| Metamath
Proof Explorer Theorem List (p. 427 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30880) |
(30881-32403) |
(32404-49791) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | 0prjspn 42601 | A zero-dimensional projective space has only 1 point. (Contributed by Steven Nguyen, 9-Jun-2023.) |
| ⊢ 𝑊 = (𝐾 freeLMod (0...0)) & ⊢ 𝐵 = ((Base‘𝑊) ∖ {(0g‘𝑊)}) ⇒ ⊢ (𝐾 ∈ DivRing → (0ℙ𝕣𝕠𝕛n𝐾) = {𝐵}) | ||
| Syntax | cprjcrv 42602 | Extend class notation with the projective curve function. |
| class ℙ𝕣𝕠𝕛Crv | ||
| Definition | df-prjcrv 42603* | Define the projective curve function. This takes a homogeneous polynomial and outputs the homogeneous coordinates where the polynomial evaluates to zero (the "zero set"). (In other words, scalar multiples are collapsed into the same projective point. See mhphf4 42573 and prjspvs 42583). (Contributed by SN, 23-Nov-2024.) |
| ⊢ ℙ𝕣𝕠𝕛Crv = (𝑛 ∈ ℕ0, 𝑘 ∈ Field ↦ (𝑓 ∈ ∪ ran ((0...𝑛) mHomP 𝑘) ↦ {𝑝 ∈ (𝑛ℙ𝕣𝕠𝕛n𝑘) ∣ ((((0...𝑛) eval 𝑘)‘𝑓) “ 𝑝) = {(0g‘𝑘)}})) | ||
| Theorem | prjcrvfval 42604* | Value of the projective curve function. (Contributed by SN, 23-Nov-2024.) |
| ⊢ 𝐻 = ((0...𝑁) mHomP 𝐾) & ⊢ 𝐸 = ((0...𝑁) eval 𝐾) & ⊢ 𝑃 = (𝑁ℙ𝕣𝕠𝕛n𝐾) & ⊢ 0 = (0g‘𝐾) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐾 ∈ Field) ⇒ ⊢ (𝜑 → (𝑁ℙ𝕣𝕠𝕛Crv𝐾) = (𝑓 ∈ ∪ ran 𝐻 ↦ {𝑝 ∈ 𝑃 ∣ ((𝐸‘𝑓) “ 𝑝) = { 0 }})) | ||
| Theorem | prjcrvval 42605* | Value of the projective curve function. (Contributed by SN, 23-Nov-2024.) |
| ⊢ 𝐻 = ((0...𝑁) mHomP 𝐾) & ⊢ 𝐸 = ((0...𝑁) eval 𝐾) & ⊢ 𝑃 = (𝑁ℙ𝕣𝕠𝕛n𝐾) & ⊢ 0 = (0g‘𝐾) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐾 ∈ Field) & ⊢ (𝜑 → 𝐹 ∈ ∪ ran 𝐻) ⇒ ⊢ (𝜑 → ((𝑁ℙ𝕣𝕠𝕛Crv𝐾)‘𝐹) = {𝑝 ∈ 𝑃 ∣ ((𝐸‘𝐹) “ 𝑝) = { 0 }}) | ||
| Theorem | prjcrv0 42606 | The "curve" (zero set) corresponding to the zero polynomial contains all coordinates. (Contributed by SN, 23-Nov-2024.) |
| ⊢ 𝑌 = ((0...𝑁) mPoly 𝐾) & ⊢ 0 = (0g‘𝑌) & ⊢ 𝑃 = (𝑁ℙ𝕣𝕠𝕛n𝐾) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐾 ∈ Field) ⇒ ⊢ (𝜑 → ((𝑁ℙ𝕣𝕠𝕛Crv𝐾)‘ 0 ) = 𝑃) | ||
| Theorem | dffltz 42607* | Fermat's Last Theorem (FLT) for nonzero integers is equivalent to the original scope of natural numbers. The backwards direction takes (𝑎↑𝑛) + (𝑏↑𝑛) = (𝑐↑𝑛), and adds the negative of any negative term to both sides, thus creating the corresponding equation with only positive integers. There are six combinations of negativity, so the proof is particularly long. (Contributed by Steven Nguyen, 27-Feb-2023.) |
| ⊢ (∀𝑛 ∈ (ℤ≥‘3)∀𝑥 ∈ ℕ ∀𝑦 ∈ ℕ ∀𝑧 ∈ ℕ ((𝑥↑𝑛) + (𝑦↑𝑛)) ≠ (𝑧↑𝑛) ↔ ∀𝑛 ∈ (ℤ≥‘3)∀𝑎 ∈ (ℤ ∖ {0})∀𝑏 ∈ (ℤ ∖ {0})∀𝑐 ∈ (ℤ ∖ {0})((𝑎↑𝑛) + (𝑏↑𝑛)) ≠ (𝑐↑𝑛)) | ||
| Theorem | fltmul 42608 | A counterexample to FLT stays valid when scaled. The hypotheses are more general than they need to be for convenience. (There does not seem to be a standard term for Fermat or Pythagorean triples extended to any 𝑁 ∈ ℕ0, so the label is more about the context in which this theorem is used). (Contributed by SN, 20-Aug-2024.) |
| ⊢ (𝜑 → 𝑆 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → ((𝐴↑𝑁) + (𝐵↑𝑁)) = (𝐶↑𝑁)) ⇒ ⊢ (𝜑 → (((𝑆 · 𝐴)↑𝑁) + ((𝑆 · 𝐵)↑𝑁)) = ((𝑆 · 𝐶)↑𝑁)) | ||
| Theorem | fltdiv 42609 | A counterexample to FLT stays valid when scaled. The hypotheses are more general than they need to be for convenience. (Contributed by SN, 20-Aug-2024.) |
| ⊢ (𝜑 → 𝑆 ∈ ℂ) & ⊢ (𝜑 → 𝑆 ≠ 0) & ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → ((𝐴↑𝑁) + (𝐵↑𝑁)) = (𝐶↑𝑁)) ⇒ ⊢ (𝜑 → (((𝐴 / 𝑆)↑𝑁) + ((𝐵 / 𝑆)↑𝑁)) = ((𝐶 / 𝑆)↑𝑁)) | ||
| Theorem | flt0 42610 | A counterexample for FLT does not exist for 𝑁 = 0. (Contributed by SN, 20-Aug-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → ((𝐴↑𝑁) + (𝐵↑𝑁)) = (𝐶↑𝑁)) ⇒ ⊢ (𝜑 → 𝑁 ∈ ℕ) | ||
| Theorem | fltdvdsabdvdsc 42611 | Any factor of both 𝐴 and 𝐵 also divides 𝐶. This establishes the validity of fltabcoprmex 42612. (Contributed by SN, 21-Aug-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ ℕ) & ⊢ (𝜑 → 𝐶 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → ((𝐴↑𝑁) + (𝐵↑𝑁)) = (𝐶↑𝑁)) ⇒ ⊢ (𝜑 → (𝐴 gcd 𝐵) ∥ 𝐶) | ||
| Theorem | fltabcoprmex 42612 | A counterexample to FLT implies a counterexample to FLT with 𝐴, 𝐵 (assigned to 𝐴 / (𝐴 gcd 𝐵) and 𝐵 / (𝐴 gcd 𝐵)) coprime (by divgcdcoprm0 16594). (Contributed by SN, 20-Aug-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ ℕ) & ⊢ (𝜑 → 𝐶 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → ((𝐴↑𝑁) + (𝐵↑𝑁)) = (𝐶↑𝑁)) ⇒ ⊢ (𝜑 → (((𝐴 / (𝐴 gcd 𝐵))↑𝑁) + ((𝐵 / (𝐴 gcd 𝐵))↑𝑁)) = ((𝐶 / (𝐴 gcd 𝐵))↑𝑁)) | ||
| Theorem | fltaccoprm 42613 | A counterexample to FLT with 𝐴, 𝐵 coprime also has 𝐴, 𝐶 coprime. (Contributed by SN, 20-Aug-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ ℕ) & ⊢ (𝜑 → 𝐶 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → ((𝐴↑𝑁) + (𝐵↑𝑁)) = (𝐶↑𝑁)) & ⊢ (𝜑 → (𝐴 gcd 𝐵) = 1) ⇒ ⊢ (𝜑 → (𝐴 gcd 𝐶) = 1) | ||
| Theorem | fltbccoprm 42614 | A counterexample to FLT with 𝐴, 𝐵 coprime also has 𝐵, 𝐶 coprime. Proven from fltaccoprm 42613 using commutativity of addition. (Contributed by SN, 20-Aug-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ ℕ) & ⊢ (𝜑 → 𝐶 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → ((𝐴↑𝑁) + (𝐵↑𝑁)) = (𝐶↑𝑁)) & ⊢ (𝜑 → (𝐴 gcd 𝐵) = 1) ⇒ ⊢ (𝜑 → (𝐵 gcd 𝐶) = 1) | ||
| Theorem | fltabcoprm 42615 | A counterexample to FLT with 𝐴, 𝐶 coprime also has 𝐴, 𝐵 coprime. Converse of fltaccoprm 42613. (Contributed by SN, 22-Aug-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ ℕ) & ⊢ (𝜑 → 𝐶 ∈ ℕ) & ⊢ (𝜑 → (𝐴 gcd 𝐶) = 1) & ⊢ (𝜑 → ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)) ⇒ ⊢ (𝜑 → (𝐴 gcd 𝐵) = 1) | ||
| Theorem | infdesc 42616* | Infinite descent. The hypotheses say that 𝑆 is lower bounded, and that if 𝜓 holds for an integer in 𝑆, it holds for a smaller integer in 𝑆. By infinite descent, eventually we cannot go any smaller, therefore 𝜓 holds for no integer in 𝑆. (Contributed by SN, 20-Aug-2024.) |
| ⊢ (𝑦 = 𝑥 → (𝜓 ↔ 𝜒)) & ⊢ (𝑦 = 𝑧 → (𝜓 ↔ 𝜃)) & ⊢ (𝜑 → 𝑆 ⊆ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝜒)) → ∃𝑧 ∈ 𝑆 (𝜃 ∧ 𝑧 < 𝑥)) ⇒ ⊢ (𝜑 → {𝑦 ∈ 𝑆 ∣ 𝜓} = ∅) | ||
| Theorem | fltne 42617 | If a counterexample to FLT exists, its addends are not equal. (Contributed by SN, 1-Jun-2023.) |
| ⊢ (𝜑 → 𝐴 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ ℕ) & ⊢ (𝜑 → 𝐶 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘2)) & ⊢ (𝜑 → ((𝐴↑𝑁) + (𝐵↑𝑁)) = (𝐶↑𝑁)) ⇒ ⊢ (𝜑 → 𝐴 ≠ 𝐵) | ||
| Theorem | flt4lem 42618 | Raising a number to the fourth power is equivalent to squaring it twice. (Contributed by SN, 21-Aug-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐴↑4) = ((𝐴↑2)↑2)) | ||
| Theorem | flt4lem1 42619 | Satisfy the antecedent used in several pythagtrip 16764 lemmas, with 𝐴, 𝐶 coprime rather than 𝐴, 𝐵. (Contributed by SN, 21-Aug-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ ℕ) & ⊢ (𝜑 → 𝐶 ∈ ℕ) & ⊢ (𝜑 → ¬ 2 ∥ 𝐴) & ⊢ (𝜑 → (𝐴 gcd 𝐶) = 1) & ⊢ (𝜑 → ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)) ⇒ ⊢ (𝜑 → ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴))) | ||
| Theorem | flt4lem2 42620 | If 𝐴 is even, 𝐵 is odd. (Contributed by SN, 22-Aug-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ ℕ) & ⊢ (𝜑 → 𝐶 ∈ ℕ) & ⊢ (𝜑 → 2 ∥ 𝐴) & ⊢ (𝜑 → (𝐴 gcd 𝐶) = 1) & ⊢ (𝜑 → ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)) ⇒ ⊢ (𝜑 → ¬ 2 ∥ 𝐵) | ||
| Theorem | flt4lem3 42621 | Equivalent to pythagtriplem4 16749. Show that 𝐶 + 𝐴 and 𝐶 − 𝐴 are coprime. (Contributed by SN, 22-Aug-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ ℕ) & ⊢ (𝜑 → 𝐶 ∈ ℕ) & ⊢ (𝜑 → 2 ∥ 𝐴) & ⊢ (𝜑 → (𝐴 gcd 𝐶) = 1) & ⊢ (𝜑 → ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)) ⇒ ⊢ (𝜑 → ((𝐶 + 𝐴) gcd (𝐶 − 𝐴)) = 1) | ||
| Theorem | flt4lem4 42622 | If the product of two coprime factors is a perfect square, the factors are perfect squares. (Contributed by SN, 22-Aug-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ ℕ) & ⊢ (𝜑 → 𝐶 ∈ ℕ) & ⊢ (𝜑 → (𝐴 gcd 𝐵) = 1) & ⊢ (𝜑 → (𝐴 · 𝐵) = (𝐶↑2)) ⇒ ⊢ (𝜑 → (𝐴 = ((𝐴 gcd 𝐶)↑2) ∧ 𝐵 = ((𝐵 gcd 𝐶)↑2))) | ||
| Theorem | flt4lem5 42623 | In the context of the lemmas of pythagtrip 16764, 𝑀 and 𝑁 are coprime. (Contributed by SN, 23-Aug-2024.) |
| ⊢ 𝑀 = (((√‘(𝐶 + 𝐵)) + (√‘(𝐶 − 𝐵))) / 2) & ⊢ 𝑁 = (((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵))) / 2) ⇒ ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝑀 gcd 𝑁) = 1) | ||
| Theorem | flt4lem5elem 42624 | Version of fltaccoprm 42613 and fltbccoprm 42614 where 𝑀 is not squared. This can be proved in general for any polynomial in three variables: using prmdvdsncoprmbd 16656, dvds2addd 16221, and prmdvdsexp 16644, we can show that if two variables are coprime, the third is also coprime to the two. (Contributed by SN, 24-Aug-2024.) |
| ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑅 ∈ ℕ) & ⊢ (𝜑 → 𝑆 ∈ ℕ) & ⊢ (𝜑 → 𝑀 = ((𝑅↑2) + (𝑆↑2))) & ⊢ (𝜑 → (𝑅 gcd 𝑆) = 1) ⇒ ⊢ (𝜑 → ((𝑅 gcd 𝑀) = 1 ∧ (𝑆 gcd 𝑀) = 1)) | ||
| Theorem | flt4lem5a 42625 | Part 1 of Equation 1 of https://crypto.stanford.edu/pbc/notes/numberfield/fermatn4.html. (Contributed by SN, 22-Aug-2024.) |
| ⊢ 𝑀 = (((√‘(𝐶 + (𝐵↑2))) + (√‘(𝐶 − (𝐵↑2)))) / 2) & ⊢ 𝑁 = (((√‘(𝐶 + (𝐵↑2))) − (√‘(𝐶 − (𝐵↑2)))) / 2) & ⊢ 𝑅 = (((√‘(𝑀 + 𝑁)) + (√‘(𝑀 − 𝑁))) / 2) & ⊢ 𝑆 = (((√‘(𝑀 + 𝑁)) − (√‘(𝑀 − 𝑁))) / 2) & ⊢ (𝜑 → 𝐴 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ ℕ) & ⊢ (𝜑 → 𝐶 ∈ ℕ) & ⊢ (𝜑 → ¬ 2 ∥ 𝐴) & ⊢ (𝜑 → (𝐴 gcd 𝐶) = 1) & ⊢ (𝜑 → ((𝐴↑4) + (𝐵↑4)) = (𝐶↑2)) ⇒ ⊢ (𝜑 → ((𝐴↑2) + (𝑁↑2)) = (𝑀↑2)) | ||
| Theorem | flt4lem5b 42626 | Part 2 of Equation 1 of https://crypto.stanford.edu/pbc/notes/numberfield/fermatn4.html. (Contributed by SN, 22-Aug-2024.) |
| ⊢ 𝑀 = (((√‘(𝐶 + (𝐵↑2))) + (√‘(𝐶 − (𝐵↑2)))) / 2) & ⊢ 𝑁 = (((√‘(𝐶 + (𝐵↑2))) − (√‘(𝐶 − (𝐵↑2)))) / 2) & ⊢ 𝑅 = (((√‘(𝑀 + 𝑁)) + (√‘(𝑀 − 𝑁))) / 2) & ⊢ 𝑆 = (((√‘(𝑀 + 𝑁)) − (√‘(𝑀 − 𝑁))) / 2) & ⊢ (𝜑 → 𝐴 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ ℕ) & ⊢ (𝜑 → 𝐶 ∈ ℕ) & ⊢ (𝜑 → ¬ 2 ∥ 𝐴) & ⊢ (𝜑 → (𝐴 gcd 𝐶) = 1) & ⊢ (𝜑 → ((𝐴↑4) + (𝐵↑4)) = (𝐶↑2)) ⇒ ⊢ (𝜑 → (2 · (𝑀 · 𝑁)) = (𝐵↑2)) | ||
| Theorem | flt4lem5c 42627 | Part 2 of Equation 2 of https://crypto.stanford.edu/pbc/notes/numberfield/fermatn4.html. (Contributed by SN, 22-Aug-2024.) |
| ⊢ 𝑀 = (((√‘(𝐶 + (𝐵↑2))) + (√‘(𝐶 − (𝐵↑2)))) / 2) & ⊢ 𝑁 = (((√‘(𝐶 + (𝐵↑2))) − (√‘(𝐶 − (𝐵↑2)))) / 2) & ⊢ 𝑅 = (((√‘(𝑀 + 𝑁)) + (√‘(𝑀 − 𝑁))) / 2) & ⊢ 𝑆 = (((√‘(𝑀 + 𝑁)) − (√‘(𝑀 − 𝑁))) / 2) & ⊢ (𝜑 → 𝐴 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ ℕ) & ⊢ (𝜑 → 𝐶 ∈ ℕ) & ⊢ (𝜑 → ¬ 2 ∥ 𝐴) & ⊢ (𝜑 → (𝐴 gcd 𝐶) = 1) & ⊢ (𝜑 → ((𝐴↑4) + (𝐵↑4)) = (𝐶↑2)) ⇒ ⊢ (𝜑 → 𝑁 = (2 · (𝑅 · 𝑆))) | ||
| Theorem | flt4lem5d 42628 | Part 3 of Equation 2 of https://crypto.stanford.edu/pbc/notes/numberfield/fermatn4.html. (Contributed by SN, 23-Aug-2024.) |
| ⊢ 𝑀 = (((√‘(𝐶 + (𝐵↑2))) + (√‘(𝐶 − (𝐵↑2)))) / 2) & ⊢ 𝑁 = (((√‘(𝐶 + (𝐵↑2))) − (√‘(𝐶 − (𝐵↑2)))) / 2) & ⊢ 𝑅 = (((√‘(𝑀 + 𝑁)) + (√‘(𝑀 − 𝑁))) / 2) & ⊢ 𝑆 = (((√‘(𝑀 + 𝑁)) − (√‘(𝑀 − 𝑁))) / 2) & ⊢ (𝜑 → 𝐴 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ ℕ) & ⊢ (𝜑 → 𝐶 ∈ ℕ) & ⊢ (𝜑 → ¬ 2 ∥ 𝐴) & ⊢ (𝜑 → (𝐴 gcd 𝐶) = 1) & ⊢ (𝜑 → ((𝐴↑4) + (𝐵↑4)) = (𝐶↑2)) ⇒ ⊢ (𝜑 → 𝑀 = ((𝑅↑2) + (𝑆↑2))) | ||
| Theorem | flt4lem5e 42629 | Satisfy the hypotheses of flt4lem4 42622. (Contributed by SN, 23-Aug-2024.) |
| ⊢ 𝑀 = (((√‘(𝐶 + (𝐵↑2))) + (√‘(𝐶 − (𝐵↑2)))) / 2) & ⊢ 𝑁 = (((√‘(𝐶 + (𝐵↑2))) − (√‘(𝐶 − (𝐵↑2)))) / 2) & ⊢ 𝑅 = (((√‘(𝑀 + 𝑁)) + (√‘(𝑀 − 𝑁))) / 2) & ⊢ 𝑆 = (((√‘(𝑀 + 𝑁)) − (√‘(𝑀 − 𝑁))) / 2) & ⊢ (𝜑 → 𝐴 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ ℕ) & ⊢ (𝜑 → 𝐶 ∈ ℕ) & ⊢ (𝜑 → ¬ 2 ∥ 𝐴) & ⊢ (𝜑 → (𝐴 gcd 𝐶) = 1) & ⊢ (𝜑 → ((𝐴↑4) + (𝐵↑4)) = (𝐶↑2)) ⇒ ⊢ (𝜑 → (((𝑅 gcd 𝑆) = 1 ∧ (𝑅 gcd 𝑀) = 1 ∧ (𝑆 gcd 𝑀) = 1) ∧ (𝑅 ∈ ℕ ∧ 𝑆 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ ((𝑀 · (𝑅 · 𝑆)) = ((𝐵 / 2)↑2) ∧ (𝐵 / 2) ∈ ℕ))) | ||
| Theorem | flt4lem5f 42630 | Final equation of https://crypto.stanford.edu/pbc/notes/numberfield/fermatn4.html. Given 𝐴↑4 + 𝐵↑4 = 𝐶↑2, provide a smaller solution. This satisfies the infinite descent condition. (Contributed by SN, 24-Aug-2024.) |
| ⊢ 𝑀 = (((√‘(𝐶 + (𝐵↑2))) + (√‘(𝐶 − (𝐵↑2)))) / 2) & ⊢ 𝑁 = (((√‘(𝐶 + (𝐵↑2))) − (√‘(𝐶 − (𝐵↑2)))) / 2) & ⊢ 𝑅 = (((√‘(𝑀 + 𝑁)) + (√‘(𝑀 − 𝑁))) / 2) & ⊢ 𝑆 = (((√‘(𝑀 + 𝑁)) − (√‘(𝑀 − 𝑁))) / 2) & ⊢ (𝜑 → 𝐴 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ ℕ) & ⊢ (𝜑 → 𝐶 ∈ ℕ) & ⊢ (𝜑 → ¬ 2 ∥ 𝐴) & ⊢ (𝜑 → (𝐴 gcd 𝐶) = 1) & ⊢ (𝜑 → ((𝐴↑4) + (𝐵↑4)) = (𝐶↑2)) ⇒ ⊢ (𝜑 → ((𝑀 gcd (𝐵 / 2))↑2) = (((𝑅 gcd (𝐵 / 2))↑4) + ((𝑆 gcd (𝐵 / 2))↑4))) | ||
| Theorem | flt4lem6 42631 | Remove shared factors in a solution to 𝐴↑4 + 𝐵↑4 = 𝐶↑2. (Contributed by SN, 24-Jul-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ ℕ) & ⊢ (𝜑 → 𝐶 ∈ ℕ) & ⊢ (𝜑 → ((𝐴↑4) + (𝐵↑4)) = (𝐶↑2)) ⇒ ⊢ (𝜑 → (((𝐴 / (𝐴 gcd 𝐵)) ∈ ℕ ∧ (𝐵 / (𝐴 gcd 𝐵)) ∈ ℕ ∧ (𝐶 / ((𝐴 gcd 𝐵)↑2)) ∈ ℕ) ∧ (((𝐴 / (𝐴 gcd 𝐵))↑4) + ((𝐵 / (𝐴 gcd 𝐵))↑4)) = ((𝐶 / ((𝐴 gcd 𝐵)↑2))↑2))) | ||
| Theorem | flt4lem7 42632* | Convert flt4lem5f 42630 into a convenient form for nna4b4nsq 42633. TODO-SN: The change to (𝐴 gcd 𝐵) = 1 points at some inefficiency in the lemmas. (Contributed by SN, 25-Aug-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ ℕ) & ⊢ (𝜑 → 𝐶 ∈ ℕ) & ⊢ (𝜑 → ¬ 2 ∥ 𝐴) & ⊢ (𝜑 → (𝐴 gcd 𝐵) = 1) & ⊢ (𝜑 → ((𝐴↑4) + (𝐵↑4)) = (𝐶↑2)) ⇒ ⊢ (𝜑 → ∃𝑙 ∈ ℕ (∃𝑔 ∈ ℕ ∃ℎ ∈ ℕ (¬ 2 ∥ 𝑔 ∧ ((𝑔 gcd ℎ) = 1 ∧ ((𝑔↑4) + (ℎ↑4)) = (𝑙↑2))) ∧ 𝑙 < 𝐶)) | ||
| Theorem | nna4b4nsq 42633 | Strengthening of Fermat's last theorem for exponent 4, where the sum is only assumed to be a square. (Contributed by SN, 23-Aug-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ ℕ) & ⊢ (𝜑 → 𝐶 ∈ ℕ) ⇒ ⊢ (𝜑 → ((𝐴↑4) + (𝐵↑4)) ≠ (𝐶↑2)) | ||
| Theorem | fltltc 42634 | (𝐶↑𝑁) is the largest term and therefore 𝐵 < 𝐶. (Contributed by Steven Nguyen, 22-Aug-2023.) |
| ⊢ (𝜑 → 𝐴 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ ℕ) & ⊢ (𝜑 → 𝐶 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘3)) & ⊢ (𝜑 → ((𝐴↑𝑁) + (𝐵↑𝑁)) = (𝐶↑𝑁)) ⇒ ⊢ (𝜑 → 𝐵 < 𝐶) | ||
| Theorem | fltnltalem 42635 | Lemma for fltnlta 42636. A lower bound for 𝐴 based on pwdif 15793. (Contributed by Steven Nguyen, 22-Aug-2023.) |
| ⊢ (𝜑 → 𝐴 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ ℕ) & ⊢ (𝜑 → 𝐶 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘3)) & ⊢ (𝜑 → ((𝐴↑𝑁) + (𝐵↑𝑁)) = (𝐶↑𝑁)) ⇒ ⊢ (𝜑 → ((𝐶 − 𝐵) · ((𝐶↑(𝑁 − 1)) + ((𝑁 − 1) · (𝐵↑(𝑁 − 1))))) < (𝐴↑𝑁)) | ||
| Theorem | fltnlta 42636 | In a Fermat counterexample, the exponent 𝑁 is less than all three numbers (𝐴, 𝐵, and 𝐶). Note that 𝐴 < 𝐵 (hypothesis) and 𝐵 < 𝐶 (fltltc 42634). See https://youtu.be/EymVXkPWxyc 42634 for an outline. (Contributed by SN, 24-Aug-2023.) |
| ⊢ (𝜑 → 𝐴 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ ℕ) & ⊢ (𝜑 → 𝐶 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘3)) & ⊢ (𝜑 → ((𝐴↑𝑁) + (𝐵↑𝑁)) = (𝐶↑𝑁)) & ⊢ (𝜑 → 𝐴 < 𝐵) ⇒ ⊢ (𝜑 → 𝑁 < 𝐴) | ||
These theorems were added for illustration or pedagogical purposes without the intention of being used, but some may still be moved to main and used, of course. | ||
| Theorem | iddii 42637 | Version of a1ii 2 with the hypotheses switched. The first hypothesis is redundant so this theorem should not normally appear in a proof. Inference associated with idd 24. (Contributed by SN, 1-Apr-2025.) (New usage is discouraged.) |
| ⊢ 𝜑 & ⊢ 𝜓 ⇒ ⊢ 𝜓 | ||
| Theorem | bicomdALT 42638 | Alternate proof of bicomd 223 which is shorter after expanding all parent theorems (as of 8-Aug-2024, bicom 222 depends on bicom1 221 and sylib 218 depends on syl 17). Additionally, the labels bicom1 221 and syl 17 happen to contain fewer characters than bicom 222 and sylib 218. However, neither of these conditions count as a shortening according to conventions 30362. In the first case, the criteria could easily be broken by upstream changes, and in many cases the upstream dependency tree is nontrivial (see orass 921 and pm2.31 922). For the latter case, theorem labels are up to revision, so they are not counted in the size of a proof. (Contributed by SN, 21-May-2022.) (New usage is discouraged.) (Proof modification is discouraged.) |
| ⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (𝜒 ↔ 𝜓)) | ||
| Theorem | alan 42639 | Alias for 19.26 1870 for easier lookup. (Contributed by SN, 12-Aug-2025.) (New usage is discouraged.) |
| ⊢ (∀𝑥(𝜑 ∧ 𝜓) ↔ (∀𝑥𝜑 ∧ ∀𝑥𝜓)) | ||
| Theorem | exor 42640 | Alias for 19.43 1882 for easier lookup. (Contributed by SN, 5-Jul-2025.) (New usage is discouraged.) |
| ⊢ (∃𝑥(𝜑 ∨ 𝜓) ↔ (∃𝑥𝜑 ∨ ∃𝑥𝜓)) | ||
| Theorem | rexor 42641 | Alias for r19.43 3097 for easier lookup. (Contributed by SN, 5-Jul-2025.) (New usage is discouraged.) |
| ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∨ 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 ∨ ∃𝑥 ∈ 𝐴 𝜓)) | ||
| Theorem | ruvALT 42642 | Alternate proof of ruv 9516 with one fewer syntax step thanks to using elirrv 9508 instead of elirr 9510. However, it does not change the compressed proof size or the number of symbols in the generated display, so it is not considered a shortening according to conventions 30362. (Contributed by SN, 1-Sep-2024.) (New usage is discouraged.) (Proof modification is discouraged.) |
| ⊢ {𝑥 ∣ 𝑥 ∉ 𝑥} = V | ||
| Theorem | sn-wcdeq 42643 | Alternative to wcdeq 3725 and df-cdeq 3726. This flattens the syntax representation ( wi ( weq vx vy ) wph ) to ( sn-wcdeq vx vy wph ), illustrating the comment of df-cdeq 3726. (Contributed by SN, 26-Sep-2024.) (New usage is discouraged.) |
| wff (𝑥 = 𝑦 → 𝜑) | ||
| Theorem | sq45 42644 | 45 squared is 2025. (Contributed by SN, 30-Mar-2025.) |
| ⊢ (;45↑2) = ;;;2025 | ||
| Theorem | sum9cubes 42645 | The sum of the first nine perfect cubes is 2025. (Contributed by SN, 30-Mar-2025.) |
| ⊢ Σ𝑘 ∈ (1...9)(𝑘↑3) = ;;;2025 | ||
| Theorem | sn-isghm 42646* | Longer proof of isghm 19112, unsuccessfully attempting to simplify isghm 19112 using elovmpo 7598 according to an editorial note (now removed). (Contributed by SN, 7-Jun-2025.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝑋 = (Base‘𝑆) & ⊢ 𝑌 = (Base‘𝑇) & ⊢ + = (+g‘𝑆) & ⊢ ⨣ = (+g‘𝑇) ⇒ ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) ↔ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) ∧ (𝐹:𝑋⟶𝑌 ∧ ∀𝑢 ∈ 𝑋 ∀𝑣 ∈ 𝑋 (𝐹‘(𝑢 + 𝑣)) = ((𝐹‘𝑢) ⨣ (𝐹‘𝑣))))) | ||
| Theorem | aprilfools2025 42647 | An abuse of notation. (Contributed by Prof. Loof Lirpa, 1-Apr-2025.) (New usage is discouraged.) (Proof modification is discouraged.) |
| ⊢ {〈“𝐴𝑝𝑟𝑖𝑙”〉, 〈“𝑓𝑜𝑜𝑙𝑠!”〉} ∈ V | ||
It is known that ax-10 2142, ax-11 2158, and ax-12 2178 are logically redundant in a weak sense. Practically, they can be replaced with hbn1w 2047, alcomimw 2043, and ax12wlem 2133 as long as you can fully substitute 𝑦 for 𝑥 in the relevant wff (that is, 𝑥 cannot appear in the wff after substituting). This strategy (which I will call a "standard replacement" of axioms) has a lot of potential, for example it works with df-fv 6494 and df-mpt 5177, two very common constructions. But doing a standard replacement of ax-10 2142, ax-11 2158, and ax-12 2178 takes unsatisfyingly long. Usually, if another approach is found, that approach is shorter and better. | ||
| Theorem | nfa1w 42648* | Replace ax-10 2142 in nfa1 2152 with a substitution hypothesis. (Contributed by SN, 2-Sep-2025.) |
| ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ Ⅎ𝑥∀𝑥𝜑 | ||
| Theorem | eu6w 42649* | Replace ax-10 2142, ax-12 2178 in eu6 2567 with substitution hypotheses. (Contributed by SN, 27-May-2025.) |
| ⊢ (𝑥 = 𝑧 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜃)) ⇒ ⊢ (∃!𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) | ||
| Theorem | abbibw 42650* | Replace ax-10 2142, ax-11 2158, ax-12 2178 in abbib 2798 with substitution hypotheses. (Contributed by SN, 27-May-2025.) |
| ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜃)) & ⊢ (𝑥 = 𝑦 → (𝜓 ↔ 𝜒)) ⇒ ⊢ ({𝑥 ∣ 𝜑} = {𝑥 ∣ 𝜓} ↔ ∀𝑥(𝜑 ↔ 𝜓)) | ||
| Theorem | absnw 42651* | Replace ax-10 2142, ax-11 2158, ax-12 2178 in absn 4599 with a substitution hypothesis. (Contributed by SN, 27-May-2025.) |
| ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ ({𝑥 ∣ 𝜑} = {𝑌} ↔ ∀𝑥(𝜑 ↔ 𝑥 = 𝑌)) | ||
| Theorem | euabsn2w 42652* | Replace ax-10 2142, ax-11 2158, ax-12 2178 in euabsn2 4679 with substitution hypotheses. (Contributed by SN, 27-May-2025.) |
| ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑧 → (𝜑 ↔ 𝜃)) ⇒ ⊢ (∃!𝑥𝜑 ↔ ∃𝑦{𝑥 ∣ 𝜑} = {𝑦}) | ||
| Theorem | sn-tz6.12-2 42653* | tz6.12-2 6814 without ax-10 2142, ax-11 2158, ax-12 2178. Improves 118 theorems. (Contributed by SN, 27-May-2025.) |
| ⊢ (¬ ∃!𝑥 𝐴𝐹𝑥 → (𝐹‘𝐴) = ∅) | ||
| Theorem | cu3addd 42654 | Cube of sum of three numbers. (Contributed by Igor Ieskov, 14-Dec-2023.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → (((𝐴 + 𝐵) + 𝐶)↑3) = (((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) + (((3 · ((𝐴↑2) · 𝐶)) + (((3 · 2) · (𝐴 · 𝐵)) · 𝐶)) + (3 · ((𝐵↑2) · 𝐶)))) + (((3 · (𝐴 · (𝐶↑2))) + (3 · (𝐵 · (𝐶↑2)))) + (𝐶↑3)))) | ||
| Theorem | negexpidd 42655 | The sum of a real number to the power of N and the negative of the number to the power of N equals zero if N is a nonnegative odd integer. (Contributed by Igor Ieskov, 21-Jan-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → ¬ 2 ∥ 𝑁) ⇒ ⊢ (𝜑 → ((𝐴↑𝑁) + (-𝐴↑𝑁)) = 0) | ||
| Theorem | rexlimdv3d 42656* | An extended version of rexlimdvv 3185 to include three set variables. (Contributed by Igor Ieskov, 21-Jan-2024.) |
| ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶) → (𝜓 → 𝜒))) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐶 𝜓 → 𝜒)) | ||
| Theorem | 3cubeslem1 42657 | Lemma for 3cubes 42663. (Contributed by Igor Ieskov, 22-Jan-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ ℚ) ⇒ ⊢ (𝜑 → 0 < (((𝐴 + 1)↑2) − 𝐴)) | ||
| Theorem | 3cubeslem2 42658 | Lemma for 3cubes 42663. Used to show that the denominators in 3cubeslem4 42662 are nonzero. (Contributed by Igor Ieskov, 22-Jan-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ ℚ) ⇒ ⊢ (𝜑 → ¬ ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3) = 0) | ||
| Theorem | 3cubeslem3l 42659 | Lemma for 3cubes 42663. (Contributed by Igor Ieskov, 22-Jan-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ ℚ) ⇒ ⊢ (𝜑 → (𝐴 · (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3)) = (((𝐴↑7) · (3↑9)) + (((𝐴↑6) · (3↑9)) + (((𝐴↑5) · ((3↑8) + (3↑8))) + (((𝐴↑4) · (((3↑7) · 2) + (3↑6))) + (((𝐴↑3) · ((3↑6) + (3↑6))) + (((𝐴↑2) · (3↑5)) + (𝐴 · (3↑3))))))))) | ||
| Theorem | 3cubeslem3r 42660 | Lemma for 3cubes 42663. (Contributed by Igor Ieskov, 22-Jan-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ ℚ) ⇒ ⊢ (𝜑 → ((((((3↑3) · (𝐴↑3)) − 1)↑3) + (((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1)↑3)) + ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴))↑3)) = (((𝐴↑7) · (3↑9)) + (((𝐴↑6) · (3↑9)) + (((𝐴↑5) · ((3↑8) + (3↑8))) + (((𝐴↑4) · (((3↑7) · 2) + (3↑6))) + (((𝐴↑3) · ((3↑6) + (3↑6))) + (((𝐴↑2) · (3↑5)) + (𝐴 · (3↑3))))))))) | ||
| Theorem | 3cubeslem3 42661 | Lemma for 3cubes 42663. (Contributed by Igor Ieskov, 22-Jan-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ ℚ) ⇒ ⊢ (𝜑 → (𝐴 · (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)↑3)) = ((((((3↑3) · (𝐴↑3)) − 1)↑3) + (((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1)↑3)) + ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴))↑3))) | ||
| Theorem | 3cubeslem4 42662 | Lemma for 3cubes 42663. This is Ryley's explicit formula for decomposing a rational 𝐴 into a sum of three rational cubes. (Contributed by Igor Ieskov, 22-Jan-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ ℚ) ⇒ ⊢ (𝜑 → 𝐴 = (((((((3↑3) · (𝐴↑3)) − 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3) + ((((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3)) + (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3))) | ||
| Theorem | 3cubes 42663* | Every rational number is a sum of three rational cubes. See S. Ryley, The Ladies' Diary 122 (1825), 35. (Contributed by Igor Ieskov, 22-Jan-2024.) |
| ⊢ (𝐴 ∈ ℚ ↔ ∃𝑎 ∈ ℚ ∃𝑏 ∈ ℚ ∃𝑐 ∈ ℚ 𝐴 = (((𝑎↑3) + (𝑏↑3)) + (𝑐↑3))) | ||
| Theorem | rntrclfvOAI 42664 | The range of the transitive closure is equal to the range of the relation. (Contributed by OpenAI, 7-Jul-2020.) |
| ⊢ (𝑅 ∈ 𝑉 → ran (t+‘𝑅) = ran 𝑅) | ||
| Theorem | moxfr 42665* | Transfer at-most-one between related expressions. (Contributed by Stefan O'Rear, 12-Feb-2015.) |
| ⊢ 𝐴 ∈ V & ⊢ ∃!𝑦 𝑥 = 𝐴 & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃*𝑥𝜑 ↔ ∃*𝑦𝜓) | ||
| Theorem | imaiinfv 42666* | Indexed intersection of an image. (Contributed by Stefan O'Rear, 22-Feb-2015.) |
| ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → ∩ 𝑥 ∈ 𝐵 (𝐹‘𝑥) = ∩ (𝐹 “ 𝐵)) | ||
| Theorem | elrfi 42667* | Elementhood in a set of relative finite intersections. (Contributed by Stefan O'Rear, 22-Feb-2015.) |
| ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ⊆ 𝒫 𝐵) → (𝐴 ∈ (fi‘({𝐵} ∪ 𝐶)) ↔ ∃𝑣 ∈ (𝒫 𝐶 ∩ Fin)𝐴 = (𝐵 ∩ ∩ 𝑣))) | ||
| Theorem | elrfirn 42668* | Elementhood in a set of relative finite intersections of an indexed family of sets. (Contributed by Stefan O'Rear, 22-Feb-2015.) |
| ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐹:𝐼⟶𝒫 𝐵) → (𝐴 ∈ (fi‘({𝐵} ∪ ran 𝐹)) ↔ ∃𝑣 ∈ (𝒫 𝐼 ∩ Fin)𝐴 = (𝐵 ∩ ∩ 𝑦 ∈ 𝑣 (𝐹‘𝑦)))) | ||
| Theorem | elrfirn2 42669* | Elementhood in a set of relative finite intersections of an indexed family of sets (implicit). (Contributed by Stefan O'Rear, 22-Feb-2015.) |
| ⊢ ((𝐵 ∈ 𝑉 ∧ ∀𝑦 ∈ 𝐼 𝐶 ⊆ 𝐵) → (𝐴 ∈ (fi‘({𝐵} ∪ ran (𝑦 ∈ 𝐼 ↦ 𝐶))) ↔ ∃𝑣 ∈ (𝒫 𝐼 ∩ Fin)𝐴 = (𝐵 ∩ ∩ 𝑦 ∈ 𝑣 𝐶))) | ||
| Theorem | cmpfiiin 42670* | In a compact topology, a system of closed sets with nonempty finite intersections has a nonempty intersection. (Contributed by Stefan O'Rear, 22-Feb-2015.) |
| ⊢ 𝑋 = ∪ 𝐽 & ⊢ (𝜑 → 𝐽 ∈ Comp) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → 𝑆 ∈ (Clsd‘𝐽)) & ⊢ ((𝜑 ∧ (𝑙 ⊆ 𝐼 ∧ 𝑙 ∈ Fin)) → (𝑋 ∩ ∩ 𝑘 ∈ 𝑙 𝑆) ≠ ∅) ⇒ ⊢ (𝜑 → (𝑋 ∩ ∩ 𝑘 ∈ 𝐼 𝑆) ≠ ∅) | ||
| Theorem | ismrcd1 42671* | Any function from the subsets of a set to itself, which is extensive (satisfies mrcssid 17541), isotone (satisfies mrcss 17540), and idempotent (satisfies mrcidm 17543) has a collection of fixed points which is a Moore collection, and itself is the closure operator for that collection. This can be taken as an alternate definition for the closure operators. This is the first half, ismrcd2 42672 is the second. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
| ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝒫 𝐵⟶𝒫 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ⊆ 𝐵) → 𝑥 ⊆ (𝐹‘𝑥)) & ⊢ ((𝜑 ∧ 𝑥 ⊆ 𝐵 ∧ 𝑦 ⊆ 𝑥) → (𝐹‘𝑦) ⊆ (𝐹‘𝑥)) & ⊢ ((𝜑 ∧ 𝑥 ⊆ 𝐵) → (𝐹‘(𝐹‘𝑥)) = (𝐹‘𝑥)) ⇒ ⊢ (𝜑 → dom (𝐹 ∩ I ) ∈ (Moore‘𝐵)) | ||
| Theorem | ismrcd2 42672* | Second half of ismrcd1 42671. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
| ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝒫 𝐵⟶𝒫 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ⊆ 𝐵) → 𝑥 ⊆ (𝐹‘𝑥)) & ⊢ ((𝜑 ∧ 𝑥 ⊆ 𝐵 ∧ 𝑦 ⊆ 𝑥) → (𝐹‘𝑦) ⊆ (𝐹‘𝑥)) & ⊢ ((𝜑 ∧ 𝑥 ⊆ 𝐵) → (𝐹‘(𝐹‘𝑥)) = (𝐹‘𝑥)) ⇒ ⊢ (𝜑 → 𝐹 = (mrCls‘dom (𝐹 ∩ I ))) | ||
| Theorem | istopclsd 42673* | A closure function which satisfies sscls 22959, clsidm 22970, cls0 22983, and clsun 36301 defines a (unique) topology which it is the closure function on. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
| ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝒫 𝐵⟶𝒫 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ⊆ 𝐵) → 𝑥 ⊆ (𝐹‘𝑥)) & ⊢ ((𝜑 ∧ 𝑥 ⊆ 𝐵) → (𝐹‘(𝐹‘𝑥)) = (𝐹‘𝑥)) & ⊢ (𝜑 → (𝐹‘∅) = ∅) & ⊢ ((𝜑 ∧ 𝑥 ⊆ 𝐵 ∧ 𝑦 ⊆ 𝐵) → (𝐹‘(𝑥 ∪ 𝑦)) = ((𝐹‘𝑥) ∪ (𝐹‘𝑦))) & ⊢ 𝐽 = {𝑧 ∈ 𝒫 𝐵 ∣ (𝐹‘(𝐵 ∖ 𝑧)) = (𝐵 ∖ 𝑧)} ⇒ ⊢ (𝜑 → (𝐽 ∈ (TopOn‘𝐵) ∧ (cls‘𝐽) = 𝐹)) | ||
| Theorem | ismrc 42674* | A function is a Moore closure operator iff it satisfies mrcssid 17541, mrcss 17540, and mrcidm 17543. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
| ⊢ (𝐹 ∈ (mrCls “ (Moore‘𝐵)) ↔ (𝐵 ∈ V ∧ 𝐹:𝒫 𝐵⟶𝒫 𝐵 ∧ ∀𝑥∀𝑦((𝑥 ⊆ 𝐵 ∧ 𝑦 ⊆ 𝑥) → (𝑥 ⊆ (𝐹‘𝑥) ∧ (𝐹‘𝑦) ⊆ (𝐹‘𝑥) ∧ (𝐹‘(𝐹‘𝑥)) = (𝐹‘𝑥))))) | ||
| Syntax | cnacs 42675 | Class of Noetherian closure systems. |
| class NoeACS | ||
| Definition | df-nacs 42676* | Define a closure system of Noetherian type (not standard terminology) as an algebraic system where all closed sets are finitely generated. (Contributed by Stefan O'Rear, 4-Apr-2015.) |
| ⊢ NoeACS = (𝑥 ∈ V ↦ {𝑐 ∈ (ACS‘𝑥) ∣ ∀𝑠 ∈ 𝑐 ∃𝑔 ∈ (𝒫 𝑥 ∩ Fin)𝑠 = ((mrCls‘𝑐)‘𝑔)}) | ||
| Theorem | isnacs 42677* | Expand definition of Noetherian-type closure system. (Contributed by Stefan O'Rear, 4-Apr-2015.) |
| ⊢ 𝐹 = (mrCls‘𝐶) ⇒ ⊢ (𝐶 ∈ (NoeACS‘𝑋) ↔ (𝐶 ∈ (ACS‘𝑋) ∧ ∀𝑠 ∈ 𝐶 ∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑠 = (𝐹‘𝑔))) | ||
| Theorem | nacsfg 42678* | In a Noetherian-type closure system, all closed sets are finitely generated. (Contributed by Stefan O'Rear, 4-Apr-2015.) |
| ⊢ 𝐹 = (mrCls‘𝐶) ⇒ ⊢ ((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝑆 ∈ 𝐶) → ∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑆 = (𝐹‘𝑔)) | ||
| Theorem | isnacs2 42679 | Express Noetherian-type closure system with fewer quantifiers. (Contributed by Stefan O'Rear, 4-Apr-2015.) |
| ⊢ 𝐹 = (mrCls‘𝐶) ⇒ ⊢ (𝐶 ∈ (NoeACS‘𝑋) ↔ (𝐶 ∈ (ACS‘𝑋) ∧ (𝐹 “ (𝒫 𝑋 ∩ Fin)) = 𝐶)) | ||
| Theorem | mrefg2 42680* | Slight variation on finite generation for closure systems. (Contributed by Stefan O'Rear, 4-Apr-2015.) |
| ⊢ 𝐹 = (mrCls‘𝐶) ⇒ ⊢ (𝐶 ∈ (Moore‘𝑋) → (∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑆 = (𝐹‘𝑔) ↔ ∃𝑔 ∈ (𝒫 𝑆 ∩ Fin)𝑆 = (𝐹‘𝑔))) | ||
| Theorem | mrefg3 42681* | Slight variation on finite generation for closure systems. (Contributed by Stefan O'Rear, 4-Apr-2015.) |
| ⊢ 𝐹 = (mrCls‘𝐶) ⇒ ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ∈ 𝐶) → (∃𝑔 ∈ (𝒫 𝑋 ∩ Fin)𝑆 = (𝐹‘𝑔) ↔ ∃𝑔 ∈ (𝒫 𝑆 ∩ Fin)𝑆 ⊆ (𝐹‘𝑔))) | ||
| Theorem | nacsacs 42682 | A closure system of Noetherian type is algebraic. (Contributed by Stefan O'Rear, 4-Apr-2015.) |
| ⊢ (𝐶 ∈ (NoeACS‘𝑋) → 𝐶 ∈ (ACS‘𝑋)) | ||
| Theorem | isnacs3 42683* | A choice-free order equivalent to the Noetherian condition on a closure system. (Contributed by Stefan O'Rear, 4-Apr-2015.) |
| ⊢ (𝐶 ∈ (NoeACS‘𝑋) ↔ (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → ∪ 𝑠 ∈ 𝑠))) | ||
| Theorem | incssnn0 42684* | Transitivity induction of subsets, lemma for nacsfix 42685. (Contributed by Stefan O'Rear, 4-Apr-2015.) |
| ⊢ ((∀𝑥 ∈ ℕ0 (𝐹‘𝑥) ⊆ (𝐹‘(𝑥 + 1)) ∧ 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ (ℤ≥‘𝐴)) → (𝐹‘𝐴) ⊆ (𝐹‘𝐵)) | ||
| Theorem | nacsfix 42685* | An increasing sequence of closed sets in a Noetherian-type closure system eventually fixates. (Contributed by Stefan O'Rear, 4-Apr-2015.) |
| ⊢ ((𝐶 ∈ (NoeACS‘𝑋) ∧ 𝐹:ℕ0⟶𝐶 ∧ ∀𝑥 ∈ ℕ0 (𝐹‘𝑥) ⊆ (𝐹‘(𝑥 + 1))) → ∃𝑦 ∈ ℕ0 ∀𝑧 ∈ (ℤ≥‘𝑦)(𝐹‘𝑧) = (𝐹‘𝑦)) | ||
| Theorem | constmap 42686 |
A constant (represented without dummy variables) is an element of a
function set.
Note: In the following development, we will be quite often quantifying over functions and points in N-dimensional space (which are equivalent to functions from an "index set"). Many of the following theorems exist to transfer standard facts about functions to elements of function sets. (Contributed by Stefan O'Rear, 30-Aug-2014.) (Revised by Stefan O'Rear, 5-May-2015.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐶 ∈ V ⇒ ⊢ (𝐵 ∈ 𝐶 → (𝐴 × {𝐵}) ∈ (𝐶 ↑m 𝐴)) | ||
| Theorem | mapco2g 42687 | Renaming indices in a tuple, with sethood as antecedents. (Contributed by Stefan O'Rear, 9-Oct-2014.) (Revised by Mario Carneiro, 5-May-2015.) |
| ⊢ ((𝐸 ∈ V ∧ 𝐴 ∈ (𝐵 ↑m 𝐶) ∧ 𝐷:𝐸⟶𝐶) → (𝐴 ∘ 𝐷) ∈ (𝐵 ↑m 𝐸)) | ||
| Theorem | mapco2 42688 | Post-composition (renaming indices) of a mapping viewed as a point. (Contributed by Stefan O'Rear, 5-Oct-2014.) (Revised by Stefan O'Rear, 5-May-2015.) |
| ⊢ 𝐸 ∈ V ⇒ ⊢ ((𝐴 ∈ (𝐵 ↑m 𝐶) ∧ 𝐷:𝐸⟶𝐶) → (𝐴 ∘ 𝐷) ∈ (𝐵 ↑m 𝐸)) | ||
| Theorem | mapfzcons 42689 | Extending a one-based mapping by adding a tuple at the end results in another mapping. (Contributed by Stefan O'Rear, 10-Oct-2014.) (Revised by Stefan O'Rear, 5-May-2015.) |
| ⊢ 𝑀 = (𝑁 + 1) ⇒ ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ (𝐵 ↑m (1...𝑁)) ∧ 𝐶 ∈ 𝐵) → (𝐴 ∪ {〈𝑀, 𝐶〉}) ∈ (𝐵 ↑m (1...𝑀))) | ||
| Theorem | mapfzcons1 42690 | Recover prefix mapping from an extended mapping. (Contributed by Stefan O'Rear, 10-Oct-2014.) (Revised by Stefan O'Rear, 5-May-2015.) |
| ⊢ 𝑀 = (𝑁 + 1) ⇒ ⊢ (𝐴 ∈ (𝐵 ↑m (1...𝑁)) → ((𝐴 ∪ {〈𝑀, 𝐶〉}) ↾ (1...𝑁)) = 𝐴) | ||
| Theorem | mapfzcons1cl 42691 | A nonempty mapping has a prefix. (Contributed by Stefan O'Rear, 10-Oct-2014.) (Revised by Stefan O'Rear, 5-May-2015.) |
| ⊢ 𝑀 = (𝑁 + 1) ⇒ ⊢ (𝐴 ∈ (𝐵 ↑m (1...𝑀)) → (𝐴 ↾ (1...𝑁)) ∈ (𝐵 ↑m (1...𝑁))) | ||
| Theorem | mapfzcons2 42692 | Recover added element from an extended mapping. (Contributed by Stefan O'Rear, 10-Oct-2014.) (Revised by Stefan O'Rear, 5-May-2015.) |
| ⊢ 𝑀 = (𝑁 + 1) ⇒ ⊢ ((𝐴 ∈ (𝐵 ↑m (1...𝑁)) ∧ 𝐶 ∈ 𝐵) → ((𝐴 ∪ {〈𝑀, 𝐶〉})‘𝑀) = 𝐶) | ||
| Theorem | mptfcl 42693* | Interpret range of a maps-to notation as a constraint on the definition. (Contributed by Stefan O'Rear, 10-Oct-2014.) |
| ⊢ ((𝑡 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝐶 → (𝑡 ∈ 𝐴 → 𝐵 ∈ 𝐶)) | ||
| Syntax | cmzpcl 42694 | Extend class notation to include pre-polynomial rings. |
| class mzPolyCld | ||
| Syntax | cmzp 42695 | Extend class notation to include polynomial rings. |
| class mzPoly | ||
| Definition | df-mzpcl 42696* | Define the polynomially closed function rings over an arbitrary index set 𝑣. The set (mzPolyCld‘𝑣) contains all sets of functions from (ℤ ↑m 𝑣) to ℤ which include all constants and projections and are closed under addition and multiplication. This is a "temporary" set used to define the polynomial function ring itself (mzPoly‘𝑣); see df-mzp 42697. (Contributed by Stefan O'Rear, 4-Oct-2014.) |
| ⊢ mzPolyCld = (𝑣 ∈ V ↦ {𝑝 ∈ 𝒫 (ℤ ↑m (ℤ ↑m 𝑣)) ∣ ((∀𝑖 ∈ ℤ ((ℤ ↑m 𝑣) × {𝑖}) ∈ 𝑝 ∧ ∀𝑗 ∈ 𝑣 (𝑥 ∈ (ℤ ↑m 𝑣) ↦ (𝑥‘𝑗)) ∈ 𝑝) ∧ ∀𝑓 ∈ 𝑝 ∀𝑔 ∈ 𝑝 ((𝑓 ∘f + 𝑔) ∈ 𝑝 ∧ (𝑓 ∘f · 𝑔) ∈ 𝑝))}) | ||
| Definition | df-mzp 42697 | Polynomials over ℤ with an arbitrary index set, that is, the smallest ring of functions containing all constant functions and all projections. This is almost the most general reasonable definition; to reach full generality, we would need to be able to replace ZZ with an arbitrary (semi)ring (and a coordinate subring), but rings have not been defined yet. (Contributed by Stefan O'Rear, 4-Oct-2014.) |
| ⊢ mzPoly = (𝑣 ∈ V ↦ ∩ (mzPolyCld‘𝑣)) | ||
| Theorem | mzpclval 42698* | Substitution lemma for mzPolyCld. (Contributed by Stefan O'Rear, 4-Oct-2014.) |
| ⊢ (𝑉 ∈ V → (mzPolyCld‘𝑉) = {𝑝 ∈ 𝒫 (ℤ ↑m (ℤ ↑m 𝑉)) ∣ ((∀𝑖 ∈ ℤ ((ℤ ↑m 𝑉) × {𝑖}) ∈ 𝑝 ∧ ∀𝑗 ∈ 𝑉 (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝑥‘𝑗)) ∈ 𝑝) ∧ ∀𝑓 ∈ 𝑝 ∀𝑔 ∈ 𝑝 ((𝑓 ∘f + 𝑔) ∈ 𝑝 ∧ (𝑓 ∘f · 𝑔) ∈ 𝑝))}) | ||
| Theorem | elmzpcl 42699* | Double substitution lemma for mzPolyCld. (Contributed by Stefan O'Rear, 4-Oct-2014.) |
| ⊢ (𝑉 ∈ V → (𝑃 ∈ (mzPolyCld‘𝑉) ↔ (𝑃 ⊆ (ℤ ↑m (ℤ ↑m 𝑉)) ∧ ((∀𝑖 ∈ ℤ ((ℤ ↑m 𝑉) × {𝑖}) ∈ 𝑃 ∧ ∀𝑗 ∈ 𝑉 (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝑥‘𝑗)) ∈ 𝑃) ∧ ∀𝑓 ∈ 𝑃 ∀𝑔 ∈ 𝑃 ((𝑓 ∘f + 𝑔) ∈ 𝑃 ∧ (𝑓 ∘f · 𝑔) ∈ 𝑃))))) | ||
| Theorem | mzpclall 42700 | The set of all functions with the signature of a polynomial is a polynomially closed set. This is a lemma to show that the intersection in df-mzp 42697 is well-defined. (Contributed by Stefan O'Rear, 4-Oct-2014.) |
| ⊢ (𝑉 ∈ V → (ℤ ↑m (ℤ ↑m 𝑉)) ∈ (mzPolyCld‘𝑉)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |