| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > axfrege52a | Structured version Visualization version GIF version | ||
| Description: Justification for ax-frege52a 43815. (Contributed by RP, 17-Apr-2020.) |
| Ref | Expression |
|---|---|
| axfrege52a | ⊢ ((𝜑 ↔ 𝜓) → (if-(𝜑, 𝜃, 𝜒) → if-(𝜓, 𝜃, 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ifpbi1 43435 | . 2 ⊢ ((𝜑 ↔ 𝜓) → (if-(𝜑, 𝜃, 𝜒) ↔ if-(𝜓, 𝜃, 𝜒))) | |
| 2 | 1 | biimpd 229 | 1 ⊢ ((𝜑 ↔ 𝜓) → (if-(𝜑, 𝜃, 𝜒) → if-(𝜓, 𝜃, 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 if-wif 1062 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |