MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax-inf2 Structured version   Visualization version   GIF version

Axiom ax-inf2 9092
Description: A standard version of Axiom of Infinity of ZF set theory. In English, it says: there exists a set that contains the empty set and the successors of all of its members. Theorem zfinf2 9093 shows it converted to abbreviations. This axiom was derived as theorem axinf2 9091 above, using our version of Infinity ax-inf 9089 and the Axiom of Regularity ax-reg 9044. We will reference ax-inf2 9092 instead of axinf2 9091 so that the ordinary uses of Regularity can be more easily identified. The reverse derivation of ax-inf 9089 from ax-inf2 9092 is shown by theorem axinf 9095. (Contributed by NM, 3-Nov-1996.)
Assertion
Ref Expression
ax-inf2 𝑥(∃𝑦(𝑦𝑥 ∧ ∀𝑧 ¬ 𝑧𝑦) ∧ ∀𝑦(𝑦𝑥 → ∃𝑧(𝑧𝑥 ∧ ∀𝑤(𝑤𝑧 ↔ (𝑤𝑦𝑤 = 𝑦)))))
Distinct variable group:   𝑥,𝑦,𝑧,𝑤

Detailed syntax breakdown of Axiom ax-inf2
StepHypRef Expression
1 vy . . . . . 6 setvar 𝑦
2 vx . . . . . 6 setvar 𝑥
31, 2wel 2113 . . . . 5 wff 𝑦𝑥
4 vz . . . . . . . 8 setvar 𝑧
54, 1wel 2113 . . . . . . 7 wff 𝑧𝑦
65wn 3 . . . . . 6 wff ¬ 𝑧𝑦
76, 4wal 1536 . . . . 5 wff 𝑧 ¬ 𝑧𝑦
83, 7wa 399 . . . 4 wff (𝑦𝑥 ∧ ∀𝑧 ¬ 𝑧𝑦)
98, 1wex 1781 . . 3 wff 𝑦(𝑦𝑥 ∧ ∀𝑧 ¬ 𝑧𝑦)
104, 2wel 2113 . . . . . . 7 wff 𝑧𝑥
11 vw . . . . . . . . . 10 setvar 𝑤
1211, 4wel 2113 . . . . . . . . 9 wff 𝑤𝑧
1311, 1wel 2113 . . . . . . . . . 10 wff 𝑤𝑦
1411, 1weq 1964 . . . . . . . . . 10 wff 𝑤 = 𝑦
1513, 14wo 844 . . . . . . . . 9 wff (𝑤𝑦𝑤 = 𝑦)
1612, 15wb 209 . . . . . . . 8 wff (𝑤𝑧 ↔ (𝑤𝑦𝑤 = 𝑦))
1716, 11wal 1536 . . . . . . 7 wff 𝑤(𝑤𝑧 ↔ (𝑤𝑦𝑤 = 𝑦))
1810, 17wa 399 . . . . . 6 wff (𝑧𝑥 ∧ ∀𝑤(𝑤𝑧 ↔ (𝑤𝑦𝑤 = 𝑦)))
1918, 4wex 1781 . . . . 5 wff 𝑧(𝑧𝑥 ∧ ∀𝑤(𝑤𝑧 ↔ (𝑤𝑦𝑤 = 𝑦)))
203, 19wi 4 . . . 4 wff (𝑦𝑥 → ∃𝑧(𝑧𝑥 ∧ ∀𝑤(𝑤𝑧 ↔ (𝑤𝑦𝑤 = 𝑦))))
2120, 1wal 1536 . . 3 wff 𝑦(𝑦𝑥 → ∃𝑧(𝑧𝑥 ∧ ∀𝑤(𝑤𝑧 ↔ (𝑤𝑦𝑤 = 𝑦))))
229, 21wa 399 . 2 wff (∃𝑦(𝑦𝑥 ∧ ∀𝑧 ¬ 𝑧𝑦) ∧ ∀𝑦(𝑦𝑥 → ∃𝑧(𝑧𝑥 ∧ ∀𝑤(𝑤𝑧 ↔ (𝑤𝑦𝑤 = 𝑦)))))
2322, 2wex 1781 1 wff 𝑥(∃𝑦(𝑦𝑥 ∧ ∀𝑧 ¬ 𝑧𝑦) ∧ ∀𝑦(𝑦𝑥 → ∃𝑧(𝑧𝑥 ∧ ∀𝑤(𝑤𝑧 ↔ (𝑤𝑦𝑤 = 𝑦)))))
Colors of variables: wff setvar class
This axiom is referenced by:  zfinf2  9093
  Copyright terms: Public domain W3C validator