∧ (normop‘𝑇) ∈ ℝ)) | ||
Theorem | elunop 29744* | Property defining a unitary Hilbert space operator. (Contributed by NM, 18-Jan-2006.) (New usage is discouraged.) |
⊢ (𝑇 ∈ UniOp ↔ (𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇‘𝑥) ·ih (𝑇‘𝑦)) = (𝑥 ·ih 𝑦))) | ||
Theorem | elhmop 29745* | Property defining a Hermitian Hilbert space operator. (Contributed by NM, 18-Jan-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
⊢ (𝑇 ∈ HrmOp ↔ (𝑇: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑇‘𝑥) ·ih 𝑦))) | ||
Theorem | hmopf 29746 | A Hermitian operator is a Hilbert space operator (mapping). (Contributed by NM, 19-Mar-2006.) (New usage is discouraged.) |
⊢ (𝑇 ∈ HrmOp → 𝑇: ℋ⟶ ℋ) | ||
Theorem | hmopex 29747 | The class of Hermitian operators is a set. (Contributed by NM, 17-Aug-2006.) (New usage is discouraged.) |
⊢ HrmOp ∈ V | ||
Theorem | nmfnval 29748* | Value of the norm of a Hilbert space functional. (Contributed by NM, 11-Feb-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
⊢ (𝑇: ℋ⟶ℂ → (normfn‘𝑇) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇‘𝑦)))}, ℝ*, < )) | ||
Theorem | nmfnsetre 29749* | The set in the supremum of the functional norm definition df-nmfn 29717 is a set of reals. (Contributed by NM, 14-Feb-2006.) (New usage is discouraged.) |
⊢ (𝑇: ℋ⟶ℂ → {𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇‘𝑦)))} ⊆ ℝ) | ||
Theorem | nmfnsetn0 29750* | The set in the supremum of the functional norm definition df-nmfn 29717 is nonempty. (Contributed by NM, 14-Feb-2006.) (New usage is discouraged.) |
⊢ (abs‘(𝑇‘0ℎ)) ∈ {𝑥 ∣ ∃𝑦 ∈ ℋ ((normℎ‘𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇‘𝑦)))} | ||
Theorem | nmfnxr 29751 | The norm of any Hilbert space functional is an extended real. (Contributed by NM, 9-Feb-2006.) (New usage is discouraged.) |
⊢ (𝑇: ℋ⟶ℂ → (normfn‘𝑇) ∈ ℝ*) | ||
Theorem | nmfnrepnf 29752 | The norm of a Hilbert space functional is either real or plus infinity. (Contributed by NM, 8-Dec-2007.) (New usage is discouraged.) |
⊢ (𝑇: ℋ⟶ℂ → ((normfn‘𝑇) ∈ ℝ ↔ (normfn‘𝑇) ≠ +∞)) | ||
Theorem | nlfnval 29753 | Value of the null space of a Hilbert space functional. (Contributed by NM, 11-Feb-2006.) (New usage is discouraged.) |
⊢ (𝑇: ℋ⟶ℂ → (null‘𝑇) = (◡𝑇 “ {0})) | ||
Theorem | elcnfn 29754* | Property defining a continuous functional. (Contributed by NM, 11-Feb-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
⊢ (𝑇 ∈ ContFn ↔ (𝑇: ℋ⟶ℂ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ ℋ ((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑧 → (abs‘((𝑇‘𝑤) − (𝑇‘𝑥))) < 𝑦))) | ||
Theorem | ellnfn 29755* | Property defining a linear functional. (Contributed by NM, 11-Feb-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
⊢ (𝑇 ∈ LinFn ↔ (𝑇: ℋ⟶ℂ ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ (𝑇‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) = ((𝑥 · (𝑇‘𝑦)) + (𝑇‘𝑧)))) | ||
Theorem | lnfnf 29756 | A linear Hilbert space functional is a functional. (Contributed by NM, 25-Apr-2006.) (New usage is discouraged.) |
⊢ (𝑇 ∈ LinFn → 𝑇: ℋ⟶ℂ) | ||
Theorem | dfadj2 29757* | Alternate definition of the adjoint of a Hilbert space operator. (Contributed by NM, 20-Feb-2006.) (New usage is discouraged.) |
⊢ adjℎ = {〈𝑡, 𝑢〉 ∣ (𝑡: ℋ⟶ ℋ ∧ 𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑡‘𝑦)) = ((𝑢‘𝑥) ·ih 𝑦))} | ||
Theorem | funadj 29758 | Functionality of the adjoint function. (Contributed by NM, 15-Feb-2006.) (New usage is discouraged.) |
⊢ Fun adjℎ | ||
Theorem | dmadjss 29759 | The domain of the adjoint function is a subset of the maps from ℋ to ℋ. (Contributed by NM, 15-Feb-2006.) (New usage is discouraged.) |
⊢ dom adjℎ ⊆ ( ℋ ↑m ℋ) | ||
Theorem | dmadjop 29760 | A member of the domain of the adjoint function is a Hilbert space operator. (Contributed by NM, 15-Feb-2006.) (New usage is discouraged.) |
⊢ (𝑇 ∈ dom adjℎ → 𝑇: ℋ⟶ ℋ) | ||
Theorem | adjeu 29761* | Elementhood in the domain of the adjoint function. (Contributed by Mario Carneiro, 11-Sep-2015.) (Revised by Mario Carneiro, 24-Dec-2016.) (New usage is discouraged.) |
⊢ (𝑇: ℋ⟶ ℋ → (𝑇 ∈ dom adjℎ ↔ ∃!𝑢 ∈ ( ℋ ↑m ℋ)∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑢‘𝑥) ·ih 𝑦))) | ||
Theorem | adjval 29762* | Value of the adjoint function for 𝑇 in the domain of adjℎ. (Contributed by NM, 19-Feb-2006.) (Revised by Mario Carneiro, 24-Dec-2016.) (New usage is discouraged.) |
⊢ (𝑇 ∈ dom adjℎ → (adjℎ‘𝑇) = (℩𝑢 ∈ ( ℋ ↑m ℋ)∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑢‘𝑥) ·ih 𝑦))) | ||
Theorem | adjval2 29763* | Value of the adjoint function. (Contributed by NM, 19-Feb-2006.) (New usage is discouraged.) |
⊢ (𝑇 ∈ dom adjℎ → (adjℎ‘𝑇) = (℩𝑢 ∈ ( ℋ ↑m ℋ)∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇‘𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑢‘𝑦)))) | ||
Theorem | cnvadj 29764 | The adjoint function equals its converse. (Contributed by NM, 15-Feb-2006.) (New usage is discouraged.) |
⊢ ◡adjℎ = adjℎ | ||
Theorem | funcnvadj 29765 | The converse of the adjoint function is a function. (Contributed by NM, 25-Jan-2006.) (New usage is discouraged.) |
⊢ Fun ◡adjℎ | ||
Theorem | adj1o 29766 | The adjoint function maps one-to-one onto its domain. (Contributed by NM, 15-Feb-2006.) (New usage is discouraged.) |
⊢ adjℎ:dom adjℎ–1-1-onto→dom adjℎ | ||
Theorem | dmadjrn 29767 | The adjoint of an operator belongs to the adjoint function's domain. (Contributed by NM, 15-Feb-2006.) (New usage is discouraged.) |
⊢ (𝑇 ∈ dom adjℎ → (adjℎ‘𝑇) ∈ dom adjℎ) | ||
Theorem | eigvecval 29768* | The set of eigenvectors of a Hilbert space operator. (Contributed by NM, 11-Mar-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
⊢ (𝑇: ℋ⟶ ℋ → (eigvec‘𝑇) = {𝑥 ∈ ( ℋ ∖ 0ℋ) ∣ ∃𝑦 ∈ ℂ (𝑇‘𝑥) = (𝑦 ·ℎ 𝑥)}) | ||
Theorem | eigvalfval 29769* | The eigenvalues of eigenvectors of a Hilbert space operator. (Contributed by NM, 11-Mar-2006.) (New usage is discouraged.) |
⊢ (𝑇: ℋ⟶ ℋ → (eigval‘𝑇) = (𝑥 ∈ (eigvec‘𝑇) ↦ (((𝑇‘𝑥) ·ih 𝑥) / ((normℎ‘𝑥)↑2)))) | ||
Theorem | specval 29770* | The value of the spectrum of an operator. (Contributed by NM, 11-Apr-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
⊢ (𝑇: ℋ⟶ ℋ → (Lambda‘𝑇) = {𝑥 ∈ ℂ ∣ ¬ (𝑇 −op (𝑥 ·op ( I ↾ ℋ))): ℋ–1-1→ ℋ}) | ||
Theorem | speccl 29771 | The spectrum of an operator is a set of complex numbers. (Contributed by NM, 11-Apr-2006.) (New usage is discouraged.) |
⊢ (𝑇: ℋ⟶ ℋ → (Lambda‘𝑇) ⊆ ℂ) | ||
Theorem | hhlnoi 29772 | The linear operators of Hilbert space. (Contributed by NM, 19-Nov-2007.) (Revised by Mario Carneiro, 19-Nov-2013.) (New usage is discouraged.) |
⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝐿 = (𝑈 LnOp 𝑈) ⇒ ⊢ LinOp = 𝐿 | ||
Theorem | hhnmoi 29773 | The norm of an operator in Hilbert space. (Contributed by NM, 19-Nov-2007.) (Revised by Mario Carneiro, 17-Nov-2013.) (New usage is discouraged.) |
⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑁 = (𝑈 normOpOLD 𝑈) ⇒ ⊢ normop = 𝑁 | ||
Theorem | hhbloi 29774 | A bounded linear operator in Hilbert space. (Contributed by NM, 19-Nov-2007.) (Revised by Mario Carneiro, 19-Nov-2013.) (New usage is discouraged.) |
⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝐵 = (𝑈 BLnOp 𝑈) ⇒ ⊢ BndLinOp = 𝐵 | ||
Theorem | hh0oi 29775 | The zero operator in Hilbert space. (Contributed by NM, 7-Dec-2007.) (New usage is discouraged.) |
⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 & ⊢ 𝑍 = (𝑈 0op 𝑈) ⇒ ⊢ 0hop = 𝑍 | ||
Theorem | hhcno 29776 | The continuous operators of Hilbert space. (Contributed by Mario Carneiro, 19-May-2014.) (New usage is discouraged.) |
⊢ 𝐷 = (normℎ ∘ −ℎ ) & ⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ ContOp = (𝐽 Cn 𝐽) | ||
Theorem | hhcnf 29777 | The continuous functionals of Hilbert space. (Contributed by Mario Carneiro, 19-May-2014.) (New usage is discouraged.) |
⊢ 𝐷 = (normℎ ∘ −ℎ ) & ⊢ 𝐽 = (MetOpen‘𝐷) & ⊢ 𝐾 = (TopOpen‘ℂfld) ⇒ ⊢ ContFn = (𝐽 Cn 𝐾) | ||
Theorem | dmadjrnb 29778 | The adjoint of an operator belongs to the adjoint function's domain. (Note: the converse is dependent on our definition of function value, since it uses ndmfv 6686.) (Contributed by NM, 19-Feb-2006.) (New usage is discouraged.) |
⊢ (𝑇 ∈ dom adjℎ ↔ (adjℎ‘𝑇) ∈ dom adjℎ) | ||
Theorem | nmoplb 29779 | A lower bound for an operator norm. (Contributed by NM, 7-Feb-2006.) (New usage is discouraged.) |
⊢ ((𝑇: ℋ⟶ ℋ ∧ 𝐴 ∈ ℋ ∧ (normℎ‘𝐴) ≤ 1) → (normℎ‘(𝑇‘𝐴)) ≤ (normop‘𝑇)) | ||
Theorem | nmopub 29780* | An upper bound for an operator norm. (Contributed by NM, 7-Mar-2006.) (New usage is discouraged.) |
⊢ ((𝑇: ℋ⟶ ℋ ∧ 𝐴 ∈ ℝ*) → ((normop‘𝑇) ≤ 𝐴 ↔ ∀𝑥 ∈ ℋ ((normℎ‘𝑥) ≤ 1 → (normℎ‘(𝑇‘𝑥)) ≤ 𝐴))) | ||
Theorem | nmopub2tALT 29781* | An upper bound for an operator norm. (Contributed by NM, 12-Apr-2006.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ ((𝑇: ℋ⟶ ℋ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ ∀𝑥 ∈ ℋ (normℎ‘(𝑇‘𝑥)) ≤ (𝐴 · (normℎ‘𝑥))) → (normop‘𝑇) ≤ 𝐴) | ||
Theorem | nmopub2tHIL 29782* | An upper bound for an operator norm. (Contributed by NM, 13-Dec-2007.) (New usage is discouraged.) |
⊢ ((𝑇: ℋ⟶ ℋ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ ∀𝑥 ∈ ℋ (normℎ‘(𝑇‘𝑥)) ≤ (𝐴 · (normℎ‘𝑥))) → (normop‘𝑇) ≤ 𝐴) | ||
Theorem | nmopge0 29783 | The norm of any Hilbert space operator is nonnegative. (Contributed by NM, 9-Feb-2006.) (New usage is discouraged.) |
⊢ (𝑇: ℋ⟶ ℋ → 0 ≤ (normop‘𝑇)) | ||
Theorem | nmopgt0 29784 | A linear Hilbert space operator that is not identically zero has a positive norm. (Contributed by NM, 9-Feb-2006.) (New usage is discouraged.) |
⊢ (𝑇: ℋ⟶ ℋ → ((normop‘𝑇) ≠ 0 ↔ 0 < (normop‘𝑇))) | ||
Theorem | cnopc 29785* | Basic continuity property of a continuous Hilbert space operator. (Contributed by NM, 2-Feb-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
⊢ ((𝑇 ∈ ContOp ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℝ+) → ∃𝑥 ∈ ℝ+ ∀𝑦 ∈ ℋ ((normℎ‘(𝑦 −ℎ 𝐴)) < 𝑥 → (normℎ‘((𝑇‘𝑦) −ℎ (𝑇‘𝐴))) < 𝐵)) | ||
Theorem | lnopl 29786 | Basic linearity property of a linear Hilbert space operator. (Contributed by NM, 22-Jan-2006.) (New usage is discouraged.) |
⊢ (((𝑇 ∈ LinOp ∧ 𝐴 ∈ ℂ) ∧ (𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ)) → (𝑇‘((𝐴 ·ℎ 𝐵) +ℎ 𝐶)) = ((𝐴 ·ℎ (𝑇‘𝐵)) +ℎ (𝑇‘𝐶))) | ||
Theorem | unop 29787 | Basic inner product property of a unitary operator. (Contributed by NM, 22-Jan-2006.) (New usage is discouraged.) |
⊢ ((𝑇 ∈ UniOp ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝑇‘𝐴) ·ih (𝑇‘𝐵)) = (𝐴 ·ih 𝐵)) | ||
Theorem | unopf1o 29788 | A unitary operator in Hilbert space is one-to-one and onto. (Contributed by NM, 22-Jan-2006.) (New usage is discouraged.) |
⊢ (𝑇 ∈ UniOp → 𝑇: ℋ–1-1-onto→ ℋ) | ||
Theorem | unopnorm 29789 | A unitary operator is idempotent in the norm. (Contributed by NM, 25-Feb-2006.) (New usage is discouraged.) |
⊢ ((𝑇 ∈ UniOp ∧ 𝐴 ∈ ℋ) → (normℎ‘(𝑇‘𝐴)) = (normℎ‘𝐴)) | ||
Theorem | cnvunop 29790 | The inverse (converse) of a unitary operator in Hilbert space is unitary. Theorem in [AkhiezerGlazman] p. 72. (Contributed by NM, 22-Jan-2006.) (New usage is discouraged.) |
⊢ (𝑇 ∈ UniOp → ◡𝑇 ∈ UniOp) | ||
Theorem | unopadj 29791 | The inverse (converse) of a unitary operator is its adjoint. Equation 2 of [AkhiezerGlazman] p. 72. (Contributed by NM, 22-Jan-2006.) (New usage is discouraged.) |
⊢ ((𝑇 ∈ UniOp ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝑇‘𝐴) ·ih 𝐵) = (𝐴 ·ih (◡𝑇‘𝐵))) | ||
Theorem | unoplin 29792 | A unitary operator is linear. Theorem in [AkhiezerGlazman] p. 72. (Contributed by NM, 22-Jan-2006.) (New usage is discouraged.) |
⊢ (𝑇 ∈ UniOp → 𝑇 ∈ LinOp) | ||
Theorem | counop 29793 | The composition of two unitary operators is unitary. (Contributed by NM, 22-Jan-2006.) (New usage is discouraged.) |
⊢ ((𝑆 ∈ UniOp ∧ 𝑇 ∈ UniOp) → (𝑆 ∘ 𝑇) ∈ UniOp) | ||
Theorem | hmop 29794 | Basic inner product property of a Hermitian operator. (Contributed by NM, 19-Mar-2006.) (New usage is discouraged.) |
⊢ ((𝑇 ∈ HrmOp ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ih (𝑇‘𝐵)) = ((𝑇‘𝐴) ·ih 𝐵)) | ||
Theorem | hmopre 29795 | The inner product of the value and argument of a Hermitian operator is real. (Contributed by NM, 23-Jul-2006.) (New usage is discouraged.) |
⊢ ((𝑇 ∈ HrmOp ∧ 𝐴 ∈ ℋ) → ((𝑇‘𝐴) ·ih 𝐴) ∈ ℝ) | ||
Theorem | nmfnlb 29796 | A lower bound for a functional norm. (Contributed by NM, 14-Feb-2006.) (New usage is discouraged.) |
⊢ ((𝑇: ℋ⟶ℂ ∧ 𝐴 ∈ ℋ ∧ (normℎ‘𝐴) ≤ 1) → (abs‘(𝑇‘𝐴)) ≤ (normfn‘𝑇)) | ||
Theorem | nmfnleub 29797* | An upper bound for the norm of a functional. (Contributed by NM, 24-May-2006.) (Revised by Mario Carneiro, 7-Sep-2014.) (New usage is discouraged.) |
⊢ ((𝑇: ℋ⟶ℂ ∧ 𝐴 ∈ ℝ*) → ((normfn‘𝑇) ≤ 𝐴 ↔ ∀𝑥 ∈ ℋ ((normℎ‘𝑥) ≤ 1 → (abs‘(𝑇‘𝑥)) ≤ 𝐴))) | ||
Theorem | nmfnleub2 29798* | An upper bound for the norm of a functional. (Contributed by NM, 24-May-2006.) (New usage is discouraged.) |
⊢ ((𝑇: ℋ⟶ℂ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ ∀𝑥 ∈ ℋ (abs‘(𝑇‘𝑥)) ≤ (𝐴 · (normℎ‘𝑥))) → (normfn‘𝑇) ≤ 𝐴) | ||
Theorem | nmfnge0 29799 | The norm of any Hilbert space functional is nonnegative. (Contributed by NM, 24-May-2006.) (New usage is discouraged.) |
⊢ (𝑇: ℋ⟶ℂ → 0 ≤ (normfn‘𝑇)) | ||
Theorem | elnlfn 29800 | Membership in the null space of a Hilbert space functional. (Contributed by NM, 11-Feb-2006.) (Revised by Mario Carneiro, 17-Nov-2013.) (New usage is discouraged.) |
⊢ (𝑇: ℋ⟶ℂ → (𝐴 ∈ (null‘𝑇) ↔ (𝐴 ∈ ℋ ∧ (𝑇‘𝐴) = 0))) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |