Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > frege57a | Structured version Visualization version GIF version |
Description: Analogue of frege57aid 40931. Proposition 57 of [Frege1879] p. 51. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
frege57a | ⊢ ((𝜑 ↔ 𝜓) → (if-(𝜓, 𝜒, 𝜃) → if-(𝜑, 𝜒, 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-frege52a 40916 | . 2 ⊢ ((𝜓 ↔ 𝜑) → (if-(𝜓, 𝜒, 𝜃) → if-(𝜑, 𝜒, 𝜃))) | |
2 | frege56a 40930 | . 2 ⊢ (((𝜓 ↔ 𝜑) → (if-(𝜓, 𝜒, 𝜃) → if-(𝜑, 𝜒, 𝜃))) → ((𝜑 ↔ 𝜓) → (if-(𝜓, 𝜒, 𝜃) → if-(𝜑, 𝜒, 𝜃)))) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ((𝜑 ↔ 𝜓) → (if-(𝜓, 𝜒, 𝜃) → if-(𝜑, 𝜒, 𝜃))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 if-wif 1059 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-frege1 40849 ax-frege2 40850 ax-frege8 40868 ax-frege28 40889 ax-frege52a 40916 ax-frege54a 40921 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-ifp 1060 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |