|   | Mathbox for Richard Penner | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > frege57a | Structured version Visualization version GIF version | ||
| Description: Analogue of frege57aid 43885. Proposition 57 of [Frege1879] p. 51. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) | 
| Ref | Expression | 
|---|---|
| frege57a | ⊢ ((𝜑 ↔ 𝜓) → (if-(𝜓, 𝜒, 𝜃) → if-(𝜑, 𝜒, 𝜃))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ax-frege52a 43870 | . 2 ⊢ ((𝜓 ↔ 𝜑) → (if-(𝜓, 𝜒, 𝜃) → if-(𝜑, 𝜒, 𝜃))) | |
| 2 | frege56a 43884 | . 2 ⊢ (((𝜓 ↔ 𝜑) → (if-(𝜓, 𝜒, 𝜃) → if-(𝜑, 𝜒, 𝜃))) → ((𝜑 ↔ 𝜓) → (if-(𝜓, 𝜒, 𝜃) → if-(𝜑, 𝜒, 𝜃)))) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ((𝜑 ↔ 𝜓) → (if-(𝜓, 𝜒, 𝜃) → if-(𝜑, 𝜒, 𝜃))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 if-wif 1063 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-frege1 43803 ax-frege2 43804 ax-frege8 43822 ax-frege28 43843 ax-frege52a 43870 ax-frege54a 43875 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-ifp 1064 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |