Detailed syntax breakdown of Axiom ax-inf2
Step | Hyp | Ref
| Expression |
1 | | vy |
. . . . . 6
setvar 𝑦 |
2 | | vx |
. . . . . 6
setvar 𝑥 |
3 | 1, 2 | wel 2109 |
. . . . 5
wff 𝑦 ∈ 𝑥 |
4 | | vz |
. . . . . . . 8
setvar 𝑧 |
5 | 4, 1 | wel 2109 |
. . . . . . 7
wff 𝑧 ∈ 𝑦 |
6 | 5 | wn 3 |
. . . . . 6
wff ¬
𝑧 ∈ 𝑦 |
7 | 6, 4 | wal 1537 |
. . . . 5
wff
∀𝑧 ¬
𝑧 ∈ 𝑦 |
8 | 3, 7 | wa 395 |
. . . 4
wff (𝑦 ∈ 𝑥 ∧ ∀𝑧 ¬ 𝑧 ∈ 𝑦) |
9 | 8, 1 | wex 1783 |
. . 3
wff
∃𝑦(𝑦 ∈ 𝑥 ∧ ∀𝑧 ¬ 𝑧 ∈ 𝑦) |
10 | 4, 2 | wel 2109 |
. . . . . . 7
wff 𝑧 ∈ 𝑥 |
11 | | vw |
. . . . . . . . . 10
setvar 𝑤 |
12 | 11, 4 | wel 2109 |
. . . . . . . . 9
wff 𝑤 ∈ 𝑧 |
13 | 11, 1 | wel 2109 |
. . . . . . . . . 10
wff 𝑤 ∈ 𝑦 |
14 | 11, 1 | weq 1967 |
. . . . . . . . . 10
wff 𝑤 = 𝑦 |
15 | 13, 14 | wo 843 |
. . . . . . . . 9
wff (𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦) |
16 | 12, 15 | wb 205 |
. . . . . . . 8
wff (𝑤 ∈ 𝑧 ↔ (𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦)) |
17 | 16, 11 | wal 1537 |
. . . . . . 7
wff
∀𝑤(𝑤 ∈ 𝑧 ↔ (𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦)) |
18 | 10, 17 | wa 395 |
. . . . . 6
wff (𝑧 ∈ 𝑥 ∧ ∀𝑤(𝑤 ∈ 𝑧 ↔ (𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦))) |
19 | 18, 4 | wex 1783 |
. . . . 5
wff
∃𝑧(𝑧 ∈ 𝑥 ∧ ∀𝑤(𝑤 ∈ 𝑧 ↔ (𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦))) |
20 | 3, 19 | wi 4 |
. . . 4
wff (𝑦 ∈ 𝑥 → ∃𝑧(𝑧 ∈ 𝑥 ∧ ∀𝑤(𝑤 ∈ 𝑧 ↔ (𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦)))) |
21 | 20, 1 | wal 1537 |
. . 3
wff
∀𝑦(𝑦 ∈ 𝑥 → ∃𝑧(𝑧 ∈ 𝑥 ∧ ∀𝑤(𝑤 ∈ 𝑧 ↔ (𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦)))) |
22 | 9, 21 | wa 395 |
. 2
wff
(∃𝑦(𝑦 ∈ 𝑥 ∧ ∀𝑧 ¬ 𝑧 ∈ 𝑦) ∧ ∀𝑦(𝑦 ∈ 𝑥 → ∃𝑧(𝑧 ∈ 𝑥 ∧ ∀𝑤(𝑤 ∈ 𝑧 ↔ (𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦))))) |
23 | 22, 2 | wex 1783 |
1
wff
∃𝑥(∃𝑦(𝑦 ∈ 𝑥 ∧ ∀𝑧 ¬ 𝑧 ∈ 𝑦) ∧ ∀𝑦(𝑦 ∈ 𝑥 → ∃𝑧(𝑧 ∈ 𝑥 ∧ ∀𝑤(𝑤 ∈ 𝑧 ↔ (𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦))))) |