Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ax-frege52a Structured version   Visualization version   GIF version

Axiom ax-frege52a 43819
Description: The case when the content of 𝜑 is identical with the content of 𝜓 and in which a proposition controlled by an element for which we substitute the content of 𝜑 is affirmed (in this specific case the identity logical function) and the same proposition, this time where we substituted the content of 𝜓, is denied does not take place. Part of Axiom 52 of [Frege1879] p. 50. (Contributed by RP, 24-Dec-2019.) (New usage is discouraged.)
Assertion
Ref Expression
ax-frege52a ((𝜑𝜓) → (if-(𝜑, 𝜃, 𝜒) → if-(𝜓, 𝜃, 𝜒)))

Detailed syntax breakdown of Axiom ax-frege52a
StepHypRef Expression
1 wph . . 3 wff 𝜑
2 wps . . 3 wff 𝜓
31, 2wb 206 . 2 wff (𝜑𝜓)
4 wth . . . 4 wff 𝜃
5 wch . . . 4 wff 𝜒
61, 4, 5wif 1063 . . 3 wff if-(𝜑, 𝜃, 𝜒)
72, 4, 5wif 1063 . . 3 wff if-(𝜓, 𝜃, 𝜒)
86, 7wi 4 . 2 wff (if-(𝜑, 𝜃, 𝜒) → if-(𝜓, 𝜃, 𝜒))
93, 8wi 4 1 wff ((𝜑𝜓) → (if-(𝜑, 𝜃, 𝜒) → if-(𝜓, 𝜃, 𝜒)))
Colors of variables: wff setvar class
This axiom is referenced by:  frege52aid  43820  frege53a  43822  frege57a  43835
  Copyright terms: Public domain W3C validator