MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax-inf2 Structured version   Visualization version   GIF version

Axiom ax-inf2 9612
Description: A standard version of Axiom of Infinity of ZF set theory. In English, it says: there exists a set that contains the empty set and the successors of all of its members. Theorem zfinf2 9613 shows it converted to abbreviations. This axiom was derived as Theorem axinf2 9611 above, using our version of Infinity ax-inf 9609 and the Axiom of Regularity ax-reg 9563. We will reference ax-inf2 9612 instead of axinf2 9611 so that the ordinary uses of Regularity can be more easily identified. The reverse derivation of ax-inf 9609 from ax-inf2 9612 is shown by Theorem axinf 9615. (Contributed by NM, 3-Nov-1996.)
Assertion
Ref Expression
ax-inf2 𝑥(∃𝑦(𝑦𝑥 ∧ ∀𝑧 ¬ 𝑧𝑦) ∧ ∀𝑦(𝑦𝑥 → ∃𝑧(𝑧𝑥 ∧ ∀𝑤(𝑤𝑧 ↔ (𝑤𝑦𝑤 = 𝑦)))))
Distinct variable group:   𝑥,𝑦,𝑧,𝑤

Detailed syntax breakdown of Axiom ax-inf2
StepHypRef Expression
1 vy . . . . . 6 setvar 𝑦
2 vx . . . . . 6 setvar 𝑥
31, 2wel 2110 . . . . 5 wff 𝑦𝑥
4 vz . . . . . . . 8 setvar 𝑧
54, 1wel 2110 . . . . . . 7 wff 𝑧𝑦
65wn 3 . . . . . 6 wff ¬ 𝑧𝑦
76, 4wal 1538 . . . . 5 wff 𝑧 ¬ 𝑧𝑦
83, 7wa 395 . . . 4 wff (𝑦𝑥 ∧ ∀𝑧 ¬ 𝑧𝑦)
98, 1wex 1779 . . 3 wff 𝑦(𝑦𝑥 ∧ ∀𝑧 ¬ 𝑧𝑦)
104, 2wel 2110 . . . . . . 7 wff 𝑧𝑥
11 vw . . . . . . . . . 10 setvar 𝑤
1211, 4wel 2110 . . . . . . . . 9 wff 𝑤𝑧
1311, 1wel 2110 . . . . . . . . . 10 wff 𝑤𝑦
1411, 1weq 1962 . . . . . . . . . 10 wff 𝑤 = 𝑦
1513, 14wo 847 . . . . . . . . 9 wff (𝑤𝑦𝑤 = 𝑦)
1612, 15wb 206 . . . . . . . 8 wff (𝑤𝑧 ↔ (𝑤𝑦𝑤 = 𝑦))
1716, 11wal 1538 . . . . . . 7 wff 𝑤(𝑤𝑧 ↔ (𝑤𝑦𝑤 = 𝑦))
1810, 17wa 395 . . . . . 6 wff (𝑧𝑥 ∧ ∀𝑤(𝑤𝑧 ↔ (𝑤𝑦𝑤 = 𝑦)))
1918, 4wex 1779 . . . . 5 wff 𝑧(𝑧𝑥 ∧ ∀𝑤(𝑤𝑧 ↔ (𝑤𝑦𝑤 = 𝑦)))
203, 19wi 4 . . . 4 wff (𝑦𝑥 → ∃𝑧(𝑧𝑥 ∧ ∀𝑤(𝑤𝑧 ↔ (𝑤𝑦𝑤 = 𝑦))))
2120, 1wal 1538 . . 3 wff 𝑦(𝑦𝑥 → ∃𝑧(𝑧𝑥 ∧ ∀𝑤(𝑤𝑧 ↔ (𝑤𝑦𝑤 = 𝑦))))
229, 21wa 395 . 2 wff (∃𝑦(𝑦𝑥 ∧ ∀𝑧 ¬ 𝑧𝑦) ∧ ∀𝑦(𝑦𝑥 → ∃𝑧(𝑧𝑥 ∧ ∀𝑤(𝑤𝑧 ↔ (𝑤𝑦𝑤 = 𝑦)))))
2322, 2wex 1779 1 wff 𝑥(∃𝑦(𝑦𝑥 ∧ ∀𝑧 ¬ 𝑧𝑦) ∧ ∀𝑦(𝑦𝑥 → ∃𝑧(𝑧𝑥 ∧ ∀𝑤(𝑤𝑧 ↔ (𝑤𝑦𝑤 = 𝑦)))))
Colors of variables: wff setvar class
This axiom is referenced by:  zfinf2  9613  axnulALT2  35091
  Copyright terms: Public domain W3C validator