| Step | Hyp | Ref
| Expression |
| 1 | | 2cnd 12323 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → 2 ∈
ℂ) |
| 2 | | simprr 772 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → 𝑞 ∈ ℕ) |
| 3 | 2 | nncnd 12261 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → 𝑞 ∈ ℂ) |
| 4 | | eluzge3nn 12911 |
. . . . . . . . . . . . . 14
⊢ (𝑁 ∈
(ℤ≥‘3) → 𝑁 ∈ ℕ) |
| 5 | 4 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → 𝑁 ∈ ℕ) |
| 6 | 5 | nnnn0d 12567 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → 𝑁 ∈
ℕ0) |
| 7 | 3, 6 | expcld 14169 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → (𝑞↑𝑁) ∈ ℂ) |
| 8 | 2 | nnne0d 12295 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → 𝑞 ≠ 0) |
| 9 | 5 | nnzd 12620 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → 𝑁 ∈ ℤ) |
| 10 | 3, 8, 9 | expne0d 14175 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → (𝑞↑𝑁) ≠ 0) |
| 11 | 1, 7, 10 | divcan4d 12028 |
. . . . . . . . . 10
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → ((2 · (𝑞↑𝑁)) / (𝑞↑𝑁)) = 2) |
| 12 | 7 | 2timesd 12489 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → (2 · (𝑞↑𝑁)) = ((𝑞↑𝑁) + (𝑞↑𝑁))) |
| 13 | | simpl 482 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → 𝑁 ∈
(ℤ≥‘3)) |
| 14 | | simprl 770 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → 𝑝 ∈ ℕ) |
| 15 | | ax-flt 30458 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ (𝑞 ∈ ℕ ∧ 𝑞 ∈ ℕ ∧ 𝑝 ∈ ℕ)) → ((𝑞↑𝑁) + (𝑞↑𝑁)) ≠ (𝑝↑𝑁)) |
| 16 | 13, 2, 2, 14, 15 | syl13anc 1374 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → ((𝑞↑𝑁) + (𝑞↑𝑁)) ≠ (𝑝↑𝑁)) |
| 17 | 12, 16 | eqnetrd 3000 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → (2 · (𝑞↑𝑁)) ≠ (𝑝↑𝑁)) |
| 18 | 1, 7 | mulcld 11260 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → (2 · (𝑞↑𝑁)) ∈ ℂ) |
| 19 | 14 | nncnd 12261 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → 𝑝 ∈ ℂ) |
| 20 | 19, 6 | expcld 14169 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → (𝑝↑𝑁) ∈ ℂ) |
| 21 | | div11 11929 |
. . . . . . . . . . . . 13
⊢ (((2
· (𝑞↑𝑁)) ∈ ℂ ∧ (𝑝↑𝑁) ∈ ℂ ∧ ((𝑞↑𝑁) ∈ ℂ ∧ (𝑞↑𝑁) ≠ 0)) → (((2 · (𝑞↑𝑁)) / (𝑞↑𝑁)) = ((𝑝↑𝑁) / (𝑞↑𝑁)) ↔ (2 · (𝑞↑𝑁)) = (𝑝↑𝑁))) |
| 22 | 18, 20, 7, 10, 21 | syl112anc 1376 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → (((2 · (𝑞↑𝑁)) / (𝑞↑𝑁)) = ((𝑝↑𝑁) / (𝑞↑𝑁)) ↔ (2 · (𝑞↑𝑁)) = (𝑝↑𝑁))) |
| 23 | 22 | necon3bid 2977 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → (((2 · (𝑞↑𝑁)) / (𝑞↑𝑁)) ≠ ((𝑝↑𝑁) / (𝑞↑𝑁)) ↔ (2 · (𝑞↑𝑁)) ≠ (𝑝↑𝑁))) |
| 24 | 17, 23 | mpbird 257 |
. . . . . . . . . 10
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → ((2 · (𝑞↑𝑁)) / (𝑞↑𝑁)) ≠ ((𝑝↑𝑁) / (𝑞↑𝑁))) |
| 25 | 11, 24 | eqnetrrd 3001 |
. . . . . . . . 9
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → 2 ≠ ((𝑝↑𝑁) / (𝑞↑𝑁))) |
| 26 | 19, 3, 8, 6 | expdivd 14183 |
. . . . . . . . 9
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → ((𝑝 / 𝑞)↑𝑁) = ((𝑝↑𝑁) / (𝑞↑𝑁))) |
| 27 | 25, 26 | neeqtrrd 3007 |
. . . . . . . 8
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → 2 ≠ ((𝑝 / 𝑞)↑𝑁)) |
| 28 | 19, 3, 8 | divcld 12022 |
. . . . . . . . 9
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → (𝑝 / 𝑞) ∈ ℂ) |
| 29 | 14 | nnne0d 12295 |
. . . . . . . . . 10
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → 𝑝 ≠ 0) |
| 30 | 19, 3, 29, 8 | divne0d 12038 |
. . . . . . . . 9
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → (𝑝 / 𝑞) ≠ 0) |
| 31 | 28, 30, 9 | cxpexpzd 26677 |
. . . . . . . 8
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → ((𝑝 / 𝑞)↑𝑐𝑁) = ((𝑝 / 𝑞)↑𝑁)) |
| 32 | 27, 31 | neeqtrrd 3007 |
. . . . . . 7
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → 2 ≠ ((𝑝 / 𝑞)↑𝑐𝑁)) |
| 33 | | 2re 12319 |
. . . . . . . . . 10
⊢ 2 ∈
ℝ |
| 34 | 33 | a1i 11 |
. . . . . . . . 9
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → 2 ∈
ℝ) |
| 35 | | 0le2 12347 |
. . . . . . . . . 10
⊢ 0 ≤
2 |
| 36 | 35 | a1i 11 |
. . . . . . . . 9
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → 0 ≤
2) |
| 37 | 14 | nnrpd 13054 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → 𝑝 ∈ ℝ+) |
| 38 | 2 | nnrpd 13054 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → 𝑞 ∈ ℝ+) |
| 39 | 37, 38 | rpdivcld 13073 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → (𝑝 / 𝑞) ∈
ℝ+) |
| 40 | 39 | rpred 13056 |
. . . . . . . . . 10
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → (𝑝 / 𝑞) ∈ ℝ) |
| 41 | 39 | rpge0d 13060 |
. . . . . . . . . 10
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → 0 ≤ (𝑝 / 𝑞)) |
| 42 | 5 | nnred 12260 |
. . . . . . . . . 10
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → 𝑁 ∈ ℝ) |
| 43 | 40, 41, 42 | recxpcld 26689 |
. . . . . . . . 9
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → ((𝑝 / 𝑞)↑𝑐𝑁) ∈ ℝ) |
| 44 | 40, 41, 42 | cxpge0d 26690 |
. . . . . . . . 9
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → 0 ≤ ((𝑝 / 𝑞)↑𝑐𝑁)) |
| 45 | 5 | nnrpd 13054 |
. . . . . . . . . 10
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → 𝑁 ∈
ℝ+) |
| 46 | 45 | rpreccld 13066 |
. . . . . . . . 9
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → (1 / 𝑁) ∈
ℝ+) |
| 47 | 34, 36, 43, 44, 46 | recxpf1lem 26695 |
. . . . . . . 8
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → (2 = ((𝑝 / 𝑞)↑𝑐𝑁) ↔ (2↑𝑐(1 /
𝑁)) = (((𝑝 / 𝑞)↑𝑐𝑁)↑𝑐(1 / 𝑁)))) |
| 48 | 47 | necon3bid 2977 |
. . . . . . 7
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → (2 ≠ ((𝑝 / 𝑞)↑𝑐𝑁) ↔ (2↑𝑐(1 /
𝑁)) ≠ (((𝑝 / 𝑞)↑𝑐𝑁)↑𝑐(1 / 𝑁)))) |
| 49 | 32, 48 | mpbid 232 |
. . . . . 6
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) →
(2↑𝑐(1 / 𝑁)) ≠ (((𝑝 / 𝑞)↑𝑐𝑁)↑𝑐(1 / 𝑁))) |
| 50 | 5 | nnrecred 12296 |
. . . . . . . . . 10
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → (1 / 𝑁) ∈
ℝ) |
| 51 | 50 | recnd 11268 |
. . . . . . . . 9
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → (1 / 𝑁) ∈
ℂ) |
| 52 | 28, 51 | cxpcld 26674 |
. . . . . . . 8
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → ((𝑝 / 𝑞)↑𝑐(1 / 𝑁)) ∈
ℂ) |
| 53 | 28, 30, 51 | cxpne0d 26679 |
. . . . . . . 8
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → ((𝑝 / 𝑞)↑𝑐(1 / 𝑁)) ≠ 0) |
| 54 | 52, 53, 9 | cxpexpzd 26677 |
. . . . . . 7
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → (((𝑝 / 𝑞)↑𝑐(1 / 𝑁))↑𝑐𝑁) = (((𝑝 / 𝑞)↑𝑐(1 / 𝑁))↑𝑁)) |
| 55 | | cxpcom 26705 |
. . . . . . . 8
⊢ (((𝑝 / 𝑞) ∈ ℝ+ ∧ (1 / 𝑁) ∈ ℝ ∧ 𝑁 ∈ ℝ) → (((𝑝 / 𝑞)↑𝑐(1 / 𝑁))↑𝑐𝑁) = (((𝑝 / 𝑞)↑𝑐𝑁)↑𝑐(1 / 𝑁))) |
| 56 | 39, 50, 42, 55 | syl3anc 1373 |
. . . . . . 7
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → (((𝑝 / 𝑞)↑𝑐(1 / 𝑁))↑𝑐𝑁) = (((𝑝 / 𝑞)↑𝑐𝑁)↑𝑐(1 / 𝑁))) |
| 57 | | cxproot 26656 |
. . . . . . . 8
⊢ (((𝑝 / 𝑞) ∈ ℂ ∧ 𝑁 ∈ ℕ) → (((𝑝 / 𝑞)↑𝑐(1 / 𝑁))↑𝑁) = (𝑝 / 𝑞)) |
| 58 | 28, 5, 57 | syl2anc 584 |
. . . . . . 7
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → (((𝑝 / 𝑞)↑𝑐(1 / 𝑁))↑𝑁) = (𝑝 / 𝑞)) |
| 59 | 54, 56, 58 | 3eqtr3d 2779 |
. . . . . 6
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → (((𝑝 / 𝑞)↑𝑐𝑁)↑𝑐(1 / 𝑁)) = (𝑝 / 𝑞)) |
| 60 | 49, 59 | neeqtrd 3002 |
. . . . 5
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) →
(2↑𝑐(1 / 𝑁)) ≠ (𝑝 / 𝑞)) |
| 61 | 60 | neneqd 2938 |
. . . 4
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → ¬
(2↑𝑐(1 / 𝑁)) = (𝑝 / 𝑞)) |
| 62 | 61 | ralrimivva 3188 |
. . 3
⊢ (𝑁 ∈
(ℤ≥‘3) → ∀𝑝 ∈ ℕ ∀𝑞 ∈ ℕ ¬
(2↑𝑐(1 / 𝑁)) = (𝑝 / 𝑞)) |
| 63 | | ralnex2 3121 |
. . 3
⊢
(∀𝑝 ∈
ℕ ∀𝑞 ∈
ℕ ¬ (2↑𝑐(1 / 𝑁)) = (𝑝 / 𝑞) ↔ ¬ ∃𝑝 ∈ ℕ ∃𝑞 ∈ ℕ
(2↑𝑐(1 / 𝑁)) = (𝑝 / 𝑞)) |
| 64 | 62, 63 | sylib 218 |
. 2
⊢ (𝑁 ∈
(ℤ≥‘3) → ¬ ∃𝑝 ∈ ℕ ∃𝑞 ∈ ℕ
(2↑𝑐(1 / 𝑁)) = (𝑝 / 𝑞)) |
| 65 | | 2rp 13018 |
. . . . . 6
⊢ 2 ∈
ℝ+ |
| 66 | 65 | a1i 11 |
. . . . 5
⊢ (𝑁 ∈
(ℤ≥‘3) → 2 ∈
ℝ+) |
| 67 | 4 | nnrecred 12296 |
. . . . 5
⊢ (𝑁 ∈
(ℤ≥‘3) → (1 / 𝑁) ∈ ℝ) |
| 68 | 66, 67 | cxpgt0d 26704 |
. . . 4
⊢ (𝑁 ∈
(ℤ≥‘3) → 0 < (2↑𝑐(1 /
𝑁))) |
| 69 | 68 | biantrud 531 |
. . 3
⊢ (𝑁 ∈
(ℤ≥‘3) → ((2↑𝑐(1 / 𝑁)) ∈ ℚ ↔
((2↑𝑐(1 / 𝑁)) ∈ ℚ ∧ 0 <
(2↑𝑐(1 / 𝑁))))) |
| 70 | | elpqb 12997 |
. . 3
⊢
(((2↑𝑐(1 / 𝑁)) ∈ ℚ ∧ 0 <
(2↑𝑐(1 / 𝑁))) ↔ ∃𝑝 ∈ ℕ ∃𝑞 ∈ ℕ
(2↑𝑐(1 / 𝑁)) = (𝑝 / 𝑞)) |
| 71 | 69, 70 | bitrdi 287 |
. 2
⊢ (𝑁 ∈
(ℤ≥‘3) → ((2↑𝑐(1 / 𝑁)) ∈ ℚ ↔
∃𝑝 ∈ ℕ
∃𝑞 ∈ ℕ
(2↑𝑐(1 / 𝑁)) = (𝑝 / 𝑞))) |
| 72 | 64, 71 | mtbird 325 |
1
⊢ (𝑁 ∈
(ℤ≥‘3) → ¬ (2↑𝑐(1 /
𝑁)) ∈
ℚ) |