Detailed syntax breakdown of Axiom ax-inf2
| Step | Hyp | Ref
| Expression |
| 1 | | vy |
. . . . . 6
setvar 𝑦 |
| 2 | | vx |
. . . . . 6
setvar 𝑥 |
| 3 | 1, 2 | wel 2108 |
. . . . 5
wff 𝑦 ∈ 𝑥 |
| 4 | | vz |
. . . . . . . 8
setvar 𝑧 |
| 5 | 4, 1 | wel 2108 |
. . . . . . 7
wff 𝑧 ∈ 𝑦 |
| 6 | 5 | wn 3 |
. . . . . 6
wff ¬
𝑧 ∈ 𝑦 |
| 7 | 6, 4 | wal 1537 |
. . . . 5
wff
∀𝑧 ¬
𝑧 ∈ 𝑦 |
| 8 | 3, 7 | wa 395 |
. . . 4
wff (𝑦 ∈ 𝑥 ∧ ∀𝑧 ¬ 𝑧 ∈ 𝑦) |
| 9 | 8, 1 | wex 1778 |
. . 3
wff
∃𝑦(𝑦 ∈ 𝑥 ∧ ∀𝑧 ¬ 𝑧 ∈ 𝑦) |
| 10 | 4, 2 | wel 2108 |
. . . . . . 7
wff 𝑧 ∈ 𝑥 |
| 11 | | vw |
. . . . . . . . . 10
setvar 𝑤 |
| 12 | 11, 4 | wel 2108 |
. . . . . . . . 9
wff 𝑤 ∈ 𝑧 |
| 13 | 11, 1 | wel 2108 |
. . . . . . . . . 10
wff 𝑤 ∈ 𝑦 |
| 14 | 11, 1 | weq 1961 |
. . . . . . . . . 10
wff 𝑤 = 𝑦 |
| 15 | 13, 14 | wo 847 |
. . . . . . . . 9
wff (𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦) |
| 16 | 12, 15 | wb 206 |
. . . . . . . 8
wff (𝑤 ∈ 𝑧 ↔ (𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦)) |
| 17 | 16, 11 | wal 1537 |
. . . . . . 7
wff
∀𝑤(𝑤 ∈ 𝑧 ↔ (𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦)) |
| 18 | 10, 17 | wa 395 |
. . . . . 6
wff (𝑧 ∈ 𝑥 ∧ ∀𝑤(𝑤 ∈ 𝑧 ↔ (𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦))) |
| 19 | 18, 4 | wex 1778 |
. . . . 5
wff
∃𝑧(𝑧 ∈ 𝑥 ∧ ∀𝑤(𝑤 ∈ 𝑧 ↔ (𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦))) |
| 20 | 3, 19 | wi 4 |
. . . 4
wff (𝑦 ∈ 𝑥 → ∃𝑧(𝑧 ∈ 𝑥 ∧ ∀𝑤(𝑤 ∈ 𝑧 ↔ (𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦)))) |
| 21 | 20, 1 | wal 1537 |
. . 3
wff
∀𝑦(𝑦 ∈ 𝑥 → ∃𝑧(𝑧 ∈ 𝑥 ∧ ∀𝑤(𝑤 ∈ 𝑧 ↔ (𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦)))) |
| 22 | 9, 21 | wa 395 |
. 2
wff
(∃𝑦(𝑦 ∈ 𝑥 ∧ ∀𝑧 ¬ 𝑧 ∈ 𝑦) ∧ ∀𝑦(𝑦 ∈ 𝑥 → ∃𝑧(𝑧 ∈ 𝑥 ∧ ∀𝑤(𝑤 ∈ 𝑧 ↔ (𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦))))) |
| 23 | 22, 2 | wex 1778 |
1
wff
∃𝑥(∃𝑦(𝑦 ∈ 𝑥 ∧ ∀𝑧 ¬ 𝑧 ∈ 𝑦) ∧ ∀𝑦(𝑦 ∈ 𝑥 → ∃𝑧(𝑧 ∈ 𝑥 ∧ ∀𝑤(𝑤 ∈ 𝑧 ↔ (𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦))))) |