MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nrt2irr Structured version   Visualization version   GIF version

Theorem nrt2irr 30460
Description: The 𝑁-th root of 2 is irrational for 𝑁 greater than 2. For 𝑁 = 2, see sqrt2irr 16164. This short and rather elegant proof has the minor disadvantage that it refers to ax-flt 30459, which is still to be formalized. For a proof not requiring ax-flt 30459, see rtprmirr 26703. (Contributed by Prof. Loof Lirpa, 1-Apr-2025.) (Proof modification is discouraged.)
Assertion
Ref Expression
nrt2irr (𝑁 ∈ (ℤ‘3) → ¬ (2↑𝑐(1 / 𝑁)) ∈ ℚ)

Proof of Theorem nrt2irr
Dummy variables 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2cnd 12209 . . . . . . . . . . 11 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → 2 ∈ ℂ)
2 simprr 772 . . . . . . . . . . . . 13 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → 𝑞 ∈ ℕ)
32nncnd 12147 . . . . . . . . . . . 12 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → 𝑞 ∈ ℂ)
4 eluz3nn 12793 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ ℕ)
54adantr 480 . . . . . . . . . . . . 13 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → 𝑁 ∈ ℕ)
65nnnn0d 12448 . . . . . . . . . . . 12 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → 𝑁 ∈ ℕ0)
73, 6expcld 14059 . . . . . . . . . . 11 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → (𝑞𝑁) ∈ ℂ)
82nnne0d 12181 . . . . . . . . . . . 12 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → 𝑞 ≠ 0)
95nnzd 12501 . . . . . . . . . . . 12 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → 𝑁 ∈ ℤ)
103, 8, 9expne0d 14065 . . . . . . . . . . 11 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → (𝑞𝑁) ≠ 0)
111, 7, 10divcan4d 11909 . . . . . . . . . 10 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → ((2 · (𝑞𝑁)) / (𝑞𝑁)) = 2)
1272timesd 12370 . . . . . . . . . . . 12 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → (2 · (𝑞𝑁)) = ((𝑞𝑁) + (𝑞𝑁)))
13 simpl 482 . . . . . . . . . . . . 13 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → 𝑁 ∈ (ℤ‘3))
14 simprl 770 . . . . . . . . . . . . 13 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → 𝑝 ∈ ℕ)
15 ax-flt 30459 . . . . . . . . . . . . 13 ((𝑁 ∈ (ℤ‘3) ∧ (𝑞 ∈ ℕ ∧ 𝑞 ∈ ℕ ∧ 𝑝 ∈ ℕ)) → ((𝑞𝑁) + (𝑞𝑁)) ≠ (𝑝𝑁))
1613, 2, 2, 14, 15syl13anc 1374 . . . . . . . . . . . 12 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → ((𝑞𝑁) + (𝑞𝑁)) ≠ (𝑝𝑁))
1712, 16eqnetrd 2995 . . . . . . . . . . 11 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → (2 · (𝑞𝑁)) ≠ (𝑝𝑁))
181, 7mulcld 11138 . . . . . . . . . . . . 13 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → (2 · (𝑞𝑁)) ∈ ℂ)
1914nncnd 12147 . . . . . . . . . . . . . 14 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → 𝑝 ∈ ℂ)
2019, 6expcld 14059 . . . . . . . . . . . . 13 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → (𝑝𝑁) ∈ ℂ)
21 div11 11810 . . . . . . . . . . . . 13 (((2 · (𝑞𝑁)) ∈ ℂ ∧ (𝑝𝑁) ∈ ℂ ∧ ((𝑞𝑁) ∈ ℂ ∧ (𝑞𝑁) ≠ 0)) → (((2 · (𝑞𝑁)) / (𝑞𝑁)) = ((𝑝𝑁) / (𝑞𝑁)) ↔ (2 · (𝑞𝑁)) = (𝑝𝑁)))
2218, 20, 7, 10, 21syl112anc 1376 . . . . . . . . . . . 12 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → (((2 · (𝑞𝑁)) / (𝑞𝑁)) = ((𝑝𝑁) / (𝑞𝑁)) ↔ (2 · (𝑞𝑁)) = (𝑝𝑁)))
2322necon3bid 2972 . . . . . . . . . . 11 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → (((2 · (𝑞𝑁)) / (𝑞𝑁)) ≠ ((𝑝𝑁) / (𝑞𝑁)) ↔ (2 · (𝑞𝑁)) ≠ (𝑝𝑁)))
2417, 23mpbird 257 . . . . . . . . . 10 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → ((2 · (𝑞𝑁)) / (𝑞𝑁)) ≠ ((𝑝𝑁) / (𝑞𝑁)))
2511, 24eqnetrrd 2996 . . . . . . . . 9 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → 2 ≠ ((𝑝𝑁) / (𝑞𝑁)))
2619, 3, 8, 6expdivd 14073 . . . . . . . . 9 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → ((𝑝 / 𝑞)↑𝑁) = ((𝑝𝑁) / (𝑞𝑁)))
2725, 26neeqtrrd 3002 . . . . . . . 8 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → 2 ≠ ((𝑝 / 𝑞)↑𝑁))
2819, 3, 8divcld 11903 . . . . . . . . 9 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → (𝑝 / 𝑞) ∈ ℂ)
2914nnne0d 12181 . . . . . . . . . 10 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → 𝑝 ≠ 0)
3019, 3, 29, 8divne0d 11919 . . . . . . . . 9 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → (𝑝 / 𝑞) ≠ 0)
3128, 30, 9cxpexpzd 26653 . . . . . . . 8 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → ((𝑝 / 𝑞)↑𝑐𝑁) = ((𝑝 / 𝑞)↑𝑁))
3227, 31neeqtrrd 3002 . . . . . . 7 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → 2 ≠ ((𝑝 / 𝑞)↑𝑐𝑁))
33 2re 12205 . . . . . . . . . 10 2 ∈ ℝ
3433a1i 11 . . . . . . . . 9 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → 2 ∈ ℝ)
35 0le2 12233 . . . . . . . . . 10 0 ≤ 2
3635a1i 11 . . . . . . . . 9 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → 0 ≤ 2)
3714nnrpd 12938 . . . . . . . . . . . 12 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → 𝑝 ∈ ℝ+)
382nnrpd 12938 . . . . . . . . . . . 12 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → 𝑞 ∈ ℝ+)
3937, 38rpdivcld 12957 . . . . . . . . . . 11 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → (𝑝 / 𝑞) ∈ ℝ+)
4039rpred 12940 . . . . . . . . . 10 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → (𝑝 / 𝑞) ∈ ℝ)
4139rpge0d 12944 . . . . . . . . . 10 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → 0 ≤ (𝑝 / 𝑞))
425nnred 12146 . . . . . . . . . 10 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → 𝑁 ∈ ℝ)
4340, 41, 42recxpcld 26665 . . . . . . . . 9 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → ((𝑝 / 𝑞)↑𝑐𝑁) ∈ ℝ)
4440, 41, 42cxpge0d 26666 . . . . . . . . 9 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → 0 ≤ ((𝑝 / 𝑞)↑𝑐𝑁))
455nnrpd 12938 . . . . . . . . . 10 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → 𝑁 ∈ ℝ+)
4645rpreccld 12950 . . . . . . . . 9 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → (1 / 𝑁) ∈ ℝ+)
4734, 36, 43, 44, 46recxpf1lem 26671 . . . . . . . 8 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → (2 = ((𝑝 / 𝑞)↑𝑐𝑁) ↔ (2↑𝑐(1 / 𝑁)) = (((𝑝 / 𝑞)↑𝑐𝑁)↑𝑐(1 / 𝑁))))
4847necon3bid 2972 . . . . . . 7 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → (2 ≠ ((𝑝 / 𝑞)↑𝑐𝑁) ↔ (2↑𝑐(1 / 𝑁)) ≠ (((𝑝 / 𝑞)↑𝑐𝑁)↑𝑐(1 / 𝑁))))
4932, 48mpbid 232 . . . . . 6 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → (2↑𝑐(1 / 𝑁)) ≠ (((𝑝 / 𝑞)↑𝑐𝑁)↑𝑐(1 / 𝑁)))
505nnrecred 12182 . . . . . . . . . 10 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → (1 / 𝑁) ∈ ℝ)
5150recnd 11146 . . . . . . . . 9 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → (1 / 𝑁) ∈ ℂ)
5228, 51cxpcld 26650 . . . . . . . 8 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → ((𝑝 / 𝑞)↑𝑐(1 / 𝑁)) ∈ ℂ)
5328, 30, 51cxpne0d 26655 . . . . . . . 8 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → ((𝑝 / 𝑞)↑𝑐(1 / 𝑁)) ≠ 0)
5452, 53, 9cxpexpzd 26653 . . . . . . 7 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → (((𝑝 / 𝑞)↑𝑐(1 / 𝑁))↑𝑐𝑁) = (((𝑝 / 𝑞)↑𝑐(1 / 𝑁))↑𝑁))
55 cxpcom 26681 . . . . . . . 8 (((𝑝 / 𝑞) ∈ ℝ+ ∧ (1 / 𝑁) ∈ ℝ ∧ 𝑁 ∈ ℝ) → (((𝑝 / 𝑞)↑𝑐(1 / 𝑁))↑𝑐𝑁) = (((𝑝 / 𝑞)↑𝑐𝑁)↑𝑐(1 / 𝑁)))
5639, 50, 42, 55syl3anc 1373 . . . . . . 7 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → (((𝑝 / 𝑞)↑𝑐(1 / 𝑁))↑𝑐𝑁) = (((𝑝 / 𝑞)↑𝑐𝑁)↑𝑐(1 / 𝑁)))
57 cxproot 26632 . . . . . . . 8 (((𝑝 / 𝑞) ∈ ℂ ∧ 𝑁 ∈ ℕ) → (((𝑝 / 𝑞)↑𝑐(1 / 𝑁))↑𝑁) = (𝑝 / 𝑞))
5828, 5, 57syl2anc 584 . . . . . . 7 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → (((𝑝 / 𝑞)↑𝑐(1 / 𝑁))↑𝑁) = (𝑝 / 𝑞))
5954, 56, 583eqtr3d 2774 . . . . . 6 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → (((𝑝 / 𝑞)↑𝑐𝑁)↑𝑐(1 / 𝑁)) = (𝑝 / 𝑞))
6049, 59neeqtrd 2997 . . . . 5 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → (2↑𝑐(1 / 𝑁)) ≠ (𝑝 / 𝑞))
6160neneqd 2933 . . . 4 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → ¬ (2↑𝑐(1 / 𝑁)) = (𝑝 / 𝑞))
6261ralrimivva 3175 . . 3 (𝑁 ∈ (ℤ‘3) → ∀𝑝 ∈ ℕ ∀𝑞 ∈ ℕ ¬ (2↑𝑐(1 / 𝑁)) = (𝑝 / 𝑞))
63 ralnex2 3112 . . 3 (∀𝑝 ∈ ℕ ∀𝑞 ∈ ℕ ¬ (2↑𝑐(1 / 𝑁)) = (𝑝 / 𝑞) ↔ ¬ ∃𝑝 ∈ ℕ ∃𝑞 ∈ ℕ (2↑𝑐(1 / 𝑁)) = (𝑝 / 𝑞))
6462, 63sylib 218 . 2 (𝑁 ∈ (ℤ‘3) → ¬ ∃𝑝 ∈ ℕ ∃𝑞 ∈ ℕ (2↑𝑐(1 / 𝑁)) = (𝑝 / 𝑞))
65 2rp 12901 . . . . . 6 2 ∈ ℝ+
6665a1i 11 . . . . 5 (𝑁 ∈ (ℤ‘3) → 2 ∈ ℝ+)
674nnrecred 12182 . . . . 5 (𝑁 ∈ (ℤ‘3) → (1 / 𝑁) ∈ ℝ)
6866, 67cxpgt0d 26680 . . . 4 (𝑁 ∈ (ℤ‘3) → 0 < (2↑𝑐(1 / 𝑁)))
6968biantrud 531 . . 3 (𝑁 ∈ (ℤ‘3) → ((2↑𝑐(1 / 𝑁)) ∈ ℚ ↔ ((2↑𝑐(1 / 𝑁)) ∈ ℚ ∧ 0 < (2↑𝑐(1 / 𝑁)))))
70 elpqb 12880 . . 3 (((2↑𝑐(1 / 𝑁)) ∈ ℚ ∧ 0 < (2↑𝑐(1 / 𝑁))) ↔ ∃𝑝 ∈ ℕ ∃𝑞 ∈ ℕ (2↑𝑐(1 / 𝑁)) = (𝑝 / 𝑞))
7169, 70bitrdi 287 . 2 (𝑁 ∈ (ℤ‘3) → ((2↑𝑐(1 / 𝑁)) ∈ ℚ ↔ ∃𝑝 ∈ ℕ ∃𝑞 ∈ ℕ (2↑𝑐(1 / 𝑁)) = (𝑝 / 𝑞)))
7264, 71mtbird 325 1 (𝑁 ∈ (ℤ‘3) → ¬ (2↑𝑐(1 / 𝑁)) ∈ ℚ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wne 2928  wral 3047  wrex 3056   class class class wbr 5093  cfv 6487  (class class class)co 7352  cc 11010  cr 11011  0cc0 11012  1c1 11013   + caddc 11015   · cmul 11017   < clt 11152  cle 11153   / cdiv 11780  cn 12131  2c2 12186  3c3 12187  cuz 12738  cq 12852  +crp 12896  cexp 13974  𝑐ccxp 26497
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-inf2 9537  ax-cnex 11068  ax-resscn 11069  ax-1cn 11070  ax-icn 11071  ax-addcl 11072  ax-addrcl 11073  ax-mulcl 11074  ax-mulrcl 11075  ax-mulcom 11076  ax-addass 11077  ax-mulass 11078  ax-distr 11079  ax-i2m1 11080  ax-1ne0 11081  ax-1rid 11082  ax-rnegex 11083  ax-rrecex 11084  ax-cnre 11085  ax-pre-lttri 11086  ax-pre-lttrn 11087  ax-pre-ltadd 11088  ax-pre-mulgt0 11089  ax-pre-sup 11090  ax-addf 11091  ax-flt 30459
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-iin 4944  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6254  df-ord 6315  df-on 6316  df-lim 6317  df-suc 6318  df-iota 6443  df-fun 6489  df-fn 6490  df-f 6491  df-f1 6492  df-fo 6493  df-f1o 6494  df-fv 6495  df-isom 6496  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-of 7616  df-om 7803  df-1st 7927  df-2nd 7928  df-supp 8097  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-2o 8392  df-er 8628  df-map 8758  df-pm 8759  df-ixp 8828  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-fsupp 9252  df-fi 9301  df-sup 9332  df-inf 9333  df-oi 9402  df-card 9838  df-pnf 11154  df-mnf 11155  df-xr 11156  df-ltxr 11157  df-le 11158  df-sub 11352  df-neg 11353  df-div 11781  df-nn 12132  df-2 12194  df-3 12195  df-4 12196  df-5 12197  df-6 12198  df-7 12199  df-8 12200  df-9 12201  df-n0 12388  df-z 12475  df-dec 12595  df-uz 12739  df-q 12853  df-rp 12897  df-xneg 13017  df-xadd 13018  df-xmul 13019  df-ioo 13255  df-ioc 13256  df-ico 13257  df-icc 13258  df-fz 13414  df-fzo 13561  df-fl 13702  df-mod 13780  df-seq 13915  df-exp 13975  df-fac 14187  df-bc 14216  df-hash 14244  df-shft 14980  df-cj 15012  df-re 15013  df-im 15014  df-sqrt 15148  df-abs 15149  df-limsup 15384  df-clim 15401  df-rlim 15402  df-sum 15600  df-ef 15980  df-sin 15982  df-cos 15983  df-pi 15985  df-struct 17064  df-sets 17081  df-slot 17099  df-ndx 17111  df-base 17127  df-ress 17148  df-plusg 17180  df-mulr 17181  df-starv 17182  df-sca 17183  df-vsca 17184  df-ip 17185  df-tset 17186  df-ple 17187  df-ds 17189  df-unif 17190  df-hom 17191  df-cco 17192  df-rest 17332  df-topn 17333  df-0g 17351  df-gsum 17352  df-topgen 17353  df-pt 17354  df-prds 17357  df-xrs 17412  df-qtop 17417  df-imas 17418  df-xps 17420  df-mre 17494  df-mrc 17495  df-acs 17497  df-mgm 18554  df-sgrp 18633  df-mnd 18649  df-submnd 18698  df-mulg 18987  df-cntz 19235  df-cmn 19700  df-psmet 21289  df-xmet 21290  df-met 21291  df-bl 21292  df-mopn 21293  df-fbas 21294  df-fg 21295  df-cnfld 21298  df-top 22815  df-topon 22832  df-topsp 22854  df-bases 22867  df-cld 22940  df-ntr 22941  df-cls 22942  df-nei 23019  df-lp 23057  df-perf 23058  df-cn 23148  df-cnp 23149  df-haus 23236  df-tx 23483  df-hmeo 23676  df-fil 23767  df-fm 23859  df-flim 23860  df-flf 23861  df-xms 24241  df-ms 24242  df-tms 24243  df-cncf 24804  df-limc 25800  df-dv 25801  df-log 26498  df-cxp 26499
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator