MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nrt2irr Structured version   Visualization version   GIF version

Theorem nrt2irr 30402
Description: The 𝑁-th root of 2 is irrational for 𝑁 greater than 2. For 𝑁 = 2, see sqrt2irr 16217. This short and rather elegant proof has the minor disadvantage that it refers to ax-flt 30401, which is still to be formalized. For a proof not requiring ax-flt 30401, see rtprmirr 26670. (Contributed by Prof. Loof Lirpa, 1-Apr-2025.) (Proof modification is discouraged.)
Assertion
Ref Expression
nrt2irr (𝑁 ∈ (ℤ‘3) → ¬ (2↑𝑐(1 / 𝑁)) ∈ ℚ)

Proof of Theorem nrt2irr
Dummy variables 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2cnd 12264 . . . . . . . . . . 11 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → 2 ∈ ℂ)
2 simprr 772 . . . . . . . . . . . . 13 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → 𝑞 ∈ ℕ)
32nncnd 12202 . . . . . . . . . . . 12 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → 𝑞 ∈ ℂ)
4 eluz3nn 12848 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ ℕ)
54adantr 480 . . . . . . . . . . . . 13 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → 𝑁 ∈ ℕ)
65nnnn0d 12503 . . . . . . . . . . . 12 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → 𝑁 ∈ ℕ0)
73, 6expcld 14111 . . . . . . . . . . 11 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → (𝑞𝑁) ∈ ℂ)
82nnne0d 12236 . . . . . . . . . . . 12 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → 𝑞 ≠ 0)
95nnzd 12556 . . . . . . . . . . . 12 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → 𝑁 ∈ ℤ)
103, 8, 9expne0d 14117 . . . . . . . . . . 11 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → (𝑞𝑁) ≠ 0)
111, 7, 10divcan4d 11964 . . . . . . . . . 10 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → ((2 · (𝑞𝑁)) / (𝑞𝑁)) = 2)
1272timesd 12425 . . . . . . . . . . . 12 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → (2 · (𝑞𝑁)) = ((𝑞𝑁) + (𝑞𝑁)))
13 simpl 482 . . . . . . . . . . . . 13 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → 𝑁 ∈ (ℤ‘3))
14 simprl 770 . . . . . . . . . . . . 13 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → 𝑝 ∈ ℕ)
15 ax-flt 30401 . . . . . . . . . . . . 13 ((𝑁 ∈ (ℤ‘3) ∧ (𝑞 ∈ ℕ ∧ 𝑞 ∈ ℕ ∧ 𝑝 ∈ ℕ)) → ((𝑞𝑁) + (𝑞𝑁)) ≠ (𝑝𝑁))
1613, 2, 2, 14, 15syl13anc 1374 . . . . . . . . . . . 12 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → ((𝑞𝑁) + (𝑞𝑁)) ≠ (𝑝𝑁))
1712, 16eqnetrd 2992 . . . . . . . . . . 11 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → (2 · (𝑞𝑁)) ≠ (𝑝𝑁))
181, 7mulcld 11194 . . . . . . . . . . . . 13 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → (2 · (𝑞𝑁)) ∈ ℂ)
1914nncnd 12202 . . . . . . . . . . . . . 14 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → 𝑝 ∈ ℂ)
2019, 6expcld 14111 . . . . . . . . . . . . 13 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → (𝑝𝑁) ∈ ℂ)
21 div11 11865 . . . . . . . . . . . . 13 (((2 · (𝑞𝑁)) ∈ ℂ ∧ (𝑝𝑁) ∈ ℂ ∧ ((𝑞𝑁) ∈ ℂ ∧ (𝑞𝑁) ≠ 0)) → (((2 · (𝑞𝑁)) / (𝑞𝑁)) = ((𝑝𝑁) / (𝑞𝑁)) ↔ (2 · (𝑞𝑁)) = (𝑝𝑁)))
2218, 20, 7, 10, 21syl112anc 1376 . . . . . . . . . . . 12 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → (((2 · (𝑞𝑁)) / (𝑞𝑁)) = ((𝑝𝑁) / (𝑞𝑁)) ↔ (2 · (𝑞𝑁)) = (𝑝𝑁)))
2322necon3bid 2969 . . . . . . . . . . 11 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → (((2 · (𝑞𝑁)) / (𝑞𝑁)) ≠ ((𝑝𝑁) / (𝑞𝑁)) ↔ (2 · (𝑞𝑁)) ≠ (𝑝𝑁)))
2417, 23mpbird 257 . . . . . . . . . 10 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → ((2 · (𝑞𝑁)) / (𝑞𝑁)) ≠ ((𝑝𝑁) / (𝑞𝑁)))
2511, 24eqnetrrd 2993 . . . . . . . . 9 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → 2 ≠ ((𝑝𝑁) / (𝑞𝑁)))
2619, 3, 8, 6expdivd 14125 . . . . . . . . 9 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → ((𝑝 / 𝑞)↑𝑁) = ((𝑝𝑁) / (𝑞𝑁)))
2725, 26neeqtrrd 2999 . . . . . . . 8 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → 2 ≠ ((𝑝 / 𝑞)↑𝑁))
2819, 3, 8divcld 11958 . . . . . . . . 9 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → (𝑝 / 𝑞) ∈ ℂ)
2914nnne0d 12236 . . . . . . . . . 10 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → 𝑝 ≠ 0)
3019, 3, 29, 8divne0d 11974 . . . . . . . . 9 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → (𝑝 / 𝑞) ≠ 0)
3128, 30, 9cxpexpzd 26620 . . . . . . . 8 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → ((𝑝 / 𝑞)↑𝑐𝑁) = ((𝑝 / 𝑞)↑𝑁))
3227, 31neeqtrrd 2999 . . . . . . 7 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → 2 ≠ ((𝑝 / 𝑞)↑𝑐𝑁))
33 2re 12260 . . . . . . . . . 10 2 ∈ ℝ
3433a1i 11 . . . . . . . . 9 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → 2 ∈ ℝ)
35 0le2 12288 . . . . . . . . . 10 0 ≤ 2
3635a1i 11 . . . . . . . . 9 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → 0 ≤ 2)
3714nnrpd 12993 . . . . . . . . . . . 12 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → 𝑝 ∈ ℝ+)
382nnrpd 12993 . . . . . . . . . . . 12 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → 𝑞 ∈ ℝ+)
3937, 38rpdivcld 13012 . . . . . . . . . . 11 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → (𝑝 / 𝑞) ∈ ℝ+)
4039rpred 12995 . . . . . . . . . 10 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → (𝑝 / 𝑞) ∈ ℝ)
4139rpge0d 12999 . . . . . . . . . 10 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → 0 ≤ (𝑝 / 𝑞))
425nnred 12201 . . . . . . . . . 10 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → 𝑁 ∈ ℝ)
4340, 41, 42recxpcld 26632 . . . . . . . . 9 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → ((𝑝 / 𝑞)↑𝑐𝑁) ∈ ℝ)
4440, 41, 42cxpge0d 26633 . . . . . . . . 9 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → 0 ≤ ((𝑝 / 𝑞)↑𝑐𝑁))
455nnrpd 12993 . . . . . . . . . 10 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → 𝑁 ∈ ℝ+)
4645rpreccld 13005 . . . . . . . . 9 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → (1 / 𝑁) ∈ ℝ+)
4734, 36, 43, 44, 46recxpf1lem 26638 . . . . . . . 8 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → (2 = ((𝑝 / 𝑞)↑𝑐𝑁) ↔ (2↑𝑐(1 / 𝑁)) = (((𝑝 / 𝑞)↑𝑐𝑁)↑𝑐(1 / 𝑁))))
4847necon3bid 2969 . . . . . . 7 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → (2 ≠ ((𝑝 / 𝑞)↑𝑐𝑁) ↔ (2↑𝑐(1 / 𝑁)) ≠ (((𝑝 / 𝑞)↑𝑐𝑁)↑𝑐(1 / 𝑁))))
4932, 48mpbid 232 . . . . . 6 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → (2↑𝑐(1 / 𝑁)) ≠ (((𝑝 / 𝑞)↑𝑐𝑁)↑𝑐(1 / 𝑁)))
505nnrecred 12237 . . . . . . . . . 10 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → (1 / 𝑁) ∈ ℝ)
5150recnd 11202 . . . . . . . . 9 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → (1 / 𝑁) ∈ ℂ)
5228, 51cxpcld 26617 . . . . . . . 8 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → ((𝑝 / 𝑞)↑𝑐(1 / 𝑁)) ∈ ℂ)
5328, 30, 51cxpne0d 26622 . . . . . . . 8 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → ((𝑝 / 𝑞)↑𝑐(1 / 𝑁)) ≠ 0)
5452, 53, 9cxpexpzd 26620 . . . . . . 7 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → (((𝑝 / 𝑞)↑𝑐(1 / 𝑁))↑𝑐𝑁) = (((𝑝 / 𝑞)↑𝑐(1 / 𝑁))↑𝑁))
55 cxpcom 26648 . . . . . . . 8 (((𝑝 / 𝑞) ∈ ℝ+ ∧ (1 / 𝑁) ∈ ℝ ∧ 𝑁 ∈ ℝ) → (((𝑝 / 𝑞)↑𝑐(1 / 𝑁))↑𝑐𝑁) = (((𝑝 / 𝑞)↑𝑐𝑁)↑𝑐(1 / 𝑁)))
5639, 50, 42, 55syl3anc 1373 . . . . . . 7 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → (((𝑝 / 𝑞)↑𝑐(1 / 𝑁))↑𝑐𝑁) = (((𝑝 / 𝑞)↑𝑐𝑁)↑𝑐(1 / 𝑁)))
57 cxproot 26599 . . . . . . . 8 (((𝑝 / 𝑞) ∈ ℂ ∧ 𝑁 ∈ ℕ) → (((𝑝 / 𝑞)↑𝑐(1 / 𝑁))↑𝑁) = (𝑝 / 𝑞))
5828, 5, 57syl2anc 584 . . . . . . 7 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → (((𝑝 / 𝑞)↑𝑐(1 / 𝑁))↑𝑁) = (𝑝 / 𝑞))
5954, 56, 583eqtr3d 2772 . . . . . 6 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → (((𝑝 / 𝑞)↑𝑐𝑁)↑𝑐(1 / 𝑁)) = (𝑝 / 𝑞))
6049, 59neeqtrd 2994 . . . . 5 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → (2↑𝑐(1 / 𝑁)) ≠ (𝑝 / 𝑞))
6160neneqd 2930 . . . 4 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → ¬ (2↑𝑐(1 / 𝑁)) = (𝑝 / 𝑞))
6261ralrimivva 3180 . . 3 (𝑁 ∈ (ℤ‘3) → ∀𝑝 ∈ ℕ ∀𝑞 ∈ ℕ ¬ (2↑𝑐(1 / 𝑁)) = (𝑝 / 𝑞))
63 ralnex2 3113 . . 3 (∀𝑝 ∈ ℕ ∀𝑞 ∈ ℕ ¬ (2↑𝑐(1 / 𝑁)) = (𝑝 / 𝑞) ↔ ¬ ∃𝑝 ∈ ℕ ∃𝑞 ∈ ℕ (2↑𝑐(1 / 𝑁)) = (𝑝 / 𝑞))
6462, 63sylib 218 . 2 (𝑁 ∈ (ℤ‘3) → ¬ ∃𝑝 ∈ ℕ ∃𝑞 ∈ ℕ (2↑𝑐(1 / 𝑁)) = (𝑝 / 𝑞))
65 2rp 12956 . . . . . 6 2 ∈ ℝ+
6665a1i 11 . . . . 5 (𝑁 ∈ (ℤ‘3) → 2 ∈ ℝ+)
674nnrecred 12237 . . . . 5 (𝑁 ∈ (ℤ‘3) → (1 / 𝑁) ∈ ℝ)
6866, 67cxpgt0d 26647 . . . 4 (𝑁 ∈ (ℤ‘3) → 0 < (2↑𝑐(1 / 𝑁)))
6968biantrud 531 . . 3 (𝑁 ∈ (ℤ‘3) → ((2↑𝑐(1 / 𝑁)) ∈ ℚ ↔ ((2↑𝑐(1 / 𝑁)) ∈ ℚ ∧ 0 < (2↑𝑐(1 / 𝑁)))))
70 elpqb 12935 . . 3 (((2↑𝑐(1 / 𝑁)) ∈ ℚ ∧ 0 < (2↑𝑐(1 / 𝑁))) ↔ ∃𝑝 ∈ ℕ ∃𝑞 ∈ ℕ (2↑𝑐(1 / 𝑁)) = (𝑝 / 𝑞))
7169, 70bitrdi 287 . 2 (𝑁 ∈ (ℤ‘3) → ((2↑𝑐(1 / 𝑁)) ∈ ℚ ↔ ∃𝑝 ∈ ℕ ∃𝑞 ∈ ℕ (2↑𝑐(1 / 𝑁)) = (𝑝 / 𝑞)))
7264, 71mtbird 325 1 (𝑁 ∈ (ℤ‘3) → ¬ (2↑𝑐(1 / 𝑁)) ∈ ℚ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053   class class class wbr 5107  cfv 6511  (class class class)co 7387  cc 11066  cr 11067  0cc0 11068  1c1 11069   + caddc 11071   · cmul 11073   < clt 11208  cle 11209   / cdiv 11835  cn 12186  2c2 12241  3c3 12242  cuz 12793  cq 12907  +crp 12951  cexp 14026  𝑐ccxp 26464
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147  ax-flt 30401
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-ioc 13311  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027  df-fac 14239  df-bc 14268  df-hash 14296  df-shft 15033  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-limsup 15437  df-clim 15454  df-rlim 15455  df-sum 15653  df-ef 16033  df-sin 16035  df-cos 16036  df-pi 16038  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-rest 17385  df-topn 17386  df-0g 17404  df-gsum 17405  df-topgen 17406  df-pt 17407  df-prds 17410  df-xrs 17465  df-qtop 17470  df-imas 17471  df-xps 17473  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-mulg 19000  df-cntz 19249  df-cmn 19712  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-fbas 21261  df-fg 21262  df-cnfld 21265  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cld 22906  df-ntr 22907  df-cls 22908  df-nei 22985  df-lp 23023  df-perf 23024  df-cn 23114  df-cnp 23115  df-haus 23202  df-tx 23449  df-hmeo 23642  df-fil 23733  df-fm 23825  df-flim 23826  df-flf 23827  df-xms 24208  df-ms 24209  df-tms 24210  df-cncf 24771  df-limc 25767  df-dv 25768  df-log 26465  df-cxp 26466
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator