MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax-inf2 Structured version   Visualization version   GIF version

Axiom ax-inf2 8890
Description: A standard version of Axiom of Infinity of ZF set theory. In English, it says: there exists a set that contains the empty set and the successors of all of its members. Theorem zfinf2 8891 shows it converted to abbreviations. This axiom was derived as theorem axinf2 8889 above, using our version of Infinity ax-inf 8887 and the Axiom of Regularity ax-reg 8843. We will reference ax-inf2 8890 instead of axinf2 8889 so that the ordinary uses of Regularity can be more easily identified. The reverse derivation of ax-inf 8887 from ax-inf2 8890 is shown by theorem axinf 8893. (Contributed by NM, 3-Nov-1996.)
Assertion
Ref Expression
ax-inf2 𝑥(∃𝑦(𝑦𝑥 ∧ ∀𝑧 ¬ 𝑧𝑦) ∧ ∀𝑦(𝑦𝑥 → ∃𝑧(𝑧𝑥 ∧ ∀𝑤(𝑤𝑧 ↔ (𝑤𝑦𝑤 = 𝑦)))))
Distinct variable group:   𝑥,𝑦,𝑧,𝑤

Detailed syntax breakdown of Axiom ax-inf2
StepHypRef Expression
1 vy . . . . . 6 setvar 𝑦
2 vx . . . . . 6 setvar 𝑥
31, 2wel 2049 . . . . 5 wff 𝑦𝑥
4 vz . . . . . . . 8 setvar 𝑧
54, 1wel 2049 . . . . . . 7 wff 𝑧𝑦
65wn 3 . . . . . 6 wff ¬ 𝑧𝑦
76, 4wal 1505 . . . . 5 wff 𝑧 ¬ 𝑧𝑦
83, 7wa 387 . . . 4 wff (𝑦𝑥 ∧ ∀𝑧 ¬ 𝑧𝑦)
98, 1wex 1742 . . 3 wff 𝑦(𝑦𝑥 ∧ ∀𝑧 ¬ 𝑧𝑦)
104, 2wel 2049 . . . . . . 7 wff 𝑧𝑥
11 vw . . . . . . . . . 10 setvar 𝑤
1211, 4wel 2049 . . . . . . . . 9 wff 𝑤𝑧
1311, 1wel 2049 . . . . . . . . . 10 wff 𝑤𝑦
1411, 1weq 1922 . . . . . . . . . 10 wff 𝑤 = 𝑦
1513, 14wo 833 . . . . . . . . 9 wff (𝑤𝑦𝑤 = 𝑦)
1612, 15wb 198 . . . . . . . 8 wff (𝑤𝑧 ↔ (𝑤𝑦𝑤 = 𝑦))
1716, 11wal 1505 . . . . . . 7 wff 𝑤(𝑤𝑧 ↔ (𝑤𝑦𝑤 = 𝑦))
1810, 17wa 387 . . . . . 6 wff (𝑧𝑥 ∧ ∀𝑤(𝑤𝑧 ↔ (𝑤𝑦𝑤 = 𝑦)))
1918, 4wex 1742 . . . . 5 wff 𝑧(𝑧𝑥 ∧ ∀𝑤(𝑤𝑧 ↔ (𝑤𝑦𝑤 = 𝑦)))
203, 19wi 4 . . . 4 wff (𝑦𝑥 → ∃𝑧(𝑧𝑥 ∧ ∀𝑤(𝑤𝑧 ↔ (𝑤𝑦𝑤 = 𝑦))))
2120, 1wal 1505 . . 3 wff 𝑦(𝑦𝑥 → ∃𝑧(𝑧𝑥 ∧ ∀𝑤(𝑤𝑧 ↔ (𝑤𝑦𝑤 = 𝑦))))
229, 21wa 387 . 2 wff (∃𝑦(𝑦𝑥 ∧ ∀𝑧 ¬ 𝑧𝑦) ∧ ∀𝑦(𝑦𝑥 → ∃𝑧(𝑧𝑥 ∧ ∀𝑤(𝑤𝑧 ↔ (𝑤𝑦𝑤 = 𝑦)))))
2322, 2wex 1742 1 wff 𝑥(∃𝑦(𝑦𝑥 ∧ ∀𝑧 ¬ 𝑧𝑦) ∧ ∀𝑦(𝑦𝑥 → ∃𝑧(𝑧𝑥 ∧ ∀𝑤(𝑤𝑧 ↔ (𝑤𝑦𝑤 = 𝑦)))))
Colors of variables: wff setvar class
This axiom is referenced by:  zfinf2  8891
  Copyright terms: Public domain W3C validator