Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > axfrege52a | Structured version Visualization version GIF version |
Description: Justification for ax-frege52a 41465. (Contributed by RP, 17-Apr-2020.) |
Ref | Expression |
---|---|
axfrege52a | ⊢ ((𝜑 ↔ 𝜓) → (if-(𝜑, 𝜃, 𝜒) → if-(𝜓, 𝜃, 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ifpbi1 41084 | . 2 ⊢ ((𝜑 ↔ 𝜓) → (if-(𝜑, 𝜃, 𝜒) ↔ if-(𝜓, 𝜃, 𝜒))) | |
2 | 1 | biimpd 228 | 1 ⊢ ((𝜑 ↔ 𝜓) → (if-(𝜑, 𝜃, 𝜒) → if-(𝜓, 𝜃, 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 if-wif 1060 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-ifp 1061 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |