MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nrt2irr Structured version   Visualization version   GIF version

Theorem nrt2irr 30443
Description: The 𝑁-th root of 2 is irrational for 𝑁 greater than 2. For 𝑁 = 2, see sqrt2irr 16150. This short and rather elegant proof has the minor disadvantage that it refers to ax-flt 30442, which is still to be formalized. For a proof not requiring ax-flt 30442, see rtprmirr 26690. (Contributed by Prof. Loof Lirpa, 1-Apr-2025.) (Proof modification is discouraged.)
Assertion
Ref Expression
nrt2irr (𝑁 ∈ (ℤ‘3) → ¬ (2↑𝑐(1 / 𝑁)) ∈ ℚ)

Proof of Theorem nrt2irr
Dummy variables 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2cnd 12195 . . . . . . . . . . 11 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → 2 ∈ ℂ)
2 simprr 772 . . . . . . . . . . . . 13 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → 𝑞 ∈ ℕ)
32nncnd 12133 . . . . . . . . . . . 12 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → 𝑞 ∈ ℂ)
4 eluz3nn 12779 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ ℕ)
54adantr 480 . . . . . . . . . . . . 13 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → 𝑁 ∈ ℕ)
65nnnn0d 12434 . . . . . . . . . . . 12 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → 𝑁 ∈ ℕ0)
73, 6expcld 14045 . . . . . . . . . . 11 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → (𝑞𝑁) ∈ ℂ)
82nnne0d 12167 . . . . . . . . . . . 12 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → 𝑞 ≠ 0)
95nnzd 12487 . . . . . . . . . . . 12 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → 𝑁 ∈ ℤ)
103, 8, 9expne0d 14051 . . . . . . . . . . 11 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → (𝑞𝑁) ≠ 0)
111, 7, 10divcan4d 11895 . . . . . . . . . 10 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → ((2 · (𝑞𝑁)) / (𝑞𝑁)) = 2)
1272timesd 12356 . . . . . . . . . . . 12 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → (2 · (𝑞𝑁)) = ((𝑞𝑁) + (𝑞𝑁)))
13 simpl 482 . . . . . . . . . . . . 13 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → 𝑁 ∈ (ℤ‘3))
14 simprl 770 . . . . . . . . . . . . 13 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → 𝑝 ∈ ℕ)
15 ax-flt 30442 . . . . . . . . . . . . 13 ((𝑁 ∈ (ℤ‘3) ∧ (𝑞 ∈ ℕ ∧ 𝑞 ∈ ℕ ∧ 𝑝 ∈ ℕ)) → ((𝑞𝑁) + (𝑞𝑁)) ≠ (𝑝𝑁))
1613, 2, 2, 14, 15syl13anc 1374 . . . . . . . . . . . 12 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → ((𝑞𝑁) + (𝑞𝑁)) ≠ (𝑝𝑁))
1712, 16eqnetrd 2993 . . . . . . . . . . 11 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → (2 · (𝑞𝑁)) ≠ (𝑝𝑁))
181, 7mulcld 11124 . . . . . . . . . . . . 13 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → (2 · (𝑞𝑁)) ∈ ℂ)
1914nncnd 12133 . . . . . . . . . . . . . 14 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → 𝑝 ∈ ℂ)
2019, 6expcld 14045 . . . . . . . . . . . . 13 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → (𝑝𝑁) ∈ ℂ)
21 div11 11796 . . . . . . . . . . . . 13 (((2 · (𝑞𝑁)) ∈ ℂ ∧ (𝑝𝑁) ∈ ℂ ∧ ((𝑞𝑁) ∈ ℂ ∧ (𝑞𝑁) ≠ 0)) → (((2 · (𝑞𝑁)) / (𝑞𝑁)) = ((𝑝𝑁) / (𝑞𝑁)) ↔ (2 · (𝑞𝑁)) = (𝑝𝑁)))
2218, 20, 7, 10, 21syl112anc 1376 . . . . . . . . . . . 12 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → (((2 · (𝑞𝑁)) / (𝑞𝑁)) = ((𝑝𝑁) / (𝑞𝑁)) ↔ (2 · (𝑞𝑁)) = (𝑝𝑁)))
2322necon3bid 2970 . . . . . . . . . . 11 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → (((2 · (𝑞𝑁)) / (𝑞𝑁)) ≠ ((𝑝𝑁) / (𝑞𝑁)) ↔ (2 · (𝑞𝑁)) ≠ (𝑝𝑁)))
2417, 23mpbird 257 . . . . . . . . . 10 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → ((2 · (𝑞𝑁)) / (𝑞𝑁)) ≠ ((𝑝𝑁) / (𝑞𝑁)))
2511, 24eqnetrrd 2994 . . . . . . . . 9 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → 2 ≠ ((𝑝𝑁) / (𝑞𝑁)))
2619, 3, 8, 6expdivd 14059 . . . . . . . . 9 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → ((𝑝 / 𝑞)↑𝑁) = ((𝑝𝑁) / (𝑞𝑁)))
2725, 26neeqtrrd 3000 . . . . . . . 8 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → 2 ≠ ((𝑝 / 𝑞)↑𝑁))
2819, 3, 8divcld 11889 . . . . . . . . 9 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → (𝑝 / 𝑞) ∈ ℂ)
2914nnne0d 12167 . . . . . . . . . 10 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → 𝑝 ≠ 0)
3019, 3, 29, 8divne0d 11905 . . . . . . . . 9 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → (𝑝 / 𝑞) ≠ 0)
3128, 30, 9cxpexpzd 26640 . . . . . . . 8 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → ((𝑝 / 𝑞)↑𝑐𝑁) = ((𝑝 / 𝑞)↑𝑁))
3227, 31neeqtrrd 3000 . . . . . . 7 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → 2 ≠ ((𝑝 / 𝑞)↑𝑐𝑁))
33 2re 12191 . . . . . . . . . 10 2 ∈ ℝ
3433a1i 11 . . . . . . . . 9 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → 2 ∈ ℝ)
35 0le2 12219 . . . . . . . . . 10 0 ≤ 2
3635a1i 11 . . . . . . . . 9 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → 0 ≤ 2)
3714nnrpd 12924 . . . . . . . . . . . 12 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → 𝑝 ∈ ℝ+)
382nnrpd 12924 . . . . . . . . . . . 12 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → 𝑞 ∈ ℝ+)
3937, 38rpdivcld 12943 . . . . . . . . . . 11 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → (𝑝 / 𝑞) ∈ ℝ+)
4039rpred 12926 . . . . . . . . . 10 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → (𝑝 / 𝑞) ∈ ℝ)
4139rpge0d 12930 . . . . . . . . . 10 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → 0 ≤ (𝑝 / 𝑞))
425nnred 12132 . . . . . . . . . 10 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → 𝑁 ∈ ℝ)
4340, 41, 42recxpcld 26652 . . . . . . . . 9 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → ((𝑝 / 𝑞)↑𝑐𝑁) ∈ ℝ)
4440, 41, 42cxpge0d 26653 . . . . . . . . 9 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → 0 ≤ ((𝑝 / 𝑞)↑𝑐𝑁))
455nnrpd 12924 . . . . . . . . . 10 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → 𝑁 ∈ ℝ+)
4645rpreccld 12936 . . . . . . . . 9 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → (1 / 𝑁) ∈ ℝ+)
4734, 36, 43, 44, 46recxpf1lem 26658 . . . . . . . 8 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → (2 = ((𝑝 / 𝑞)↑𝑐𝑁) ↔ (2↑𝑐(1 / 𝑁)) = (((𝑝 / 𝑞)↑𝑐𝑁)↑𝑐(1 / 𝑁))))
4847necon3bid 2970 . . . . . . 7 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → (2 ≠ ((𝑝 / 𝑞)↑𝑐𝑁) ↔ (2↑𝑐(1 / 𝑁)) ≠ (((𝑝 / 𝑞)↑𝑐𝑁)↑𝑐(1 / 𝑁))))
4932, 48mpbid 232 . . . . . 6 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → (2↑𝑐(1 / 𝑁)) ≠ (((𝑝 / 𝑞)↑𝑐𝑁)↑𝑐(1 / 𝑁)))
505nnrecred 12168 . . . . . . . . . 10 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → (1 / 𝑁) ∈ ℝ)
5150recnd 11132 . . . . . . . . 9 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → (1 / 𝑁) ∈ ℂ)
5228, 51cxpcld 26637 . . . . . . . 8 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → ((𝑝 / 𝑞)↑𝑐(1 / 𝑁)) ∈ ℂ)
5328, 30, 51cxpne0d 26642 . . . . . . . 8 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → ((𝑝 / 𝑞)↑𝑐(1 / 𝑁)) ≠ 0)
5452, 53, 9cxpexpzd 26640 . . . . . . 7 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → (((𝑝 / 𝑞)↑𝑐(1 / 𝑁))↑𝑐𝑁) = (((𝑝 / 𝑞)↑𝑐(1 / 𝑁))↑𝑁))
55 cxpcom 26668 . . . . . . . 8 (((𝑝 / 𝑞) ∈ ℝ+ ∧ (1 / 𝑁) ∈ ℝ ∧ 𝑁 ∈ ℝ) → (((𝑝 / 𝑞)↑𝑐(1 / 𝑁))↑𝑐𝑁) = (((𝑝 / 𝑞)↑𝑐𝑁)↑𝑐(1 / 𝑁)))
5639, 50, 42, 55syl3anc 1373 . . . . . . 7 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → (((𝑝 / 𝑞)↑𝑐(1 / 𝑁))↑𝑐𝑁) = (((𝑝 / 𝑞)↑𝑐𝑁)↑𝑐(1 / 𝑁)))
57 cxproot 26619 . . . . . . . 8 (((𝑝 / 𝑞) ∈ ℂ ∧ 𝑁 ∈ ℕ) → (((𝑝 / 𝑞)↑𝑐(1 / 𝑁))↑𝑁) = (𝑝 / 𝑞))
5828, 5, 57syl2anc 584 . . . . . . 7 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → (((𝑝 / 𝑞)↑𝑐(1 / 𝑁))↑𝑁) = (𝑝 / 𝑞))
5954, 56, 583eqtr3d 2773 . . . . . 6 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → (((𝑝 / 𝑞)↑𝑐𝑁)↑𝑐(1 / 𝑁)) = (𝑝 / 𝑞))
6049, 59neeqtrd 2995 . . . . 5 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → (2↑𝑐(1 / 𝑁)) ≠ (𝑝 / 𝑞))
6160neneqd 2931 . . . 4 ((𝑁 ∈ (ℤ‘3) ∧ (𝑝 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → ¬ (2↑𝑐(1 / 𝑁)) = (𝑝 / 𝑞))
6261ralrimivva 3173 . . 3 (𝑁 ∈ (ℤ‘3) → ∀𝑝 ∈ ℕ ∀𝑞 ∈ ℕ ¬ (2↑𝑐(1 / 𝑁)) = (𝑝 / 𝑞))
63 ralnex2 3110 . . 3 (∀𝑝 ∈ ℕ ∀𝑞 ∈ ℕ ¬ (2↑𝑐(1 / 𝑁)) = (𝑝 / 𝑞) ↔ ¬ ∃𝑝 ∈ ℕ ∃𝑞 ∈ ℕ (2↑𝑐(1 / 𝑁)) = (𝑝 / 𝑞))
6462, 63sylib 218 . 2 (𝑁 ∈ (ℤ‘3) → ¬ ∃𝑝 ∈ ℕ ∃𝑞 ∈ ℕ (2↑𝑐(1 / 𝑁)) = (𝑝 / 𝑞))
65 2rp 12887 . . . . . 6 2 ∈ ℝ+
6665a1i 11 . . . . 5 (𝑁 ∈ (ℤ‘3) → 2 ∈ ℝ+)
674nnrecred 12168 . . . . 5 (𝑁 ∈ (ℤ‘3) → (1 / 𝑁) ∈ ℝ)
6866, 67cxpgt0d 26667 . . . 4 (𝑁 ∈ (ℤ‘3) → 0 < (2↑𝑐(1 / 𝑁)))
6968biantrud 531 . . 3 (𝑁 ∈ (ℤ‘3) → ((2↑𝑐(1 / 𝑁)) ∈ ℚ ↔ ((2↑𝑐(1 / 𝑁)) ∈ ℚ ∧ 0 < (2↑𝑐(1 / 𝑁)))))
70 elpqb 12866 . . 3 (((2↑𝑐(1 / 𝑁)) ∈ ℚ ∧ 0 < (2↑𝑐(1 / 𝑁))) ↔ ∃𝑝 ∈ ℕ ∃𝑞 ∈ ℕ (2↑𝑐(1 / 𝑁)) = (𝑝 / 𝑞))
7169, 70bitrdi 287 . 2 (𝑁 ∈ (ℤ‘3) → ((2↑𝑐(1 / 𝑁)) ∈ ℚ ↔ ∃𝑝 ∈ ℕ ∃𝑞 ∈ ℕ (2↑𝑐(1 / 𝑁)) = (𝑝 / 𝑞)))
7264, 71mtbird 325 1 (𝑁 ∈ (ℤ‘3) → ¬ (2↑𝑐(1 / 𝑁)) ∈ ℚ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wcel 2110  wne 2926  wral 3045  wrex 3054   class class class wbr 5089  cfv 6477  (class class class)co 7341  cc 10996  cr 10997  0cc0 10998  1c1 10999   + caddc 11001   · cmul 11003   < clt 11138  cle 11139   / cdiv 11766  cn 12117  2c2 12172  3c3 12173  cuz 12724  cq 12838  +crp 12882  cexp 13960  𝑐ccxp 26484
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-inf2 9526  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075  ax-pre-sup 11076  ax-addf 11077  ax-flt 30442
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-tp 4579  df-op 4581  df-uni 4858  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-isom 6486  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-of 7605  df-om 7792  df-1st 7916  df-2nd 7917  df-supp 8086  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-er 8617  df-map 8747  df-pm 8748  df-ixp 8817  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-fsupp 9241  df-fi 9290  df-sup 9321  df-inf 9322  df-oi 9391  df-card 9824  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-div 11767  df-nn 12118  df-2 12180  df-3 12181  df-4 12182  df-5 12183  df-6 12184  df-7 12185  df-8 12186  df-9 12187  df-n0 12374  df-z 12461  df-dec 12581  df-uz 12725  df-q 12839  df-rp 12883  df-xneg 13003  df-xadd 13004  df-xmul 13005  df-ioo 13241  df-ioc 13242  df-ico 13243  df-icc 13244  df-fz 13400  df-fzo 13547  df-fl 13688  df-mod 13766  df-seq 13901  df-exp 13961  df-fac 14173  df-bc 14202  df-hash 14230  df-shft 14966  df-cj 14998  df-re 14999  df-im 15000  df-sqrt 15134  df-abs 15135  df-limsup 15370  df-clim 15387  df-rlim 15388  df-sum 15586  df-ef 15966  df-sin 15968  df-cos 15969  df-pi 15971  df-struct 17050  df-sets 17067  df-slot 17085  df-ndx 17097  df-base 17113  df-ress 17134  df-plusg 17166  df-mulr 17167  df-starv 17168  df-sca 17169  df-vsca 17170  df-ip 17171  df-tset 17172  df-ple 17173  df-ds 17175  df-unif 17176  df-hom 17177  df-cco 17178  df-rest 17318  df-topn 17319  df-0g 17337  df-gsum 17338  df-topgen 17339  df-pt 17340  df-prds 17343  df-xrs 17398  df-qtop 17403  df-imas 17404  df-xps 17406  df-mre 17480  df-mrc 17481  df-acs 17483  df-mgm 18540  df-sgrp 18619  df-mnd 18635  df-submnd 18684  df-mulg 18973  df-cntz 19222  df-cmn 19687  df-psmet 21276  df-xmet 21277  df-met 21278  df-bl 21279  df-mopn 21280  df-fbas 21281  df-fg 21282  df-cnfld 21285  df-top 22802  df-topon 22819  df-topsp 22841  df-bases 22854  df-cld 22927  df-ntr 22928  df-cls 22929  df-nei 23006  df-lp 23044  df-perf 23045  df-cn 23135  df-cnp 23136  df-haus 23223  df-tx 23470  df-hmeo 23663  df-fil 23754  df-fm 23846  df-flim 23847  df-flf 23848  df-xms 24228  df-ms 24229  df-tms 24230  df-cncf 24791  df-limc 25787  df-dv 25788  df-log 26485  df-cxp 26486
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator