| Metamath
Proof Explorer Theorem List (p. 427 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30854) |
(30855-32377) |
(32378-49798) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | prjsperref 42601* | The relation in ℙ𝕣𝕠𝕛 is reflexive. (Contributed by Steven Nguyen, 30-Apr-2023.) |
| ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ 𝐾 𝑥 = (𝑙 · 𝑦))} & ⊢ 𝐵 = ((Base‘𝑉) ∖ {(0g‘𝑉)}) & ⊢ 𝑆 = (Scalar‘𝑉) & ⊢ · = ( ·𝑠 ‘𝑉) & ⊢ 𝐾 = (Base‘𝑆) ⇒ ⊢ (𝑉 ∈ LMod → (𝑋 ∈ 𝐵 ↔ 𝑋 ∼ 𝑋)) | ||
| Theorem | prjspersym 42602* | The relation in ℙ𝕣𝕠𝕛 is symmetric. (Contributed by Steven Nguyen, 1-May-2023.) |
| ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ 𝐾 𝑥 = (𝑙 · 𝑦))} & ⊢ 𝐵 = ((Base‘𝑉) ∖ {(0g‘𝑉)}) & ⊢ 𝑆 = (Scalar‘𝑉) & ⊢ · = ( ·𝑠 ‘𝑉) & ⊢ 𝐾 = (Base‘𝑆) ⇒ ⊢ ((𝑉 ∈ LVec ∧ 𝑋 ∼ 𝑌) → 𝑌 ∼ 𝑋) | ||
| Theorem | prjsper 42603* | The relation used to define ℙ𝕣𝕠𝕛 is an equivalence relation. (Contributed by Steven Nguyen, 1-May-2023.) |
| ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ 𝐾 𝑥 = (𝑙 · 𝑦))} & ⊢ 𝐵 = ((Base‘𝑉) ∖ {(0g‘𝑉)}) & ⊢ 𝑆 = (Scalar‘𝑉) & ⊢ · = ( ·𝑠 ‘𝑉) & ⊢ 𝐾 = (Base‘𝑆) ⇒ ⊢ (𝑉 ∈ LVec → ∼ Er 𝐵) | ||
| Theorem | prjspreln0 42604* | Two nonzero vectors are equivalent by a nonzero scalar. (Contributed by Steven Nguyen, 31-May-2023.) |
| ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ 𝐾 𝑥 = (𝑙 · 𝑦))} & ⊢ 𝐵 = ((Base‘𝑉) ∖ {(0g‘𝑉)}) & ⊢ 𝑆 = (Scalar‘𝑉) & ⊢ · = ( ·𝑠 ‘𝑉) & ⊢ 𝐾 = (Base‘𝑆) & ⊢ 0 = (0g‘𝑆) ⇒ ⊢ (𝑉 ∈ LVec → (𝑋 ∼ 𝑌 ↔ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ∃𝑚 ∈ (𝐾 ∖ { 0 })𝑋 = (𝑚 · 𝑌)))) | ||
| Theorem | prjspvs 42605* | A nonzero multiple of a vector is equivalent to the vector. (Contributed by Steven Nguyen, 6-Jun-2023.) |
| ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ 𝐾 𝑥 = (𝑙 · 𝑦))} & ⊢ 𝐵 = ((Base‘𝑉) ∖ {(0g‘𝑉)}) & ⊢ 𝑆 = (Scalar‘𝑉) & ⊢ · = ( ·𝑠 ‘𝑉) & ⊢ 𝐾 = (Base‘𝑆) & ⊢ 0 = (0g‘𝑆) ⇒ ⊢ ((𝑉 ∈ LVec ∧ 𝑋 ∈ 𝐵 ∧ 𝑁 ∈ (𝐾 ∖ { 0 })) → (𝑁 · 𝑋) ∼ 𝑋) | ||
| Theorem | prjsprellsp 42606* | Two vectors are equivalent iff their spans are equal. (Contributed by Steven Nguyen, 31-May-2023.) |
| ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ 𝐾 𝑥 = (𝑙 · 𝑦))} & ⊢ 𝐵 = ((Base‘𝑉) ∖ {(0g‘𝑉)}) & ⊢ 𝑆 = (Scalar‘𝑉) & ⊢ · = ( ·𝑠 ‘𝑉) & ⊢ 𝐾 = (Base‘𝑆) & ⊢ 𝑁 = (LSpan‘𝑉) ⇒ ⊢ ((𝑉 ∈ LVec ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋 ∼ 𝑌 ↔ (𝑁‘{𝑋}) = (𝑁‘{𝑌}))) | ||
| Theorem | prjspeclsp 42607* | The vectors equivalent to a vector 𝑋 are the nonzero vectors in the span of 𝑋. (Contributed by Steven Nguyen, 6-Jun-2023.) |
| ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ 𝐾 𝑥 = (𝑙 · 𝑦))} & ⊢ 𝐵 = ((Base‘𝑉) ∖ {(0g‘𝑉)}) & ⊢ 𝑆 = (Scalar‘𝑉) & ⊢ · = ( ·𝑠 ‘𝑉) & ⊢ 𝐾 = (Base‘𝑆) & ⊢ 𝑁 = (LSpan‘𝑉) ⇒ ⊢ ((𝑉 ∈ LVec ∧ 𝑋 ∈ 𝐵) → [𝑋] ∼ = ((𝑁‘{𝑋}) ∖ {(0g‘𝑉)})) | ||
| Theorem | prjspval2 42608* | Alternate definition of projective space. (Contributed by Steven Nguyen, 7-Jun-2023.) |
| ⊢ 0 = (0g‘𝑉) & ⊢ 𝐵 = ((Base‘𝑉) ∖ { 0 }) & ⊢ 𝑁 = (LSpan‘𝑉) ⇒ ⊢ (𝑉 ∈ LVec → (ℙ𝕣𝕠𝕛‘𝑉) = ∪ 𝑧 ∈ 𝐵 {((𝑁‘{𝑧}) ∖ { 0 })}) | ||
| Syntax | cprjspn 42609 | Extend class notation with the n-dimensional projective space function. |
| class ℙ𝕣𝕠𝕛n | ||
| Definition | df-prjspn 42610* | Define the n-dimensional projective space function. A projective space of dimension 1 is a projective line, and a projective space of dimension 2 is a projective plane. Compare df-ehl 25293. This space is considered n-dimensional because the vector space (𝑘 freeLMod (0...𝑛)) is (n+1)-dimensional and the ℙ𝕣𝕠𝕛 function returns equivalence classes with respect to a linear (1-dimensional) relation. (Contributed by BJ and Steven Nguyen, 29-Apr-2023.) |
| ⊢ ℙ𝕣𝕠𝕛n = (𝑛 ∈ ℕ0, 𝑘 ∈ DivRing ↦ (ℙ𝕣𝕠𝕛‘(𝑘 freeLMod (0...𝑛)))) | ||
| Theorem | prjspnval 42611 | Value of the n-dimensional projective space function. (Contributed by Steven Nguyen, 1-May-2023.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ DivRing) → (𝑁ℙ𝕣𝕠𝕛n𝐾) = (ℙ𝕣𝕠𝕛‘(𝐾 freeLMod (0...𝑁)))) | ||
| Theorem | prjspnerlem 42612* | A lemma showing that the equivalence relation used in prjspnval2 42613 and the equivalence relation used in prjspval 42598 are equal, but only with the antecedent 𝐾 ∈ DivRing. (Contributed by SN, 15-Jul-2023.) |
| ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ 𝑆 𝑥 = (𝑙 · 𝑦))} & ⊢ 𝑊 = (𝐾 freeLMod (0...𝑁)) & ⊢ 𝐵 = ((Base‘𝑊) ∖ {(0g‘𝑊)}) & ⊢ 𝑆 = (Base‘𝐾) & ⊢ · = ( ·𝑠 ‘𝑊) ⇒ ⊢ (𝐾 ∈ DivRing → ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑥 = (𝑙 · 𝑦))}) | ||
| Theorem | prjspnval2 42613* | Value of the n-dimensional projective space function, expanded. (Contributed by Steven Nguyen, 15-Jul-2023.) |
| ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ 𝑆 𝑥 = (𝑙 · 𝑦))} & ⊢ 𝑊 = (𝐾 freeLMod (0...𝑁)) & ⊢ 𝐵 = ((Base‘𝑊) ∖ {(0g‘𝑊)}) & ⊢ 𝑆 = (Base‘𝐾) & ⊢ · = ( ·𝑠 ‘𝑊) ⇒ ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ DivRing) → (𝑁ℙ𝕣𝕠𝕛n𝐾) = (𝐵 / ∼ )) | ||
| Theorem | prjspner 42614* | The relation used to define ℙ𝕣𝕠𝕛 (and indirectly ℙ𝕣𝕠𝕛n through df-prjspn 42610) is an equivalence relation. This is a lemma that converts the equivalence relation used in results like prjspertr 42600 and prjspersym 42602 (see prjspnerlem 42612). Several theorems are covered in one thanks to the theorems around df-er 8674. (Contributed by SN, 14-Aug-2023.) |
| ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ 𝑆 𝑥 = (𝑙 · 𝑦))} & ⊢ 𝑊 = (𝐾 freeLMod (0...𝑁)) & ⊢ 𝐵 = ((Base‘𝑊) ∖ {(0g‘𝑊)}) & ⊢ 𝑆 = (Base‘𝐾) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ (𝜑 → 𝐾 ∈ DivRing) ⇒ ⊢ (𝜑 → ∼ Er 𝐵) | ||
| Theorem | prjspnvs 42615* | A nonzero multiple of a vector is equivalent to the vector. This converts the equivalence relation used in prjspvs 42605 (see prjspnerlem 42612). (Contributed by SN, 8-Aug-2024.) |
| ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ 𝑆 𝑥 = (𝑙 · 𝑦))} & ⊢ 𝑊 = (𝐾 freeLMod (0...𝑁)) & ⊢ 𝐵 = ((Base‘𝑊) ∖ {(0g‘𝑊)}) & ⊢ 𝑆 = (Base‘𝐾) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 0 = (0g‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ DivRing) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝐶 ∈ 𝑆) & ⊢ (𝜑 → 𝐶 ≠ 0 ) ⇒ ⊢ (𝜑 → (𝐶 · 𝑋) ∼ 𝑋) | ||
| Theorem | prjspnssbas 42616 | A projective point spans a subset of the (nonzero) affine points. (Contributed by SN, 17-Jan-2025.) |
| ⊢ 𝑃 = (𝑁ℙ𝕣𝕠𝕛n𝐾) & ⊢ 𝑊 = (𝐾 freeLMod (0...𝑁)) & ⊢ 𝐵 = ((Base‘𝑊) ∖ {(0g‘𝑊)}) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐾 ∈ DivRing) ⇒ ⊢ (𝜑 → 𝑃 ⊆ 𝒫 𝐵) | ||
| Theorem | prjspnn0 42617 | A projective point is nonempty. (Contributed by SN, 17-Jan-2025.) |
| ⊢ 𝑃 = (𝑁ℙ𝕣𝕠𝕛n𝐾) & ⊢ 𝑊 = (𝐾 freeLMod (0...𝑁)) & ⊢ 𝐵 = ((Base‘𝑊) ∖ {(0g‘𝑊)}) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐾 ∈ DivRing) & ⊢ (𝜑 → 𝐴 ∈ 𝑃) ⇒ ⊢ (𝜑 → 𝐴 ≠ ∅) | ||
| Theorem | 0prjspnlem 42618 | Lemma for 0prjspn 42623. The given unit vector is a nonzero vector. (Contributed by Steven Nguyen, 16-Jul-2023.) |
| ⊢ 𝐵 = ((Base‘𝑊) ∖ {(0g‘𝑊)}) & ⊢ 𝑊 = (𝐾 freeLMod (0...0)) & ⊢ 1 = ((𝐾 unitVec (0...0))‘0) ⇒ ⊢ (𝐾 ∈ DivRing → 1 ∈ 𝐵) | ||
| Theorem | prjspnfv01 42619* | Any vector is equivalent to a vector whose zeroth coordinate is 0 or 1 (proof of the value of the zeroth coordinate). (Contributed by SN, 13-Aug-2023.) |
| ⊢ 𝐹 = (𝑏 ∈ 𝐵 ↦ if((𝑏‘0) = 0 , 𝑏, ((𝐼‘(𝑏‘0)) · 𝑏))) & ⊢ 𝐵 = ((Base‘𝑊) ∖ {(0g‘𝑊)}) & ⊢ 𝑊 = (𝐾 freeLMod (0...𝑁)) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 0 = (0g‘𝐾) & ⊢ 1 = (1r‘𝐾) & ⊢ 𝐼 = (invr‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ DivRing) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((𝐹‘𝑋)‘0) = if((𝑋‘0) = 0 , 0 , 1 )) | ||
| Theorem | prjspner01 42620* | Any vector is equivalent to a vector whose zeroth coordinate is 0 or 1 (proof of the equivalence). (Contributed by SN, 13-Aug-2023.) |
| ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ 𝑆 𝑥 = (𝑙 · 𝑦))} & ⊢ 𝐹 = (𝑏 ∈ 𝐵 ↦ if((𝑏‘0) = 0 , 𝑏, ((𝐼‘(𝑏‘0)) · 𝑏))) & ⊢ 𝐵 = ((Base‘𝑊) ∖ {(0g‘𝑊)}) & ⊢ 𝑊 = (𝐾 freeLMod (0...𝑁)) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝑆 = (Base‘𝐾) & ⊢ 0 = (0g‘𝐾) & ⊢ 𝐼 = (invr‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ DivRing) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → 𝑋 ∼ (𝐹‘𝑋)) | ||
| Theorem | prjspner1 42621* | Two vectors whose zeroth coordinate is nonzero are equivalent if and only if they have the same representative in the (n-1)-dimensional affine subspace { x0 = 1 } . For example, vectors in 3D space whose 𝑥 coordinate is nonzero are equivalent iff they intersect at the plane 𝑥 = 1 at the same point (also see section header). (Contributed by SN, 13-Aug-2023.) |
| ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ 𝑆 𝑥 = (𝑙 · 𝑦))} & ⊢ 𝐹 = (𝑏 ∈ 𝐵 ↦ if((𝑏‘0) = 0 , 𝑏, ((𝐼‘(𝑏‘0)) · 𝑏))) & ⊢ 𝐵 = ((Base‘𝑊) ∖ {(0g‘𝑊)}) & ⊢ 𝑊 = (𝐾 freeLMod (0...𝑁)) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝑆 = (Base‘𝐾) & ⊢ 0 = (0g‘𝐾) & ⊢ 𝐼 = (invr‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ DivRing) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → (𝑋‘0) ≠ 0 ) & ⊢ (𝜑 → (𝑌‘0) ≠ 0 ) ⇒ ⊢ (𝜑 → (𝑋 ∼ 𝑌 ↔ (𝐹‘𝑋) = (𝐹‘𝑌))) | ||
| Theorem | 0prjspnrel 42622* | In the zero-dimensional projective space, all vectors are equivalent to the unit vector. (Contributed by Steven Nguyen, 7-Jun-2023.) |
| ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ 𝑆 𝑥 = (𝑙 · 𝑦))} & ⊢ 𝐵 = ((Base‘𝑊) ∖ {(0g‘𝑊)}) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝑆 = (Base‘𝐾) & ⊢ 𝑊 = (𝐾 freeLMod (0...0)) & ⊢ 1 = ((𝐾 unitVec (0...0))‘0) ⇒ ⊢ ((𝐾 ∈ DivRing ∧ 𝑋 ∈ 𝐵) → 𝑋 ∼ 1 ) | ||
| Theorem | 0prjspn 42623 | A zero-dimensional projective space has only 1 point. (Contributed by Steven Nguyen, 9-Jun-2023.) |
| ⊢ 𝑊 = (𝐾 freeLMod (0...0)) & ⊢ 𝐵 = ((Base‘𝑊) ∖ {(0g‘𝑊)}) ⇒ ⊢ (𝐾 ∈ DivRing → (0ℙ𝕣𝕠𝕛n𝐾) = {𝐵}) | ||
| Syntax | cprjcrv 42624 | Extend class notation with the projective curve function. |
| class ℙ𝕣𝕠𝕛Crv | ||
| Definition | df-prjcrv 42625* | Define the projective curve function. This takes a homogeneous polynomial and outputs the homogeneous coordinates where the polynomial evaluates to zero (the "zero set"). (In other words, scalar multiples are collapsed into the same projective point. See mhphf4 42595 and prjspvs 42605). (Contributed by SN, 23-Nov-2024.) |
| ⊢ ℙ𝕣𝕠𝕛Crv = (𝑛 ∈ ℕ0, 𝑘 ∈ Field ↦ (𝑓 ∈ ∪ ran ((0...𝑛) mHomP 𝑘) ↦ {𝑝 ∈ (𝑛ℙ𝕣𝕠𝕛n𝑘) ∣ ((((0...𝑛) eval 𝑘)‘𝑓) “ 𝑝) = {(0g‘𝑘)}})) | ||
| Theorem | prjcrvfval 42626* | Value of the projective curve function. (Contributed by SN, 23-Nov-2024.) |
| ⊢ 𝐻 = ((0...𝑁) mHomP 𝐾) & ⊢ 𝐸 = ((0...𝑁) eval 𝐾) & ⊢ 𝑃 = (𝑁ℙ𝕣𝕠𝕛n𝐾) & ⊢ 0 = (0g‘𝐾) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐾 ∈ Field) ⇒ ⊢ (𝜑 → (𝑁ℙ𝕣𝕠𝕛Crv𝐾) = (𝑓 ∈ ∪ ran 𝐻 ↦ {𝑝 ∈ 𝑃 ∣ ((𝐸‘𝑓) “ 𝑝) = { 0 }})) | ||
| Theorem | prjcrvval 42627* | Value of the projective curve function. (Contributed by SN, 23-Nov-2024.) |
| ⊢ 𝐻 = ((0...𝑁) mHomP 𝐾) & ⊢ 𝐸 = ((0...𝑁) eval 𝐾) & ⊢ 𝑃 = (𝑁ℙ𝕣𝕠𝕛n𝐾) & ⊢ 0 = (0g‘𝐾) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐾 ∈ Field) & ⊢ (𝜑 → 𝐹 ∈ ∪ ran 𝐻) ⇒ ⊢ (𝜑 → ((𝑁ℙ𝕣𝕠𝕛Crv𝐾)‘𝐹) = {𝑝 ∈ 𝑃 ∣ ((𝐸‘𝐹) “ 𝑝) = { 0 }}) | ||
| Theorem | prjcrv0 42628 | The "curve" (zero set) corresponding to the zero polynomial contains all coordinates. (Contributed by SN, 23-Nov-2024.) |
| ⊢ 𝑌 = ((0...𝑁) mPoly 𝐾) & ⊢ 0 = (0g‘𝑌) & ⊢ 𝑃 = (𝑁ℙ𝕣𝕠𝕛n𝐾) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐾 ∈ Field) ⇒ ⊢ (𝜑 → ((𝑁ℙ𝕣𝕠𝕛Crv𝐾)‘ 0 ) = 𝑃) | ||
| Theorem | dffltz 42629* | Fermat's Last Theorem (FLT) for nonzero integers is equivalent to the original scope of natural numbers. The backwards direction takes (𝑎↑𝑛) + (𝑏↑𝑛) = (𝑐↑𝑛), and adds the negative of any negative term to both sides, thus creating the corresponding equation with only positive integers. There are six combinations of negativity, so the proof is particularly long. (Contributed by Steven Nguyen, 27-Feb-2023.) |
| ⊢ (∀𝑛 ∈ (ℤ≥‘3)∀𝑥 ∈ ℕ ∀𝑦 ∈ ℕ ∀𝑧 ∈ ℕ ((𝑥↑𝑛) + (𝑦↑𝑛)) ≠ (𝑧↑𝑛) ↔ ∀𝑛 ∈ (ℤ≥‘3)∀𝑎 ∈ (ℤ ∖ {0})∀𝑏 ∈ (ℤ ∖ {0})∀𝑐 ∈ (ℤ ∖ {0})((𝑎↑𝑛) + (𝑏↑𝑛)) ≠ (𝑐↑𝑛)) | ||
| Theorem | fltmul 42630 | A counterexample to FLT stays valid when scaled. The hypotheses are more general than they need to be for convenience. (There does not seem to be a standard term for Fermat or Pythagorean triples extended to any 𝑁 ∈ ℕ0, so the label is more about the context in which this theorem is used). (Contributed by SN, 20-Aug-2024.) |
| ⊢ (𝜑 → 𝑆 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → ((𝐴↑𝑁) + (𝐵↑𝑁)) = (𝐶↑𝑁)) ⇒ ⊢ (𝜑 → (((𝑆 · 𝐴)↑𝑁) + ((𝑆 · 𝐵)↑𝑁)) = ((𝑆 · 𝐶)↑𝑁)) | ||
| Theorem | fltdiv 42631 | A counterexample to FLT stays valid when scaled. The hypotheses are more general than they need to be for convenience. (Contributed by SN, 20-Aug-2024.) |
| ⊢ (𝜑 → 𝑆 ∈ ℂ) & ⊢ (𝜑 → 𝑆 ≠ 0) & ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → ((𝐴↑𝑁) + (𝐵↑𝑁)) = (𝐶↑𝑁)) ⇒ ⊢ (𝜑 → (((𝐴 / 𝑆)↑𝑁) + ((𝐵 / 𝑆)↑𝑁)) = ((𝐶 / 𝑆)↑𝑁)) | ||
| Theorem | flt0 42632 | A counterexample for FLT does not exist for 𝑁 = 0. (Contributed by SN, 20-Aug-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → ((𝐴↑𝑁) + (𝐵↑𝑁)) = (𝐶↑𝑁)) ⇒ ⊢ (𝜑 → 𝑁 ∈ ℕ) | ||
| Theorem | fltdvdsabdvdsc 42633 | Any factor of both 𝐴 and 𝐵 also divides 𝐶. This establishes the validity of fltabcoprmex 42634. (Contributed by SN, 21-Aug-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ ℕ) & ⊢ (𝜑 → 𝐶 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → ((𝐴↑𝑁) + (𝐵↑𝑁)) = (𝐶↑𝑁)) ⇒ ⊢ (𝜑 → (𝐴 gcd 𝐵) ∥ 𝐶) | ||
| Theorem | fltabcoprmex 42634 | A counterexample to FLT implies a counterexample to FLT with 𝐴, 𝐵 (assigned to 𝐴 / (𝐴 gcd 𝐵) and 𝐵 / (𝐴 gcd 𝐵)) coprime (by divgcdcoprm0 16642). (Contributed by SN, 20-Aug-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ ℕ) & ⊢ (𝜑 → 𝐶 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → ((𝐴↑𝑁) + (𝐵↑𝑁)) = (𝐶↑𝑁)) ⇒ ⊢ (𝜑 → (((𝐴 / (𝐴 gcd 𝐵))↑𝑁) + ((𝐵 / (𝐴 gcd 𝐵))↑𝑁)) = ((𝐶 / (𝐴 gcd 𝐵))↑𝑁)) | ||
| Theorem | fltaccoprm 42635 | A counterexample to FLT with 𝐴, 𝐵 coprime also has 𝐴, 𝐶 coprime. (Contributed by SN, 20-Aug-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ ℕ) & ⊢ (𝜑 → 𝐶 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → ((𝐴↑𝑁) + (𝐵↑𝑁)) = (𝐶↑𝑁)) & ⊢ (𝜑 → (𝐴 gcd 𝐵) = 1) ⇒ ⊢ (𝜑 → (𝐴 gcd 𝐶) = 1) | ||
| Theorem | fltbccoprm 42636 | A counterexample to FLT with 𝐴, 𝐵 coprime also has 𝐵, 𝐶 coprime. Proven from fltaccoprm 42635 using commutativity of addition. (Contributed by SN, 20-Aug-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ ℕ) & ⊢ (𝜑 → 𝐶 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → ((𝐴↑𝑁) + (𝐵↑𝑁)) = (𝐶↑𝑁)) & ⊢ (𝜑 → (𝐴 gcd 𝐵) = 1) ⇒ ⊢ (𝜑 → (𝐵 gcd 𝐶) = 1) | ||
| Theorem | fltabcoprm 42637 | A counterexample to FLT with 𝐴, 𝐶 coprime also has 𝐴, 𝐵 coprime. Converse of fltaccoprm 42635. (Contributed by SN, 22-Aug-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ ℕ) & ⊢ (𝜑 → 𝐶 ∈ ℕ) & ⊢ (𝜑 → (𝐴 gcd 𝐶) = 1) & ⊢ (𝜑 → ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)) ⇒ ⊢ (𝜑 → (𝐴 gcd 𝐵) = 1) | ||
| Theorem | infdesc 42638* | Infinite descent. The hypotheses say that 𝑆 is lower bounded, and that if 𝜓 holds for an integer in 𝑆, it holds for a smaller integer in 𝑆. By infinite descent, eventually we cannot go any smaller, therefore 𝜓 holds for no integer in 𝑆. (Contributed by SN, 20-Aug-2024.) |
| ⊢ (𝑦 = 𝑥 → (𝜓 ↔ 𝜒)) & ⊢ (𝑦 = 𝑧 → (𝜓 ↔ 𝜃)) & ⊢ (𝜑 → 𝑆 ⊆ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝜒)) → ∃𝑧 ∈ 𝑆 (𝜃 ∧ 𝑧 < 𝑥)) ⇒ ⊢ (𝜑 → {𝑦 ∈ 𝑆 ∣ 𝜓} = ∅) | ||
| Theorem | fltne 42639 | If a counterexample to FLT exists, its addends are not equal. (Contributed by SN, 1-Jun-2023.) |
| ⊢ (𝜑 → 𝐴 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ ℕ) & ⊢ (𝜑 → 𝐶 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘2)) & ⊢ (𝜑 → ((𝐴↑𝑁) + (𝐵↑𝑁)) = (𝐶↑𝑁)) ⇒ ⊢ (𝜑 → 𝐴 ≠ 𝐵) | ||
| Theorem | flt4lem 42640 | Raising a number to the fourth power is equivalent to squaring it twice. (Contributed by SN, 21-Aug-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐴↑4) = ((𝐴↑2)↑2)) | ||
| Theorem | flt4lem1 42641 | Satisfy the antecedent used in several pythagtrip 16812 lemmas, with 𝐴, 𝐶 coprime rather than 𝐴, 𝐵. (Contributed by SN, 21-Aug-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ ℕ) & ⊢ (𝜑 → 𝐶 ∈ ℕ) & ⊢ (𝜑 → ¬ 2 ∥ 𝐴) & ⊢ (𝜑 → (𝐴 gcd 𝐶) = 1) & ⊢ (𝜑 → ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)) ⇒ ⊢ (𝜑 → ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴))) | ||
| Theorem | flt4lem2 42642 | If 𝐴 is even, 𝐵 is odd. (Contributed by SN, 22-Aug-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ ℕ) & ⊢ (𝜑 → 𝐶 ∈ ℕ) & ⊢ (𝜑 → 2 ∥ 𝐴) & ⊢ (𝜑 → (𝐴 gcd 𝐶) = 1) & ⊢ (𝜑 → ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)) ⇒ ⊢ (𝜑 → ¬ 2 ∥ 𝐵) | ||
| Theorem | flt4lem3 42643 | Equivalent to pythagtriplem4 16797. Show that 𝐶 + 𝐴 and 𝐶 − 𝐴 are coprime. (Contributed by SN, 22-Aug-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ ℕ) & ⊢ (𝜑 → 𝐶 ∈ ℕ) & ⊢ (𝜑 → 2 ∥ 𝐴) & ⊢ (𝜑 → (𝐴 gcd 𝐶) = 1) & ⊢ (𝜑 → ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)) ⇒ ⊢ (𝜑 → ((𝐶 + 𝐴) gcd (𝐶 − 𝐴)) = 1) | ||
| Theorem | flt4lem4 42644 | If the product of two coprime factors is a perfect square, the factors are perfect squares. (Contributed by SN, 22-Aug-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ ℕ) & ⊢ (𝜑 → 𝐶 ∈ ℕ) & ⊢ (𝜑 → (𝐴 gcd 𝐵) = 1) & ⊢ (𝜑 → (𝐴 · 𝐵) = (𝐶↑2)) ⇒ ⊢ (𝜑 → (𝐴 = ((𝐴 gcd 𝐶)↑2) ∧ 𝐵 = ((𝐵 gcd 𝐶)↑2))) | ||
| Theorem | flt4lem5 42645 | In the context of the lemmas of pythagtrip 16812, 𝑀 and 𝑁 are coprime. (Contributed by SN, 23-Aug-2024.) |
| ⊢ 𝑀 = (((√‘(𝐶 + 𝐵)) + (√‘(𝐶 − 𝐵))) / 2) & ⊢ 𝑁 = (((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵))) / 2) ⇒ ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝑀 gcd 𝑁) = 1) | ||
| Theorem | flt4lem5elem 42646 | Version of fltaccoprm 42635 and fltbccoprm 42636 where 𝑀 is not squared. This can be proved in general for any polynomial in three variables: using prmdvdsncoprmbd 16704, dvds2addd 16269, and prmdvdsexp 16692, we can show that if two variables are coprime, the third is also coprime to the two. (Contributed by SN, 24-Aug-2024.) |
| ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑅 ∈ ℕ) & ⊢ (𝜑 → 𝑆 ∈ ℕ) & ⊢ (𝜑 → 𝑀 = ((𝑅↑2) + (𝑆↑2))) & ⊢ (𝜑 → (𝑅 gcd 𝑆) = 1) ⇒ ⊢ (𝜑 → ((𝑅 gcd 𝑀) = 1 ∧ (𝑆 gcd 𝑀) = 1)) | ||
| Theorem | flt4lem5a 42647 | Part 1 of Equation 1 of https://crypto.stanford.edu/pbc/notes/numberfield/fermatn4.html. (Contributed by SN, 22-Aug-2024.) |
| ⊢ 𝑀 = (((√‘(𝐶 + (𝐵↑2))) + (√‘(𝐶 − (𝐵↑2)))) / 2) & ⊢ 𝑁 = (((√‘(𝐶 + (𝐵↑2))) − (√‘(𝐶 − (𝐵↑2)))) / 2) & ⊢ 𝑅 = (((√‘(𝑀 + 𝑁)) + (√‘(𝑀 − 𝑁))) / 2) & ⊢ 𝑆 = (((√‘(𝑀 + 𝑁)) − (√‘(𝑀 − 𝑁))) / 2) & ⊢ (𝜑 → 𝐴 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ ℕ) & ⊢ (𝜑 → 𝐶 ∈ ℕ) & ⊢ (𝜑 → ¬ 2 ∥ 𝐴) & ⊢ (𝜑 → (𝐴 gcd 𝐶) = 1) & ⊢ (𝜑 → ((𝐴↑4) + (𝐵↑4)) = (𝐶↑2)) ⇒ ⊢ (𝜑 → ((𝐴↑2) + (𝑁↑2)) = (𝑀↑2)) | ||
| Theorem | flt4lem5b 42648 | Part 2 of Equation 1 of https://crypto.stanford.edu/pbc/notes/numberfield/fermatn4.html. (Contributed by SN, 22-Aug-2024.) |
| ⊢ 𝑀 = (((√‘(𝐶 + (𝐵↑2))) + (√‘(𝐶 − (𝐵↑2)))) / 2) & ⊢ 𝑁 = (((√‘(𝐶 + (𝐵↑2))) − (√‘(𝐶 − (𝐵↑2)))) / 2) & ⊢ 𝑅 = (((√‘(𝑀 + 𝑁)) + (√‘(𝑀 − 𝑁))) / 2) & ⊢ 𝑆 = (((√‘(𝑀 + 𝑁)) − (√‘(𝑀 − 𝑁))) / 2) & ⊢ (𝜑 → 𝐴 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ ℕ) & ⊢ (𝜑 → 𝐶 ∈ ℕ) & ⊢ (𝜑 → ¬ 2 ∥ 𝐴) & ⊢ (𝜑 → (𝐴 gcd 𝐶) = 1) & ⊢ (𝜑 → ((𝐴↑4) + (𝐵↑4)) = (𝐶↑2)) ⇒ ⊢ (𝜑 → (2 · (𝑀 · 𝑁)) = (𝐵↑2)) | ||
| Theorem | flt4lem5c 42649 | Part 2 of Equation 2 of https://crypto.stanford.edu/pbc/notes/numberfield/fermatn4.html. (Contributed by SN, 22-Aug-2024.) |
| ⊢ 𝑀 = (((√‘(𝐶 + (𝐵↑2))) + (√‘(𝐶 − (𝐵↑2)))) / 2) & ⊢ 𝑁 = (((√‘(𝐶 + (𝐵↑2))) − (√‘(𝐶 − (𝐵↑2)))) / 2) & ⊢ 𝑅 = (((√‘(𝑀 + 𝑁)) + (√‘(𝑀 − 𝑁))) / 2) & ⊢ 𝑆 = (((√‘(𝑀 + 𝑁)) − (√‘(𝑀 − 𝑁))) / 2) & ⊢ (𝜑 → 𝐴 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ ℕ) & ⊢ (𝜑 → 𝐶 ∈ ℕ) & ⊢ (𝜑 → ¬ 2 ∥ 𝐴) & ⊢ (𝜑 → (𝐴 gcd 𝐶) = 1) & ⊢ (𝜑 → ((𝐴↑4) + (𝐵↑4)) = (𝐶↑2)) ⇒ ⊢ (𝜑 → 𝑁 = (2 · (𝑅 · 𝑆))) | ||
| Theorem | flt4lem5d 42650 | Part 3 of Equation 2 of https://crypto.stanford.edu/pbc/notes/numberfield/fermatn4.html. (Contributed by SN, 23-Aug-2024.) |
| ⊢ 𝑀 = (((√‘(𝐶 + (𝐵↑2))) + (√‘(𝐶 − (𝐵↑2)))) / 2) & ⊢ 𝑁 = (((√‘(𝐶 + (𝐵↑2))) − (√‘(𝐶 − (𝐵↑2)))) / 2) & ⊢ 𝑅 = (((√‘(𝑀 + 𝑁)) + (√‘(𝑀 − 𝑁))) / 2) & ⊢ 𝑆 = (((√‘(𝑀 + 𝑁)) − (√‘(𝑀 − 𝑁))) / 2) & ⊢ (𝜑 → 𝐴 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ ℕ) & ⊢ (𝜑 → 𝐶 ∈ ℕ) & ⊢ (𝜑 → ¬ 2 ∥ 𝐴) & ⊢ (𝜑 → (𝐴 gcd 𝐶) = 1) & ⊢ (𝜑 → ((𝐴↑4) + (𝐵↑4)) = (𝐶↑2)) ⇒ ⊢ (𝜑 → 𝑀 = ((𝑅↑2) + (𝑆↑2))) | ||
| Theorem | flt4lem5e 42651 | Satisfy the hypotheses of flt4lem4 42644. (Contributed by SN, 23-Aug-2024.) |
| ⊢ 𝑀 = (((√‘(𝐶 + (𝐵↑2))) + (√‘(𝐶 − (𝐵↑2)))) / 2) & ⊢ 𝑁 = (((√‘(𝐶 + (𝐵↑2))) − (√‘(𝐶 − (𝐵↑2)))) / 2) & ⊢ 𝑅 = (((√‘(𝑀 + 𝑁)) + (√‘(𝑀 − 𝑁))) / 2) & ⊢ 𝑆 = (((√‘(𝑀 + 𝑁)) − (√‘(𝑀 − 𝑁))) / 2) & ⊢ (𝜑 → 𝐴 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ ℕ) & ⊢ (𝜑 → 𝐶 ∈ ℕ) & ⊢ (𝜑 → ¬ 2 ∥ 𝐴) & ⊢ (𝜑 → (𝐴 gcd 𝐶) = 1) & ⊢ (𝜑 → ((𝐴↑4) + (𝐵↑4)) = (𝐶↑2)) ⇒ ⊢ (𝜑 → (((𝑅 gcd 𝑆) = 1 ∧ (𝑅 gcd 𝑀) = 1 ∧ (𝑆 gcd 𝑀) = 1) ∧ (𝑅 ∈ ℕ ∧ 𝑆 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ ((𝑀 · (𝑅 · 𝑆)) = ((𝐵 / 2)↑2) ∧ (𝐵 / 2) ∈ ℕ))) | ||
| Theorem | flt4lem5f 42652 | Final equation of https://crypto.stanford.edu/pbc/notes/numberfield/fermatn4.html. Given 𝐴↑4 + 𝐵↑4 = 𝐶↑2, provide a smaller solution. This satisfies the infinite descent condition. (Contributed by SN, 24-Aug-2024.) |
| ⊢ 𝑀 = (((√‘(𝐶 + (𝐵↑2))) + (√‘(𝐶 − (𝐵↑2)))) / 2) & ⊢ 𝑁 = (((√‘(𝐶 + (𝐵↑2))) − (√‘(𝐶 − (𝐵↑2)))) / 2) & ⊢ 𝑅 = (((√‘(𝑀 + 𝑁)) + (√‘(𝑀 − 𝑁))) / 2) & ⊢ 𝑆 = (((√‘(𝑀 + 𝑁)) − (√‘(𝑀 − 𝑁))) / 2) & ⊢ (𝜑 → 𝐴 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ ℕ) & ⊢ (𝜑 → 𝐶 ∈ ℕ) & ⊢ (𝜑 → ¬ 2 ∥ 𝐴) & ⊢ (𝜑 → (𝐴 gcd 𝐶) = 1) & ⊢ (𝜑 → ((𝐴↑4) + (𝐵↑4)) = (𝐶↑2)) ⇒ ⊢ (𝜑 → ((𝑀 gcd (𝐵 / 2))↑2) = (((𝑅 gcd (𝐵 / 2))↑4) + ((𝑆 gcd (𝐵 / 2))↑4))) | ||
| Theorem | flt4lem6 42653 | Remove shared factors in a solution to 𝐴↑4 + 𝐵↑4 = 𝐶↑2. (Contributed by SN, 24-Jul-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ ℕ) & ⊢ (𝜑 → 𝐶 ∈ ℕ) & ⊢ (𝜑 → ((𝐴↑4) + (𝐵↑4)) = (𝐶↑2)) ⇒ ⊢ (𝜑 → (((𝐴 / (𝐴 gcd 𝐵)) ∈ ℕ ∧ (𝐵 / (𝐴 gcd 𝐵)) ∈ ℕ ∧ (𝐶 / ((𝐴 gcd 𝐵)↑2)) ∈ ℕ) ∧ (((𝐴 / (𝐴 gcd 𝐵))↑4) + ((𝐵 / (𝐴 gcd 𝐵))↑4)) = ((𝐶 / ((𝐴 gcd 𝐵)↑2))↑2))) | ||
| Theorem | flt4lem7 42654* | Convert flt4lem5f 42652 into a convenient form for nna4b4nsq 42655. TODO-SN: The change to (𝐴 gcd 𝐵) = 1 points at some inefficiency in the lemmas. (Contributed by SN, 25-Aug-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ ℕ) & ⊢ (𝜑 → 𝐶 ∈ ℕ) & ⊢ (𝜑 → ¬ 2 ∥ 𝐴) & ⊢ (𝜑 → (𝐴 gcd 𝐵) = 1) & ⊢ (𝜑 → ((𝐴↑4) + (𝐵↑4)) = (𝐶↑2)) ⇒ ⊢ (𝜑 → ∃𝑙 ∈ ℕ (∃𝑔 ∈ ℕ ∃ℎ ∈ ℕ (¬ 2 ∥ 𝑔 ∧ ((𝑔 gcd ℎ) = 1 ∧ ((𝑔↑4) + (ℎ↑4)) = (𝑙↑2))) ∧ 𝑙 < 𝐶)) | ||
| Theorem | nna4b4nsq 42655 | Strengthening of Fermat's last theorem for exponent 4, where the sum is only assumed to be a square. (Contributed by SN, 23-Aug-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ ℕ) & ⊢ (𝜑 → 𝐶 ∈ ℕ) ⇒ ⊢ (𝜑 → ((𝐴↑4) + (𝐵↑4)) ≠ (𝐶↑2)) | ||
| Theorem | fltltc 42656 | (𝐶↑𝑁) is the largest term and therefore 𝐵 < 𝐶. (Contributed by Steven Nguyen, 22-Aug-2023.) |
| ⊢ (𝜑 → 𝐴 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ ℕ) & ⊢ (𝜑 → 𝐶 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘3)) & ⊢ (𝜑 → ((𝐴↑𝑁) + (𝐵↑𝑁)) = (𝐶↑𝑁)) ⇒ ⊢ (𝜑 → 𝐵 < 𝐶) | ||
| Theorem | fltnltalem 42657 | Lemma for fltnlta 42658. A lower bound for 𝐴 based on pwdif 15841. (Contributed by Steven Nguyen, 22-Aug-2023.) |
| ⊢ (𝜑 → 𝐴 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ ℕ) & ⊢ (𝜑 → 𝐶 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘3)) & ⊢ (𝜑 → ((𝐴↑𝑁) + (𝐵↑𝑁)) = (𝐶↑𝑁)) ⇒ ⊢ (𝜑 → ((𝐶 − 𝐵) · ((𝐶↑(𝑁 − 1)) + ((𝑁 − 1) · (𝐵↑(𝑁 − 1))))) < (𝐴↑𝑁)) | ||
| Theorem | fltnlta 42658 | In a Fermat counterexample, the exponent 𝑁 is less than all three numbers (𝐴, 𝐵, and 𝐶). Note that 𝐴 < 𝐵 (hypothesis) and 𝐵 < 𝐶 (fltltc 42656). See https://youtu.be/EymVXkPWxyc 42656 for an outline. (Contributed by SN, 24-Aug-2023.) |
| ⊢ (𝜑 → 𝐴 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ ℕ) & ⊢ (𝜑 → 𝐶 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘3)) & ⊢ (𝜑 → ((𝐴↑𝑁) + (𝐵↑𝑁)) = (𝐶↑𝑁)) & ⊢ (𝜑 → 𝐴 < 𝐵) ⇒ ⊢ (𝜑 → 𝑁 < 𝐴) | ||
These theorems were added for illustration or pedagogical purposes without the intention of being used, but some may still be moved to main and used, of course. | ||
| Theorem | iddii 42659 | Version of a1ii 2 with the hypotheses switched. The first hypothesis is redundant so this theorem should not normally appear in a proof. Inference associated with idd 24. (Contributed by SN, 1-Apr-2025.) (New usage is discouraged.) |
| ⊢ 𝜑 & ⊢ 𝜓 ⇒ ⊢ 𝜓 | ||
| Theorem | bicomdALT 42660 | Alternate proof of bicomd 223 which is shorter after expanding all parent theorems (as of 8-Aug-2024, bicom 222 depends on bicom1 221 and sylib 218 depends on syl 17). Additionally, the labels bicom1 221 and syl 17 happen to contain fewer characters than bicom 222 and sylib 218. However, neither of these conditions count as a shortening according to conventions 30336. In the first case, the criteria could easily be broken by upstream changes, and in many cases the upstream dependency tree is nontrivial (see orass 921 and pm2.31 922). For the latter case, theorem labels are up to revision, so they are not counted in the size of a proof. (Contributed by SN, 21-May-2022.) (New usage is discouraged.) (Proof modification is discouraged.) |
| ⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (𝜒 ↔ 𝜓)) | ||
| Theorem | alan 42661 | Alias for 19.26 1870 for easier lookup. (Contributed by SN, 12-Aug-2025.) (New usage is discouraged.) |
| ⊢ (∀𝑥(𝜑 ∧ 𝜓) ↔ (∀𝑥𝜑 ∧ ∀𝑥𝜓)) | ||
| Theorem | exor 42662 | Alias for 19.43 1882 for easier lookup. (Contributed by SN, 5-Jul-2025.) (New usage is discouraged.) |
| ⊢ (∃𝑥(𝜑 ∨ 𝜓) ↔ (∃𝑥𝜑 ∨ ∃𝑥𝜓)) | ||
| Theorem | rexor 42663 | Alias for r19.43 3102 for easier lookup. (Contributed by SN, 5-Jul-2025.) (New usage is discouraged.) |
| ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∨ 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 ∨ ∃𝑥 ∈ 𝐴 𝜓)) | ||
| Theorem | ruvALT 42664 | Alternate proof of ruv 9562 with one fewer syntax step thanks to using elirrv 9556 instead of elirr 9557. However, it does not change the compressed proof size or the number of symbols in the generated display, so it is not considered a shortening according to conventions 30336. (Contributed by SN, 1-Sep-2024.) (New usage is discouraged.) (Proof modification is discouraged.) |
| ⊢ {𝑥 ∣ 𝑥 ∉ 𝑥} = V | ||
| Theorem | sn-wcdeq 42665 | Alternative to wcdeq 3737 and df-cdeq 3738. This flattens the syntax representation ( wi ( weq vx vy ) wph ) to ( sn-wcdeq vx vy wph ), illustrating the comment of df-cdeq 3738. (Contributed by SN, 26-Sep-2024.) (New usage is discouraged.) |
| wff (𝑥 = 𝑦 → 𝜑) | ||
| Theorem | sq45 42666 | 45 squared is 2025. (Contributed by SN, 30-Mar-2025.) |
| ⊢ (;45↑2) = ;;;2025 | ||
| Theorem | sum9cubes 42667 | The sum of the first nine perfect cubes is 2025. (Contributed by SN, 30-Mar-2025.) |
| ⊢ Σ𝑘 ∈ (1...9)(𝑘↑3) = ;;;2025 | ||
| Theorem | sn-isghm 42668* | Longer proof of isghm 19154, unsuccessfully attempting to simplify isghm 19154 using elovmpo 7637 according to an editorial note (now removed). (Contributed by SN, 7-Jun-2025.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝑋 = (Base‘𝑆) & ⊢ 𝑌 = (Base‘𝑇) & ⊢ + = (+g‘𝑆) & ⊢ ⨣ = (+g‘𝑇) ⇒ ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) ↔ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) ∧ (𝐹:𝑋⟶𝑌 ∧ ∀𝑢 ∈ 𝑋 ∀𝑣 ∈ 𝑋 (𝐹‘(𝑢 + 𝑣)) = ((𝐹‘𝑢) ⨣ (𝐹‘𝑣))))) | ||
| Theorem | aprilfools2025 42669 | An abuse of notation. (Contributed by Prof. Loof Lirpa, 1-Apr-2025.) (New usage is discouraged.) (Proof modification is discouraged.) |
| ⊢ {〈“𝐴𝑝𝑟𝑖𝑙”〉, 〈“𝑓𝑜𝑜𝑙𝑠!”〉} ∈ V | ||
It is known that ax-10 2142, ax-11 2158, and ax-12 2178 are logically redundant in a weak sense. Practically, they can be replaced with hbn1w 2047, alcomimw 2043, and ax12wlem 2133 as long as you can fully substitute 𝑦 for 𝑥 in the relevant wff (that is, 𝑥 cannot appear in the wff after substituting). This strategy (which I will call a "standard replacement" of axioms) has a lot of potential, for example it works with df-fv 6522 and df-mpt 5192, two very common constructions. But doing a standard replacement of ax-10 2142, ax-11 2158, and ax-12 2178 takes unsatisfyingly long. Usually, if another approach is found, that approach is shorter and better. | ||
| Theorem | nfa1w 42670* | Replace ax-10 2142 in nfa1 2152 with a substitution hypothesis. (Contributed by SN, 2-Sep-2025.) |
| ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ Ⅎ𝑥∀𝑥𝜑 | ||
| Theorem | eu6w 42671* | Replace ax-10 2142, ax-12 2178 in eu6 2568 with substitution hypotheses. (Contributed by SN, 27-May-2025.) |
| ⊢ (𝑥 = 𝑧 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜃)) ⇒ ⊢ (∃!𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) | ||
| Theorem | abbibw 42672* | Replace ax-10 2142, ax-11 2158, ax-12 2178 in abbib 2799 with substitution hypotheses. (Contributed by SN, 27-May-2025.) |
| ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜃)) & ⊢ (𝑥 = 𝑦 → (𝜓 ↔ 𝜒)) ⇒ ⊢ ({𝑥 ∣ 𝜑} = {𝑥 ∣ 𝜓} ↔ ∀𝑥(𝜑 ↔ 𝜓)) | ||
| Theorem | absnw 42673* | Replace ax-10 2142, ax-11 2158, ax-12 2178 in absn 4612 with a substitution hypothesis. (Contributed by SN, 27-May-2025.) |
| ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ ({𝑥 ∣ 𝜑} = {𝑌} ↔ ∀𝑥(𝜑 ↔ 𝑥 = 𝑌)) | ||
| Theorem | euabsn2w 42674* | Replace ax-10 2142, ax-11 2158, ax-12 2178 in euabsn2 4692 with substitution hypotheses. (Contributed by SN, 27-May-2025.) |
| ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑧 → (𝜑 ↔ 𝜃)) ⇒ ⊢ (∃!𝑥𝜑 ↔ ∃𝑦{𝑥 ∣ 𝜑} = {𝑦}) | ||
| Theorem | sn-tz6.12-2 42675* | tz6.12-2 6849 without ax-10 2142, ax-11 2158, ax-12 2178. Improves 118 theorems. (Contributed by SN, 27-May-2025.) |
| ⊢ (¬ ∃!𝑥 𝐴𝐹𝑥 → (𝐹‘𝐴) = ∅) | ||
| Theorem | cu3addd 42676 | Cube of sum of three numbers. (Contributed by Igor Ieskov, 14-Dec-2023.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → (((𝐴 + 𝐵) + 𝐶)↑3) = (((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) + (((3 · ((𝐴↑2) · 𝐶)) + (((3 · 2) · (𝐴 · 𝐵)) · 𝐶)) + (3 · ((𝐵↑2) · 𝐶)))) + (((3 · (𝐴 · (𝐶↑2))) + (3 · (𝐵 · (𝐶↑2)))) + (𝐶↑3)))) | ||
| Theorem | negexpidd 42677 | The sum of a real number to the power of N and the negative of the number to the power of N equals zero if N is a nonnegative odd integer. (Contributed by Igor Ieskov, 21-Jan-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → ¬ 2 ∥ 𝑁) ⇒ ⊢ (𝜑 → ((𝐴↑𝑁) + (-𝐴↑𝑁)) = 0) | ||
| Theorem | rexlimdv3d 42678* | An extended version of rexlimdvv 3194 to include three set variables. (Contributed by Igor Ieskov, 21-Jan-2024.) |
| ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶) → (𝜓 → 𝜒))) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐶 𝜓 → 𝜒)) | ||
| Theorem | 3cubeslem1 42679 | Lemma for 3cubes 42685. (Contributed by Igor Ieskov, 22-Jan-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ ℚ) ⇒ ⊢ (𝜑 → 0 < (((𝐴 + 1)↑2) − 𝐴)) | ||
| Theorem | 3cubeslem2 42680 | Lemma for 3cubes 42685. Used to show that the denominators in 3cubeslem4 42684 are nonzero. (Contributed by Igor Ieskov, 22-Jan-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ ℚ) ⇒ ⊢ (𝜑 → ¬ ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3) = 0) | ||
| Theorem | 3cubeslem3l 42681 | Lemma for 3cubes 42685. (Contributed by Igor Ieskov, 22-Jan-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ ℚ) ⇒ ⊢ (𝜑 → (𝐴 · (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3)) = (((𝐴↑7) · (3↑9)) + (((𝐴↑6) · (3↑9)) + (((𝐴↑5) · ((3↑8) + (3↑8))) + (((𝐴↑4) · (((3↑7) · 2) + (3↑6))) + (((𝐴↑3) · ((3↑6) + (3↑6))) + (((𝐴↑2) · (3↑5)) + (𝐴 · (3↑3))))))))) | ||
| Theorem | 3cubeslem3r 42682 | Lemma for 3cubes 42685. (Contributed by Igor Ieskov, 22-Jan-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ ℚ) ⇒ ⊢ (𝜑 → ((((((3↑3) · (𝐴↑3)) − 1)↑3) + (((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1)↑3)) + ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴))↑3)) = (((𝐴↑7) · (3↑9)) + (((𝐴↑6) · (3↑9)) + (((𝐴↑5) · ((3↑8) + (3↑8))) + (((𝐴↑4) · (((3↑7) · 2) + (3↑6))) + (((𝐴↑3) · ((3↑6) + (3↑6))) + (((𝐴↑2) · (3↑5)) + (𝐴 · (3↑3))))))))) | ||
| Theorem | 3cubeslem3 42683 | Lemma for 3cubes 42685. (Contributed by Igor Ieskov, 22-Jan-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ ℚ) ⇒ ⊢ (𝜑 → (𝐴 · (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3)) = ((((((3↑3) · (𝐴↑3)) − 1)↑3) + (((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1)↑3)) + ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴))↑3))) | ||
| Theorem | 3cubeslem4 42684 | Lemma for 3cubes 42685. This is Ryley's explicit formula for decomposing a rational 𝐴 into a sum of three rational cubes. (Contributed by Igor Ieskov, 22-Jan-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ ℚ) ⇒ ⊢ (𝜑 → 𝐴 = (((((((3↑3) · (𝐴↑3)) − 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3) + ((((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3)) + (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3))) | ||
| Theorem | 3cubes 42685* | Every rational number is a sum of three rational cubes. See S. Ryley, The Ladies' Diary 122 (1825), 35. (Contributed by Igor Ieskov, 22-Jan-2024.) |
| ⊢ (𝐴 ∈ ℚ ↔ ∃𝑎 ∈ ℚ ∃𝑏 ∈ ℚ ∃𝑐 ∈ ℚ 𝐴 = (((𝑎↑3) + (𝑏↑3)) + (𝑐↑3))) | ||
| Theorem | rntrclfvOAI 42686 | The range of the transitive closure is equal to the range of the relation. (Contributed by OpenAI, 7-Jul-2020.) |
| ⊢ (𝑅 ∈ 𝑉 → ran (t+‘𝑅) = ran 𝑅) | ||
| Theorem | moxfr 42687* | Transfer at-most-one between related expressions. (Contributed by Stefan O'Rear, 12-Feb-2015.) |
| ⊢ 𝐴 ∈ V & ⊢ ∃!𝑦 𝑥 = 𝐴 & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃*𝑥𝜑 ↔ ∃*𝑦𝜓) | ||
| Theorem | imaiinfv 42688* | Indexed intersection of an image. (Contributed by Stefan O'Rear, 22-Feb-2015.) |
| ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → ∩ 𝑥 ∈ 𝐵 (𝐹‘𝑥) = ∩ (𝐹 “ 𝐵)) | ||
| Theorem | elrfi 42689* | Elementhood in a set of relative finite intersections. (Contributed by Stefan O'Rear, 22-Feb-2015.) |
| ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ⊆ 𝒫 𝐵) → (𝐴 ∈ (fi‘({𝐵} ∪ 𝐶)) ↔ ∃𝑣 ∈ (𝒫 𝐶 ∩ Fin)𝐴 = (𝐵 ∩ ∩ 𝑣))) | ||
| Theorem | elrfirn 42690* | Elementhood in a set of relative finite intersections of an indexed family of sets. (Contributed by Stefan O'Rear, 22-Feb-2015.) |
| ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐹:𝐼⟶𝒫 𝐵) → (𝐴 ∈ (fi‘({𝐵} ∪ ran 𝐹)) ↔ ∃𝑣 ∈ (𝒫 𝐼 ∩ Fin)𝐴 = (𝐵 ∩ ∩ 𝑦 ∈ 𝑣 (𝐹‘𝑦)))) | ||
| Theorem | elrfirn2 42691* | Elementhood in a set of relative finite intersections of an indexed family of sets (implicit). (Contributed by Stefan O'Rear, 22-Feb-2015.) |
| ⊢ ((𝐵 ∈ 𝑉 ∧ ∀𝑦 ∈ 𝐼 𝐶 ⊆ 𝐵) → (𝐴 ∈ (fi‘({𝐵} ∪ ran (𝑦 ∈ 𝐼 ↦ 𝐶))) ↔ ∃𝑣 ∈ (𝒫 𝐼 ∩ Fin)𝐴 = (𝐵 ∩ ∩ 𝑦 ∈ 𝑣 𝐶))) | ||
| Theorem | cmpfiiin 42692* | In a compact topology, a system of closed sets with nonempty finite intersections has a nonempty intersection. (Contributed by Stefan O'Rear, 22-Feb-2015.) |
| ⊢ 𝑋 = ∪ 𝐽 & ⊢ (𝜑 → 𝐽 ∈ Comp) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → 𝑆 ∈ (Clsd‘𝐽)) & ⊢ ((𝜑 ∧ (𝑙 ⊆ 𝐼 ∧ 𝑙 ∈ Fin)) → (𝑋 ∩ ∩ 𝑘 ∈ 𝑙 𝑆) ≠ ∅) ⇒ ⊢ (𝜑 → (𝑋 ∩ ∩ 𝑘 ∈ 𝐼 𝑆) ≠ ∅) | ||
| Theorem | ismrcd1 42693* | Any function from the subsets of a set to itself, which is extensive (satisfies mrcssid 17585), isotone (satisfies mrcss 17584), and idempotent (satisfies mrcidm 17587) has a collection of fixed points which is a Moore collection, and itself is the closure operator for that collection. This can be taken as an alternate definition for the closure operators. This is the first half, ismrcd2 42694 is the second. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
| ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝒫 𝐵⟶𝒫 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ⊆ 𝐵) → 𝑥 ⊆ (𝐹‘𝑥)) & ⊢ ((𝜑 ∧ 𝑥 ⊆ 𝐵 ∧ 𝑦 ⊆ 𝑥) → (𝐹‘𝑦) ⊆ (𝐹‘𝑥)) & ⊢ ((𝜑 ∧ 𝑥 ⊆ 𝐵) → (𝐹‘(𝐹‘𝑥)) = (𝐹‘𝑥)) ⇒ ⊢ (𝜑 → dom (𝐹 ∩ I ) ∈ (Moore‘𝐵)) | ||
| Theorem | ismrcd2 42694* | Second half of ismrcd1 42693. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
| ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝒫 𝐵⟶𝒫 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ⊆ 𝐵) → 𝑥 ⊆ (𝐹‘𝑥)) & ⊢ ((𝜑 ∧ 𝑥 ⊆ 𝐵 ∧ 𝑦 ⊆ 𝑥) → (𝐹‘𝑦) ⊆ (𝐹‘𝑥)) & ⊢ ((𝜑 ∧ 𝑥 ⊆ 𝐵) → (𝐹‘(𝐹‘𝑥)) = (𝐹‘𝑥)) ⇒ ⊢ (𝜑 → 𝐹 = (mrCls‘dom (𝐹 ∩ I ))) | ||
| Theorem | istopclsd 42695* | A closure function which satisfies sscls 22950, clsidm 22961, cls0 22974, and clsun 36323 defines a (unique) topology which it is the closure function on. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
| ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝒫 𝐵⟶𝒫 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ⊆ 𝐵) → 𝑥 ⊆ (𝐹‘𝑥)) & ⊢ ((𝜑 ∧ 𝑥 ⊆ 𝐵) → (𝐹‘(𝐹‘𝑥)) = (𝐹‘𝑥)) & ⊢ (𝜑 → (𝐹‘∅) = ∅) & ⊢ ((𝜑 ∧ 𝑥 ⊆ 𝐵 ∧ 𝑦 ⊆ 𝐵) → (𝐹‘(𝑥 ∪ 𝑦)) = ((𝐹‘𝑥) ∪ (𝐹‘𝑦))) & ⊢ 𝐽 = {𝑧 ∈ 𝒫 𝐵 ∣ (𝐹‘(𝐵 ∖ 𝑧)) = (𝐵 ∖ 𝑧)} ⇒ ⊢ (𝜑 → (𝐽 ∈ (TopOn‘𝐵) ∧ (cls‘𝐽) = 𝐹)) | ||
| Theorem | ismrc 42696* | A function is a Moore closure operator iff it satisfies mrcssid 17585, mrcss 17584, and mrcidm 17587. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
| ⊢ (𝐹 ∈ (mrCls “ (Moore‘𝐵)) ↔ (𝐵 ∈ V ∧ 𝐹:𝒫 𝐵⟶𝒫 𝐵 ∧ ∀𝑥∀𝑦((𝑥 ⊆ 𝐵 ∧ 𝑦 ⊆ 𝑥) → (𝑥 ⊆ (𝐹‘𝑥) ∧ (𝐹‘𝑦) ⊆ (𝐹‘𝑥) ∧ (𝐹‘(𝐹‘𝑥)) = (𝐹‘𝑥))))) | ||
| Syntax | cnacs 42697 | Class of Noetherian closure systems. |
| class NoeACS | ||
| Definition | df-nacs 42698* | Define a closure system of Noetherian type (not standard terminology) as an algebraic system where all closed sets are finitely generated. (Contributed by Stefan O'Rear, 4-Apr-2015.) |
| ⊢ NoeACS = (𝑥 ∈ V ↦ {𝑐 ∈ (ACS‘𝑥) ∣ ∀𝑠 ∈ 𝑐 ∃𝑔 ∈ (𝒫 𝑥 ∩ Fin)𝑠 = ((mrCls‘𝑐)‘𝑔)}) | ||
| Theorem | isnacs 42699* | Expand definition of Noetherian-type closure system. (Contributed by Stefan O'Rear, 4-Apr-2015.) |
| ⊢ 𝐹 = (mrCls‘𝐶) ⇒ ⊢ (𝐶 ∈ (NoeACS‘𝑋) ↔ (𝐶 ∈ (ACS‘𝑋) ∧ ∀𝑠 ∈ 𝐶 ∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑠 = (𝐹‘𝑔))) | ||
| Theorem | nacsfg 42700* | In a Noetherian-type closure system, all closed sets are finitely generated. (Contributed by Stefan O'Rear, 4-Apr-2015.) |
| ⊢ 𝐹 = (mrCls‘𝐶) ⇒ ⊢ ((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑆 ∈ 𝐶) → ∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑆 = (𝐹‘𝑔)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |