MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nrt2irr Structured version   Visualization version   GIF version

Theorem nrt2irr 30409
Description: The 𝑁-th root of 2 is irrational for 𝑁 greater than 2. For 𝑁 = 2, see sqrt2irr 16224. This short and rather elegant proof has the minor disadvantage that it refers to ax-flt 30408, which is still to be formalized. For a proof not requiring ax-flt 30408, see rtprmirr 26677. (Contributed by Prof. Loof Lirpa, 1-Apr-2025.) (Proof modification is discouraged.)
Assertion
Ref Expression
nrt2irr (𝑁 ∈ (ℤ‘3) → ¬ (2↑𝑐(1 / 𝑁)) ∈ ℚ)

Proof of Theorem nrt2irr
Dummy variables 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2cnd 12271 . . . . . . . . . . 11 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → 2 ∈ ℂ)
2 simprr 772 . . . . . . . . . . . . 13 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → 𝑞 ∈ ℕ)
32nncnd 12209 . . . . . . . . . . . 12 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → 𝑞 ∈ ℂ)
4 eluz3nn 12855 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ ℕ)
54adantr 480 . . . . . . . . . . . . 13 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → 𝑁 ∈ ℕ)
65nnnn0d 12510 . . . . . . . . . . . 12 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → 𝑁 ∈ ℕ0)
73, 6expcld 14118 . . . . . . . . . . 11 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → (𝑞𝑁) ∈ ℂ)
82nnne0d 12243 . . . . . . . . . . . 12 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → 𝑞 ≠ 0)
95nnzd 12563 . . . . . . . . . . . 12 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → 𝑁 ∈ ℤ)
103, 8, 9expne0d 14124 . . . . . . . . . . 11 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → (𝑞𝑁) ≠ 0)
111, 7, 10divcan4d 11971 . . . . . . . . . 10 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → ((2 · (𝑞𝑁)) / (𝑞𝑁)) = 2)
1272timesd 12432 . . . . . . . . . . . 12 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → (2 · (𝑞𝑁)) = ((𝑞𝑁) + (𝑞𝑁)))
13 simpl 482 . . . . . . . . . . . . 13 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → 𝑁 ∈ (ℤ‘3))
14 simprl 770 . . . . . . . . . . . . 13 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → 𝑝 ∈ ℕ)
15 ax-flt 30408 . . . . . . . . . . . . 13 ((𝑁 ∈ (ℤ‘3) ∧ (𝑞 ∈ ℕ ∧ 𝑞 ∈ ℕ ∧ 𝑝 ∈ ℕ)) → ((𝑞𝑁) + (𝑞𝑁)) ≠ (𝑝𝑁))
1613, 2, 2, 14, 15syl13anc 1374 . . . . . . . . . . . 12 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → ((𝑞𝑁) + (𝑞𝑁)) ≠ (𝑝𝑁))
1712, 16eqnetrd 2993 . . . . . . . . . . 11 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → (2 · (𝑞𝑁)) ≠ (𝑝𝑁))
181, 7mulcld 11201 . . . . . . . . . . . . 13 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → (2 · (𝑞𝑁)) ∈ ℂ)
1914nncnd 12209 . . . . . . . . . . . . . 14 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → 𝑝 ∈ ℂ)
2019, 6expcld 14118 . . . . . . . . . . . . 13 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → (𝑝𝑁) ∈ ℂ)
21 div11 11872 . . . . . . . . . . . . 13 (((2 · (𝑞𝑁)) ∈ ℂ ∧ (𝑝𝑁) ∈ ℂ ∧ ((𝑞𝑁) ∈ ℂ ∧ (𝑞𝑁) ≠ 0)) → (((2 · (𝑞𝑁)) / (𝑞𝑁)) = ((𝑝𝑁) / (𝑞𝑁)) ↔ (2 · (𝑞𝑁)) = (𝑝𝑁)))
2218, 20, 7, 10, 21syl112anc 1376 . . . . . . . . . . . 12 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → (((2 · (𝑞𝑁)) / (𝑞𝑁)) = ((𝑝𝑁) / (𝑞𝑁)) ↔ (2 · (𝑞𝑁)) = (𝑝𝑁)))
2322necon3bid 2970 . . . . . . . . . . 11 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → (((2 · (𝑞𝑁)) / (𝑞𝑁)) ≠ ((𝑝𝑁) / (𝑞𝑁)) ↔ (2 · (𝑞𝑁)) ≠ (𝑝𝑁)))
2417, 23mpbird 257 . . . . . . . . . 10 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → ((2 · (𝑞𝑁)) / (𝑞𝑁)) ≠ ((𝑝𝑁) / (𝑞𝑁)))
2511, 24eqnetrrd 2994 . . . . . . . . 9 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → 2 ≠ ((𝑝𝑁) / (𝑞𝑁)))
2619, 3, 8, 6expdivd 14132 . . . . . . . . 9 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → ((𝑝 / 𝑞)↑𝑁) = ((𝑝𝑁) / (𝑞𝑁)))
2725, 26neeqtrrd 3000 . . . . . . . 8 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → 2 ≠ ((𝑝 / 𝑞)↑𝑁))
2819, 3, 8divcld 11965 . . . . . . . . 9 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → (𝑝 / 𝑞) ∈ ℂ)
2914nnne0d 12243 . . . . . . . . . 10 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → 𝑝 ≠ 0)
3019, 3, 29, 8divne0d 11981 . . . . . . . . 9 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → (𝑝 / 𝑞) ≠ 0)
3128, 30, 9cxpexpzd 26627 . . . . . . . 8 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → ((𝑝 / 𝑞)↑𝑐𝑁) = ((𝑝 / 𝑞)↑𝑁))
3227, 31neeqtrrd 3000 . . . . . . 7 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → 2 ≠ ((𝑝 / 𝑞)↑𝑐𝑁))
33 2re 12267 . . . . . . . . . 10 2 ∈ ℝ
3433a1i 11 . . . . . . . . 9 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → 2 ∈ ℝ)
35 0le2 12295 . . . . . . . . . 10 0 ≤ 2
3635a1i 11 . . . . . . . . 9 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → 0 ≤ 2)
3714nnrpd 13000 . . . . . . . . . . . 12 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → 𝑝 ∈ ℝ+)
382nnrpd 13000 . . . . . . . . . . . 12 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → 𝑞 ∈ ℝ+)
3937, 38rpdivcld 13019 . . . . . . . . . . 11 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → (𝑝 / 𝑞) ∈ ℝ+)
4039rpred 13002 . . . . . . . . . 10 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → (𝑝 / 𝑞) ∈ ℝ)
4139rpge0d 13006 . . . . . . . . . 10 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → 0 ≤ (𝑝 / 𝑞))
425nnred 12208 . . . . . . . . . 10 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → 𝑁 ∈ ℝ)
4340, 41, 42recxpcld 26639 . . . . . . . . 9 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → ((𝑝 / 𝑞)↑𝑐𝑁) ∈ ℝ)
4440, 41, 42cxpge0d 26640 . . . . . . . . 9 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → 0 ≤ ((𝑝 / 𝑞)↑𝑐𝑁))
455nnrpd 13000 . . . . . . . . . 10 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → 𝑁 ∈ ℝ+)
4645rpreccld 13012 . . . . . . . . 9 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → (1 / 𝑁) ∈ ℝ+)
4734, 36, 43, 44, 46recxpf1lem 26645 . . . . . . . 8 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → (2 = ((𝑝 / 𝑞)↑𝑐𝑁) ↔ (2↑𝑐(1 / 𝑁)) = (((𝑝 / 𝑞)↑𝑐𝑁)↑𝑐(1 / 𝑁))))
4847necon3bid 2970 . . . . . . 7 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → (2 ≠ ((𝑝 / 𝑞)↑𝑐𝑁) ↔ (2↑𝑐(1 / 𝑁)) ≠ (((𝑝 / 𝑞)↑𝑐𝑁)↑𝑐(1 / 𝑁))))
4932, 48mpbid 232 . . . . . 6 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → (2↑𝑐(1 / 𝑁)) ≠ (((𝑝 / 𝑞)↑𝑐𝑁)↑𝑐(1 / 𝑁)))
505nnrecred 12244 . . . . . . . . . 10 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → (1 / 𝑁) ∈ ℝ)
5150recnd 11209 . . . . . . . . 9 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → (1 / 𝑁) ∈ ℂ)
5228, 51cxpcld 26624 . . . . . . . 8 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → ((𝑝 / 𝑞)↑𝑐(1 / 𝑁)) ∈ ℂ)
5328, 30, 51cxpne0d 26629 . . . . . . . 8 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → ((𝑝 / 𝑞)↑𝑐(1 / 𝑁)) ≠ 0)
5452, 53, 9cxpexpzd 26627 . . . . . . 7 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → (((𝑝 / 𝑞)↑𝑐(1 / 𝑁))↑𝑐𝑁) = (((𝑝 / 𝑞)↑𝑐(1 / 𝑁))↑𝑁))
55 cxpcom 26655 . . . . . . . 8 (((𝑝 / 𝑞) ∈ ℝ+ ∧ (1 / 𝑁) ∈ ℝ ∧ 𝑁 ∈ ℝ) → (((𝑝 / 𝑞)↑𝑐(1 / 𝑁))↑𝑐𝑁) = (((𝑝 / 𝑞)↑𝑐𝑁)↑𝑐(1 / 𝑁)))
5639, 50, 42, 55syl3anc 1373 . . . . . . 7 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → (((𝑝 / 𝑞)↑𝑐(1 / 𝑁))↑𝑐𝑁) = (((𝑝 / 𝑞)↑𝑐𝑁)↑𝑐(1 / 𝑁)))
57 cxproot 26606 . . . . . . . 8 (((𝑝 / 𝑞) ∈ ℂ ∧ 𝑁 ∈ ℕ) → (((𝑝 / 𝑞)↑𝑐(1 / 𝑁))↑𝑁) = (𝑝 / 𝑞))
5828, 5, 57syl2anc 584 . . . . . . 7 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → (((𝑝 / 𝑞)↑𝑐(1 / 𝑁))↑𝑁) = (𝑝 / 𝑞))
5954, 56, 583eqtr3d 2773 . . . . . 6 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → (((𝑝 / 𝑞)↑𝑐𝑁)↑𝑐(1 / 𝑁)) = (𝑝 / 𝑞))
6049, 59neeqtrd 2995 . . . . 5 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → (2↑𝑐(1 / 𝑁)) ≠ (𝑝 / 𝑞))
6160neneqd 2931 . . . 4 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → ¬ (2↑𝑐(1 / 𝑁)) = (𝑝 / 𝑞))
6261ralrimivva 3181 . . 3 (𝑁 ∈ (ℤ‘3) → ∀𝑝 ∈ ℕ ∀𝑞 ∈ ℕ ¬ (2↑𝑐(1 / 𝑁)) = (𝑝 / 𝑞))
63 ralnex2 3114 . . 3 (∀𝑝 ∈ ℕ ∀𝑞 ∈ ℕ ¬ (2↑𝑐(1 / 𝑁)) = (𝑝 / 𝑞) ↔ ¬ ∃𝑝 ∈ ℕ ∃𝑞 ∈ ℕ (2↑𝑐(1 / 𝑁)) = (𝑝 / 𝑞))
6462, 63sylib 218 . 2 (𝑁 ∈ (ℤ‘3) → ¬ ∃𝑝 ∈ ℕ ∃𝑞 ∈ ℕ (2↑𝑐(1 / 𝑁)) = (𝑝 / 𝑞))
65 2rp 12963 . . . . . 6 2 ∈ ℝ+
6665a1i 11 . . . . 5 (𝑁 ∈ (ℤ‘3) → 2 ∈ ℝ+)
674nnrecred 12244 . . . . 5 (𝑁 ∈ (ℤ‘3) → (1 / 𝑁) ∈ ℝ)
6866, 67cxpgt0d 26654 . . . 4 (𝑁 ∈ (ℤ‘3) → 0 < (2↑𝑐(1 / 𝑁)))
6968biantrud 531 . . 3 (𝑁 ∈ (ℤ‘3) → ((2↑𝑐(1 / 𝑁)) ∈ ℚ ↔ ((2↑𝑐(1 / 𝑁)) ∈ ℚ ∧ 0 < (2↑𝑐(1 / 𝑁)))))
70 elpqb 12942 . . 3 (((2↑𝑐(1 / 𝑁)) ∈ ℚ ∧ 0 < (2↑𝑐(1 / 𝑁))) ↔ ∃𝑝 ∈ ℕ ∃𝑞 ∈ ℕ (2↑𝑐(1 / 𝑁)) = (𝑝 / 𝑞))
7169, 70bitrdi 287 . 2 (𝑁 ∈ (ℤ‘3) → ((2↑𝑐(1 / 𝑁)) ∈ ℚ ↔ ∃𝑝 ∈ ℕ ∃𝑞 ∈ ℕ (2↑𝑐(1 / 𝑁)) = (𝑝 / 𝑞)))
7264, 71mtbird 325 1 (𝑁 ∈ (ℤ‘3) → ¬ (2↑𝑐(1 / 𝑁)) ∈ ℚ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2926  wral 3045  wrex 3054   class class class wbr 5110  cfv 6514  (class class class)co 7390  cc 11073  cr 11074  0cc0 11075  1c1 11076   + caddc 11078   · cmul 11080   < clt 11215  cle 11216   / cdiv 11842  cn 12193  2c2 12248  3c3 12249  cuz 12800  cq 12914  +crp 12958  cexp 14033  𝑐ccxp 26471
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154  ax-flt 30408
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-fi 9369  df-sup 9400  df-inf 9401  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ioo 13317  df-ioc 13318  df-ico 13319  df-icc 13320  df-fz 13476  df-fzo 13623  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-fac 14246  df-bc 14275  df-hash 14303  df-shft 15040  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-limsup 15444  df-clim 15461  df-rlim 15462  df-sum 15660  df-ef 16040  df-sin 16042  df-cos 16043  df-pi 16045  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-rest 17392  df-topn 17393  df-0g 17411  df-gsum 17412  df-topgen 17413  df-pt 17414  df-prds 17417  df-xrs 17472  df-qtop 17477  df-imas 17478  df-xps 17480  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-submnd 18718  df-mulg 19007  df-cntz 19256  df-cmn 19719  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-fbas 21268  df-fg 21269  df-cnfld 21272  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-cld 22913  df-ntr 22914  df-cls 22915  df-nei 22992  df-lp 23030  df-perf 23031  df-cn 23121  df-cnp 23122  df-haus 23209  df-tx 23456  df-hmeo 23649  df-fil 23740  df-fm 23832  df-flim 23833  df-flf 23834  df-xms 24215  df-ms 24216  df-tms 24217  df-cncf 24778  df-limc 25774  df-dv 25775  df-log 26472  df-cxp 26473
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator