| Metamath
Proof Explorer Theorem List (p. 97 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30854) |
(30855-32377) |
(32378-49798) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Axiom | ax-inf2 9601* | A standard version of Axiom of Infinity of ZF set theory. In English, it says: there exists a set that contains the empty set and the successors of all of its members. Theorem zfinf2 9602 shows it converted to abbreviations. This axiom was derived as Theorem axinf2 9600 above, using our version of Infinity ax-inf 9598 and the Axiom of Regularity ax-reg 9552. We will reference ax-inf2 9601 instead of axinf2 9600 so that the ordinary uses of Regularity can be more easily identified. The reverse derivation of ax-inf 9598 from ax-inf2 9601 is shown by Theorem axinf 9604. (Contributed by NM, 3-Nov-1996.) |
| ⊢ ∃𝑥(∃𝑦(𝑦 ∈ 𝑥 ∧ ∀𝑧 ¬ 𝑧 ∈ 𝑦) ∧ ∀𝑦(𝑦 ∈ 𝑥 → ∃𝑧(𝑧 ∈ 𝑥 ∧ ∀𝑤(𝑤 ∈ 𝑧 ↔ (𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦))))) | ||
| Theorem | zfinf2 9602* | A standard version of the Axiom of Infinity, using definitions to abbreviate. Axiom Inf of [BellMachover] p. 472. (See ax-inf2 9601 for the unabbreviated version.) (Contributed by NM, 30-Aug-1993.) |
| ⊢ ∃𝑥(∅ ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥) | ||
| Theorem | omex 9603 |
The existence of omega (the class of natural numbers). Axiom 7 of
[TakeutiZaring] p. 43. Remark
1.21 of [Schloeder] p. 3. This theorem
is proved assuming the Axiom of Infinity and in fact is equivalent to
it, as shown by the reverse derivation inf0 9581.
A finitist (someone who doesn't believe in infinity) could, without contradiction, replace the Axiom of Infinity by its denial ¬ ω ∈ V; this would lead to ω = On by omon 7857 and Fin = V (the universe of all sets) by fineqv 9217. The finitist could still develop natural number, integer, and rational number arithmetic but would be denied the real numbers (as well as much of the rest of mathematics). In deference to the finitist, much of our development is done, when possible, without invoking the Axiom of Infinity; an example is Peano's axioms peano1 7868 through peano5 7872 (which many textbooks prove more easily assuming Infinity). (Contributed by NM, 6-Aug-1994.) |
| ⊢ ω ∈ V | ||
| Theorem | axinf 9604* | The first version of the Axiom of Infinity ax-inf 9598 proved from the second version ax-inf2 9601. Note that we didn't use ax-reg 9552, unlike the other direction axinf2 9600. (Contributed by NM, 24-Apr-2009.) |
| ⊢ ∃𝑦(𝑥 ∈ 𝑦 ∧ ∀𝑧(𝑧 ∈ 𝑦 → ∃𝑤(𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑦))) | ||
| Theorem | inf5 9605 | The statement "there exists a set that is a proper subset of its union" is equivalent to the Axiom of Infinity (see Theorem infeq5 9597). This provides us with a very compact way to express the Axiom of Infinity using only elementary symbols. (Contributed by NM, 3-Jun-2005.) |
| ⊢ ∃𝑥 𝑥 ⊊ ∪ 𝑥 | ||
| Theorem | omelon 9606 | Omega is an ordinal number. Theorem 1.22 of [Schloeder] p. 3. (Contributed by NM, 10-May-1998.) (Revised by Mario Carneiro, 30-Jan-2013.) |
| ⊢ ω ∈ On | ||
| Theorem | dfom3 9607* | The class of natural numbers ω can be defined as the intersection of all inductive sets (which is the smallest inductive set, since inductive sets are closed under intersection), which is valid provided we assume the Axiom of Infinity. Definition 6.3 of [Eisenberg] p. 82. Definition 1.20 of [Schloeder] p. 3. (Contributed by NM, 6-Aug-1994.) |
| ⊢ ω = ∩ {𝑥 ∣ (∅ ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥)} | ||
| Theorem | elom3 9608* | A simplification of elom 7848 assuming the Axiom of Infinity. (Contributed by NM, 30-May-2003.) |
| ⊢ (𝐴 ∈ ω ↔ ∀𝑥(Lim 𝑥 → 𝐴 ∈ 𝑥)) | ||
| Theorem | dfom4 9609* | A simplification of df-om 7846 assuming the Axiom of Infinity. (Contributed by NM, 30-May-2003.) |
| ⊢ ω = {𝑥 ∣ ∀𝑦(Lim 𝑦 → 𝑥 ∈ 𝑦)} | ||
| Theorem | dfom5 9610 | ω is the smallest limit ordinal and can be defined as such (although the Axiom of Infinity is needed to ensure that at least one limit ordinal exists). Theorem 1.23 of [Schloeder] p. 4. (Contributed by FL, 22-Feb-2011.) (Revised by Mario Carneiro, 2-Feb-2013.) |
| ⊢ ω = ∩ {𝑥 ∣ Lim 𝑥} | ||
| Theorem | oancom 9611 | Ordinal addition is not commutative. This theorem shows a counterexample. Remark in [TakeutiZaring] p. 60. (Contributed by NM, 10-Dec-2004.) |
| ⊢ (1o +o ω) ≠ (ω +o 1o) | ||
| Theorem | isfinite 9612 | A set is finite iff it is strictly dominated by the class of natural number. Theorem 42 of [Suppes] p. 151. The Axiom of Infinity is used for the forward implication. (Contributed by FL, 16-Apr-2011.) |
| ⊢ (𝐴 ∈ Fin ↔ 𝐴 ≺ ω) | ||
| Theorem | fict 9613 | A finite set is countable (weaker version of isfinite 9612). (Contributed by Thierry Arnoux, 27-Mar-2018.) |
| ⊢ (𝐴 ∈ Fin → 𝐴 ≼ ω) | ||
| Theorem | nnsdom 9614 | A natural number is strictly dominated by the set of natural numbers. Example 3 of [Enderton] p. 146. (Contributed by NM, 28-Oct-2003.) |
| ⊢ (𝐴 ∈ ω → 𝐴 ≺ ω) | ||
| Theorem | omenps 9615 | Omega is equinumerous to a proper subset of itself. Example 13.2(4) of [Eisenberg] p. 216. (Contributed by NM, 30-Jul-2003.) |
| ⊢ ω ≈ (ω ∖ {∅}) | ||
| Theorem | omensuc 9616 | The set of natural numbers is equinumerous to its successor. (Contributed by NM, 30-Oct-2003.) |
| ⊢ ω ≈ suc ω | ||
| Theorem | infdifsn 9617 | Removing a singleton from an infinite set does not change the cardinality of the set. (Contributed by Mario Carneiro, 30-Apr-2015.) (Revised by Mario Carneiro, 16-May-2015.) |
| ⊢ (ω ≼ 𝐴 → (𝐴 ∖ {𝐵}) ≈ 𝐴) | ||
| Theorem | infdiffi 9618 | Removing a finite set from an infinite set does not change the cardinality of the set. (Contributed by Mario Carneiro, 30-Apr-2015.) |
| ⊢ ((ω ≼ 𝐴 ∧ 𝐵 ∈ Fin) → (𝐴 ∖ 𝐵) ≈ 𝐴) | ||
| Theorem | unbnn3 9619* | Any unbounded subset of natural numbers is equinumerous to the set of all natural numbers. This version of unbnn 9250 eliminates its hypothesis by assuming the Axiom of Infinity. (Contributed by NM, 4-May-2005.) |
| ⊢ ((𝐴 ⊆ ω ∧ ∀𝑥 ∈ ω ∃𝑦 ∈ 𝐴 𝑥 ∈ 𝑦) → 𝐴 ≈ ω) | ||
| Theorem | noinfep 9620* | Using the Axiom of Regularity in the form zfregfr 9565, show that there are no infinite descending ∈-chains. Proposition 7.34 of [TakeutiZaring] p. 44. (Contributed by NM, 26-Jan-2006.) (Revised by Mario Carneiro, 22-Mar-2013.) |
| ⊢ ∃𝑥 ∈ ω (𝐹‘suc 𝑥) ∉ (𝐹‘𝑥) | ||
| Syntax | ccnf 9621 | Extend class notation with the Cantor normal form function. |
| class CNF | ||
| Definition | df-cnf 9622* | Define the Cantor normal form function, which takes as input a finitely supported function from 𝑦 to 𝑥 and outputs the corresponding member of the ordinal exponential 𝑥 ↑o 𝑦. The content of the original Cantor Normal Form theorem is that for 𝑥 = ω this function is a bijection onto ω ↑o 𝑦 for any ordinal 𝑦 (or, since the function restricts naturally to different ordinals, the statement that the composite function is a bijection to On). More can be said about the function, however, and in particular it is an order isomorphism for a certain easily defined well-ordering of the finitely supported functions, which gives an alternate definition cantnffval2 9655 of this function in terms of df-oi 9470. (Contributed by Mario Carneiro, 25-May-2015.) (Revised by AV, 28-Jun-2019.) |
| ⊢ CNF = (𝑥 ∈ On, 𝑦 ∈ On ↦ (𝑓 ∈ {𝑔 ∈ (𝑥 ↑m 𝑦) ∣ 𝑔 finSupp ∅} ↦ ⦋OrdIso( E , (𝑓 supp ∅)) / ℎ⦌(seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝑥 ↑o (ℎ‘𝑘)) ·o (𝑓‘(ℎ‘𝑘))) +o 𝑧)), ∅)‘dom ℎ))) | ||
| Theorem | cantnffval 9623* | The value of the Cantor normal form function. (Contributed by Mario Carneiro, 25-May-2015.) (Revised by AV, 28-Jun-2019.) |
| ⊢ 𝑆 = {𝑔 ∈ (𝐴 ↑m 𝐵) ∣ 𝑔 finSupp ∅} & ⊢ (𝜑 → 𝐴 ∈ On) & ⊢ (𝜑 → 𝐵 ∈ On) ⇒ ⊢ (𝜑 → (𝐴 CNF 𝐵) = (𝑓 ∈ 𝑆 ↦ ⦋OrdIso( E , (𝑓 supp ∅)) / ℎ⦌(seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑o (ℎ‘𝑘)) ·o (𝑓‘(ℎ‘𝑘))) +o 𝑧)), ∅)‘dom ℎ))) | ||
| Theorem | cantnfdm 9624* | The domain of the Cantor normal form function (in later lemmas we will use dom (𝐴 CNF 𝐵) to abbreviate "the set of finitely supported functions from 𝐵 to 𝐴"). (Contributed by Mario Carneiro, 25-May-2015.) (Revised by AV, 28-Jun-2019.) |
| ⊢ 𝑆 = {𝑔 ∈ (𝐴 ↑m 𝐵) ∣ 𝑔 finSupp ∅} & ⊢ (𝜑 → 𝐴 ∈ On) & ⊢ (𝜑 → 𝐵 ∈ On) ⇒ ⊢ (𝜑 → dom (𝐴 CNF 𝐵) = 𝑆) | ||
| Theorem | cantnfvalf 9625* | Lemma for cantnf 9653. The function appearing in cantnfval 9628 is unconditionally a function. (Contributed by Mario Carneiro, 20-May-2015.) |
| ⊢ 𝐹 = seqω((𝑘 ∈ 𝐴, 𝑧 ∈ 𝐵 ↦ (𝐶 +o 𝐷)), ∅) ⇒ ⊢ 𝐹:ω⟶On | ||
| Theorem | cantnfs 9626 | Elementhood in the set of finitely supported functions from 𝐵 to 𝐴. (Contributed by Mario Carneiro, 25-May-2015.) (Revised by AV, 28-Jun-2019.) |
| ⊢ 𝑆 = dom (𝐴 CNF 𝐵) & ⊢ (𝜑 → 𝐴 ∈ On) & ⊢ (𝜑 → 𝐵 ∈ On) ⇒ ⊢ (𝜑 → (𝐹 ∈ 𝑆 ↔ (𝐹:𝐵⟶𝐴 ∧ 𝐹 finSupp ∅))) | ||
| Theorem | cantnfcl 9627 | Basic properties of the order isomorphism 𝐺 used later. The support of an 𝐹 ∈ 𝑆 is a finite subset of 𝐴, so it is well-ordered by E and the order isomorphism has domain a finite ordinal. (Contributed by Mario Carneiro, 25-May-2015.) (Revised by AV, 28-Jun-2019.) |
| ⊢ 𝑆 = dom (𝐴 CNF 𝐵) & ⊢ (𝜑 → 𝐴 ∈ On) & ⊢ (𝜑 → 𝐵 ∈ On) & ⊢ 𝐺 = OrdIso( E , (𝐹 supp ∅)) & ⊢ (𝜑 → 𝐹 ∈ 𝑆) ⇒ ⊢ (𝜑 → ( E We (𝐹 supp ∅) ∧ dom 𝐺 ∈ ω)) | ||
| Theorem | cantnfval 9628* | The value of the Cantor normal form function. (Contributed by Mario Carneiro, 25-May-2015.) (Revised by AV, 28-Jun-2019.) |
| ⊢ 𝑆 = dom (𝐴 CNF 𝐵) & ⊢ (𝜑 → 𝐴 ∈ On) & ⊢ (𝜑 → 𝐵 ∈ On) & ⊢ 𝐺 = OrdIso( E , (𝐹 supp ∅)) & ⊢ (𝜑 → 𝐹 ∈ 𝑆) & ⊢ 𝐻 = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑o (𝐺‘𝑘)) ·o (𝐹‘(𝐺‘𝑘))) +o 𝑧)), ∅) ⇒ ⊢ (𝜑 → ((𝐴 CNF 𝐵)‘𝐹) = (𝐻‘dom 𝐺)) | ||
| Theorem | cantnfval2 9629* | Alternate expression for the value of the Cantor normal form function. (Contributed by Mario Carneiro, 25-May-2015.) (Revised by AV, 28-Jun-2019.) |
| ⊢ 𝑆 = dom (𝐴 CNF 𝐵) & ⊢ (𝜑 → 𝐴 ∈ On) & ⊢ (𝜑 → 𝐵 ∈ On) & ⊢ 𝐺 = OrdIso( E , (𝐹 supp ∅)) & ⊢ (𝜑 → 𝐹 ∈ 𝑆) & ⊢ 𝐻 = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑o (𝐺‘𝑘)) ·o (𝐹‘(𝐺‘𝑘))) +o 𝑧)), ∅) ⇒ ⊢ (𝜑 → ((𝐴 CNF 𝐵)‘𝐹) = (seqω((𝑘 ∈ dom 𝐺, 𝑧 ∈ On ↦ (((𝐴 ↑o (𝐺‘𝑘)) ·o (𝐹‘(𝐺‘𝑘))) +o 𝑧)), ∅)‘dom 𝐺)) | ||
| Theorem | cantnfsuc 9630* | The value of the recursive function 𝐻 at a successor. (Contributed by Mario Carneiro, 25-May-2015.) (Revised by AV, 28-Jun-2019.) |
| ⊢ 𝑆 = dom (𝐴 CNF 𝐵) & ⊢ (𝜑 → 𝐴 ∈ On) & ⊢ (𝜑 → 𝐵 ∈ On) & ⊢ 𝐺 = OrdIso( E , (𝐹 supp ∅)) & ⊢ (𝜑 → 𝐹 ∈ 𝑆) & ⊢ 𝐻 = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑o (𝐺‘𝑘)) ·o (𝐹‘(𝐺‘𝑘))) +o 𝑧)), ∅) ⇒ ⊢ ((𝜑 ∧ 𝐾 ∈ ω) → (𝐻‘suc 𝐾) = (((𝐴 ↑o (𝐺‘𝐾)) ·o (𝐹‘(𝐺‘𝐾))) +o (𝐻‘𝐾))) | ||
| Theorem | cantnfle 9631* | A lower bound on the CNF function. Since ((𝐴 CNF 𝐵)‘𝐹) is defined as the sum of (𝐴 ↑o 𝑥) ·o (𝐹‘𝑥) over all 𝑥 in the support of 𝐹, it is larger than any of these terms (and all other terms are zero, so we can extend the statement to all 𝐶 ∈ 𝐵 instead of just those 𝐶 in the support). (Contributed by Mario Carneiro, 28-May-2015.) (Revised by AV, 28-Jun-2019.) |
| ⊢ 𝑆 = dom (𝐴 CNF 𝐵) & ⊢ (𝜑 → 𝐴 ∈ On) & ⊢ (𝜑 → 𝐵 ∈ On) & ⊢ 𝐺 = OrdIso( E , (𝐹 supp ∅)) & ⊢ (𝜑 → 𝐹 ∈ 𝑆) & ⊢ 𝐻 = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑o (𝐺‘𝑘)) ·o (𝐹‘(𝐺‘𝑘))) +o 𝑧)), ∅) & ⊢ (𝜑 → 𝐶 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((𝐴 ↑o 𝐶) ·o (𝐹‘𝐶)) ⊆ ((𝐴 CNF 𝐵)‘𝐹)) | ||
| Theorem | cantnflt 9632* | An upper bound on the partial sums of the CNF function. Since each term dominates all previous terms, by induction we can bound the whole sum with any exponent 𝐴 ↑o 𝐶 where 𝐶 is larger than any exponent (𝐺‘𝑥), 𝑥 ∈ 𝐾 which has been summed so far. (Contributed by Mario Carneiro, 28-May-2015.) (Revised by AV, 29-Jun-2019.) |
| ⊢ 𝑆 = dom (𝐴 CNF 𝐵) & ⊢ (𝜑 → 𝐴 ∈ On) & ⊢ (𝜑 → 𝐵 ∈ On) & ⊢ 𝐺 = OrdIso( E , (𝐹 supp ∅)) & ⊢ (𝜑 → 𝐹 ∈ 𝑆) & ⊢ 𝐻 = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑o (𝐺‘𝑘)) ·o (𝐹‘(𝐺‘𝑘))) +o 𝑧)), ∅) & ⊢ (𝜑 → ∅ ∈ 𝐴) & ⊢ (𝜑 → 𝐾 ∈ suc dom 𝐺) & ⊢ (𝜑 → 𝐶 ∈ On) & ⊢ (𝜑 → (𝐺 “ 𝐾) ⊆ 𝐶) ⇒ ⊢ (𝜑 → (𝐻‘𝐾) ∈ (𝐴 ↑o 𝐶)) | ||
| Theorem | cantnflt2 9633 | An upper bound on the CNF function. (Contributed by Mario Carneiro, 28-May-2015.) (Revised by AV, 29-Jun-2019.) |
| ⊢ 𝑆 = dom (𝐴 CNF 𝐵) & ⊢ (𝜑 → 𝐴 ∈ On) & ⊢ (𝜑 → 𝐵 ∈ On) & ⊢ (𝜑 → 𝐹 ∈ 𝑆) & ⊢ (𝜑 → ∅ ∈ 𝐴) & ⊢ (𝜑 → 𝐶 ∈ On) & ⊢ (𝜑 → (𝐹 supp ∅) ⊆ 𝐶) ⇒ ⊢ (𝜑 → ((𝐴 CNF 𝐵)‘𝐹) ∈ (𝐴 ↑o 𝐶)) | ||
| Theorem | cantnff 9634 | The CNF function is a function from finitely supported functions from 𝐵 to 𝐴, to the ordinal exponential 𝐴 ↑o 𝐵. (Contributed by Mario Carneiro, 28-May-2015.) |
| ⊢ 𝑆 = dom (𝐴 CNF 𝐵) & ⊢ (𝜑 → 𝐴 ∈ On) & ⊢ (𝜑 → 𝐵 ∈ On) ⇒ ⊢ (𝜑 → (𝐴 CNF 𝐵):𝑆⟶(𝐴 ↑o 𝐵)) | ||
| Theorem | cantnf0 9635 | The value of the zero function. (Contributed by Mario Carneiro, 30-May-2015.) |
| ⊢ 𝑆 = dom (𝐴 CNF 𝐵) & ⊢ (𝜑 → 𝐴 ∈ On) & ⊢ (𝜑 → 𝐵 ∈ On) & ⊢ (𝜑 → ∅ ∈ 𝐴) ⇒ ⊢ (𝜑 → ((𝐴 CNF 𝐵)‘(𝐵 × {∅})) = ∅) | ||
| Theorem | cantnfrescl 9636* | A function is finitely supported from 𝐵 to 𝐴 iff the extended function is finitely supported from 𝐷 to 𝐴. (Contributed by Mario Carneiro, 25-May-2015.) |
| ⊢ 𝑆 = dom (𝐴 CNF 𝐵) & ⊢ (𝜑 → 𝐴 ∈ On) & ⊢ (𝜑 → 𝐵 ∈ On) & ⊢ (𝜑 → 𝐷 ∈ On) & ⊢ (𝜑 → 𝐵 ⊆ 𝐷) & ⊢ ((𝜑 ∧ 𝑛 ∈ (𝐷 ∖ 𝐵)) → 𝑋 = ∅) & ⊢ (𝜑 → ∅ ∈ 𝐴) & ⊢ 𝑇 = dom (𝐴 CNF 𝐷) ⇒ ⊢ (𝜑 → ((𝑛 ∈ 𝐵 ↦ 𝑋) ∈ 𝑆 ↔ (𝑛 ∈ 𝐷 ↦ 𝑋) ∈ 𝑇)) | ||
| Theorem | cantnfres 9637* | The CNF function respects extensions of the domain to a larger ordinal. (Contributed by Mario Carneiro, 25-May-2015.) |
| ⊢ 𝑆 = dom (𝐴 CNF 𝐵) & ⊢ (𝜑 → 𝐴 ∈ On) & ⊢ (𝜑 → 𝐵 ∈ On) & ⊢ (𝜑 → 𝐷 ∈ On) & ⊢ (𝜑 → 𝐵 ⊆ 𝐷) & ⊢ ((𝜑 ∧ 𝑛 ∈ (𝐷 ∖ 𝐵)) → 𝑋 = ∅) & ⊢ (𝜑 → ∅ ∈ 𝐴) & ⊢ 𝑇 = dom (𝐴 CNF 𝐷) & ⊢ (𝜑 → (𝑛 ∈ 𝐵 ↦ 𝑋) ∈ 𝑆) ⇒ ⊢ (𝜑 → ((𝐴 CNF 𝐵)‘(𝑛 ∈ 𝐵 ↦ 𝑋)) = ((𝐴 CNF 𝐷)‘(𝑛 ∈ 𝐷 ↦ 𝑋))) | ||
| Theorem | cantnfp1lem1 9638* | Lemma for cantnfp1 9641. (Contributed by Mario Carneiro, 20-Jun-2015.) (Revised by AV, 30-Jun-2019.) |
| ⊢ 𝑆 = dom (𝐴 CNF 𝐵) & ⊢ (𝜑 → 𝐴 ∈ On) & ⊢ (𝜑 → 𝐵 ∈ On) & ⊢ (𝜑 → 𝐺 ∈ 𝑆) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐴) & ⊢ (𝜑 → (𝐺 supp ∅) ⊆ 𝑋) & ⊢ 𝐹 = (𝑡 ∈ 𝐵 ↦ if(𝑡 = 𝑋, 𝑌, (𝐺‘𝑡))) ⇒ ⊢ (𝜑 → 𝐹 ∈ 𝑆) | ||
| Theorem | cantnfp1lem2 9639* | Lemma for cantnfp1 9641. (Contributed by Mario Carneiro, 28-May-2015.) (Revised by AV, 30-Jun-2019.) |
| ⊢ 𝑆 = dom (𝐴 CNF 𝐵) & ⊢ (𝜑 → 𝐴 ∈ On) & ⊢ (𝜑 → 𝐵 ∈ On) & ⊢ (𝜑 → 𝐺 ∈ 𝑆) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐴) & ⊢ (𝜑 → (𝐺 supp ∅) ⊆ 𝑋) & ⊢ 𝐹 = (𝑡 ∈ 𝐵 ↦ if(𝑡 = 𝑋, 𝑌, (𝐺‘𝑡))) & ⊢ (𝜑 → ∅ ∈ 𝑌) & ⊢ 𝑂 = OrdIso( E , (𝐹 supp ∅)) ⇒ ⊢ (𝜑 → dom 𝑂 = suc ∪ dom 𝑂) | ||
| Theorem | cantnfp1lem3 9640* | Lemma for cantnfp1 9641. (Contributed by Mario Carneiro, 28-May-2015.) (Revised by AV, 1-Jul-2019.) |
| ⊢ 𝑆 = dom (𝐴 CNF 𝐵) & ⊢ (𝜑 → 𝐴 ∈ On) & ⊢ (𝜑 → 𝐵 ∈ On) & ⊢ (𝜑 → 𝐺 ∈ 𝑆) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐴) & ⊢ (𝜑 → (𝐺 supp ∅) ⊆ 𝑋) & ⊢ 𝐹 = (𝑡 ∈ 𝐵 ↦ if(𝑡 = 𝑋, 𝑌, (𝐺‘𝑡))) & ⊢ (𝜑 → ∅ ∈ 𝑌) & ⊢ 𝑂 = OrdIso( E , (𝐹 supp ∅)) & ⊢ 𝐻 = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑o (𝑂‘𝑘)) ·o (𝐹‘(𝑂‘𝑘))) +o 𝑧)), ∅) & ⊢ 𝐾 = OrdIso( E , (𝐺 supp ∅)) & ⊢ 𝑀 = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑o (𝐾‘𝑘)) ·o (𝐺‘(𝐾‘𝑘))) +o 𝑧)), ∅) ⇒ ⊢ (𝜑 → ((𝐴 CNF 𝐵)‘𝐹) = (((𝐴 ↑o 𝑋) ·o 𝑌) +o ((𝐴 CNF 𝐵)‘𝐺))) | ||
| Theorem | cantnfp1 9641* | If 𝐹 is created by adding a single term (𝐹‘𝑋) = 𝑌 to 𝐺, where 𝑋 is larger than any element of the support of 𝐺, then 𝐹 is also a finitely supported function and it is assigned the value ((𝐴 ↑o 𝑋) ·o 𝑌) +o 𝑧 where 𝑧 is the value of 𝐺. (Contributed by Mario Carneiro, 28-May-2015.) (Revised by AV, 1-Jul-2019.) |
| ⊢ 𝑆 = dom (𝐴 CNF 𝐵) & ⊢ (𝜑 → 𝐴 ∈ On) & ⊢ (𝜑 → 𝐵 ∈ On) & ⊢ (𝜑 → 𝐺 ∈ 𝑆) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐴) & ⊢ (𝜑 → (𝐺 supp ∅) ⊆ 𝑋) & ⊢ 𝐹 = (𝑡 ∈ 𝐵 ↦ if(𝑡 = 𝑋, 𝑌, (𝐺‘𝑡))) ⇒ ⊢ (𝜑 → (𝐹 ∈ 𝑆 ∧ ((𝐴 CNF 𝐵)‘𝐹) = (((𝐴 ↑o 𝑋) ·o 𝑌) +o ((𝐴 CNF 𝐵)‘𝐺)))) | ||
| Theorem | oemapso 9642* | The relation 𝑇 is a strict order on 𝑆 (a corollary of wemapso2 9513). (Contributed by Mario Carneiro, 28-May-2015.) |
| ⊢ 𝑆 = dom (𝐴 CNF 𝐵) & ⊢ (𝜑 → 𝐴 ∈ On) & ⊢ (𝜑 → 𝐵 ∈ On) & ⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐵 ((𝑥‘𝑧) ∈ (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐵 (𝑧 ∈ 𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤)))} ⇒ ⊢ (𝜑 → 𝑇 Or 𝑆) | ||
| Theorem | oemapval 9643* | Value of the relation 𝑇. (Contributed by Mario Carneiro, 28-May-2015.) |
| ⊢ 𝑆 = dom (𝐴 CNF 𝐵) & ⊢ (𝜑 → 𝐴 ∈ On) & ⊢ (𝜑 → 𝐵 ∈ On) & ⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐵 ((𝑥‘𝑧) ∈ (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐵 (𝑧 ∈ 𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤)))} & ⊢ (𝜑 → 𝐹 ∈ 𝑆) & ⊢ (𝜑 → 𝐺 ∈ 𝑆) ⇒ ⊢ (𝜑 → (𝐹𝑇𝐺 ↔ ∃𝑧 ∈ 𝐵 ((𝐹‘𝑧) ∈ (𝐺‘𝑧) ∧ ∀𝑤 ∈ 𝐵 (𝑧 ∈ 𝑤 → (𝐹‘𝑤) = (𝐺‘𝑤))))) | ||
| Theorem | oemapvali 9644* | If 𝐹 < 𝐺, then there is some 𝑧 witnessing this, but we can say more and in fact there is a definable expression 𝑋 that also witnesses 𝐹 < 𝐺. (Contributed by Mario Carneiro, 25-May-2015.) |
| ⊢ 𝑆 = dom (𝐴 CNF 𝐵) & ⊢ (𝜑 → 𝐴 ∈ On) & ⊢ (𝜑 → 𝐵 ∈ On) & ⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐵 ((𝑥‘𝑧) ∈ (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐵 (𝑧 ∈ 𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤)))} & ⊢ (𝜑 → 𝐹 ∈ 𝑆) & ⊢ (𝜑 → 𝐺 ∈ 𝑆) & ⊢ (𝜑 → 𝐹𝑇𝐺) & ⊢ 𝑋 = ∪ {𝑐 ∈ 𝐵 ∣ (𝐹‘𝑐) ∈ (𝐺‘𝑐)} ⇒ ⊢ (𝜑 → (𝑋 ∈ 𝐵 ∧ (𝐹‘𝑋) ∈ (𝐺‘𝑋) ∧ ∀𝑤 ∈ 𝐵 (𝑋 ∈ 𝑤 → (𝐹‘𝑤) = (𝐺‘𝑤)))) | ||
| Theorem | cantnflem1a 9645* | Lemma for cantnf 9653. (Contributed by Mario Carneiro, 4-Jun-2015.) (Revised by AV, 2-Jul-2019.) |
| ⊢ 𝑆 = dom (𝐴 CNF 𝐵) & ⊢ (𝜑 → 𝐴 ∈ On) & ⊢ (𝜑 → 𝐵 ∈ On) & ⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐵 ((𝑥‘𝑧) ∈ (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐵 (𝑧 ∈ 𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤)))} & ⊢ (𝜑 → 𝐹 ∈ 𝑆) & ⊢ (𝜑 → 𝐺 ∈ 𝑆) & ⊢ (𝜑 → 𝐹𝑇𝐺) & ⊢ 𝑋 = ∪ {𝑐 ∈ 𝐵 ∣ (𝐹‘𝑐) ∈ (𝐺‘𝑐)} ⇒ ⊢ (𝜑 → 𝑋 ∈ (𝐺 supp ∅)) | ||
| Theorem | cantnflem1b 9646* | Lemma for cantnf 9653. (Contributed by Mario Carneiro, 4-Jun-2015.) (Revised by AV, 2-Jul-2019.) |
| ⊢ 𝑆 = dom (𝐴 CNF 𝐵) & ⊢ (𝜑 → 𝐴 ∈ On) & ⊢ (𝜑 → 𝐵 ∈ On) & ⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐵 ((𝑥‘𝑧) ∈ (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐵 (𝑧 ∈ 𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤)))} & ⊢ (𝜑 → 𝐹 ∈ 𝑆) & ⊢ (𝜑 → 𝐺 ∈ 𝑆) & ⊢ (𝜑 → 𝐹𝑇𝐺) & ⊢ 𝑋 = ∪ {𝑐 ∈ 𝐵 ∣ (𝐹‘𝑐) ∈ (𝐺‘𝑐)} & ⊢ 𝑂 = OrdIso( E , (𝐺 supp ∅)) ⇒ ⊢ ((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) → 𝑋 ⊆ (𝑂‘𝑢)) | ||
| Theorem | cantnflem1c 9647* | Lemma for cantnf 9653. (Contributed by Mario Carneiro, 4-Jun-2015.) (Revised by AV, 2-Jul-2019.) (Proof shortened by AV, 4-Apr-2020.) |
| ⊢ 𝑆 = dom (𝐴 CNF 𝐵) & ⊢ (𝜑 → 𝐴 ∈ On) & ⊢ (𝜑 → 𝐵 ∈ On) & ⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐵 ((𝑥‘𝑧) ∈ (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐵 (𝑧 ∈ 𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤)))} & ⊢ (𝜑 → 𝐹 ∈ 𝑆) & ⊢ (𝜑 → 𝐺 ∈ 𝑆) & ⊢ (𝜑 → 𝐹𝑇𝐺) & ⊢ 𝑋 = ∪ {𝑐 ∈ 𝐵 ∣ (𝐹‘𝑐) ∈ (𝐺‘𝑐)} & ⊢ 𝑂 = OrdIso( E , (𝐺 supp ∅)) ⇒ ⊢ ((((𝜑 ∧ (suc 𝑢 ∈ dom 𝑂 ∧ (◡𝑂‘𝑋) ⊆ 𝑢)) ∧ 𝑥 ∈ 𝐵) ∧ ((𝐹‘𝑥) ≠ ∅ ∧ (𝑂‘𝑢) ∈ 𝑥)) → 𝑥 ∈ (𝐺 supp ∅)) | ||
| Theorem | cantnflem1d 9648* | Lemma for cantnf 9653. (Contributed by Mario Carneiro, 4-Jun-2015.) (Revised by AV, 2-Jul-2019.) |
| ⊢ 𝑆 = dom (𝐴 CNF 𝐵) & ⊢ (𝜑 → 𝐴 ∈ On) & ⊢ (𝜑 → 𝐵 ∈ On) & ⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐵 ((𝑥‘𝑧) ∈ (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐵 (𝑧 ∈ 𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤)))} & ⊢ (𝜑 → 𝐹 ∈ 𝑆) & ⊢ (𝜑 → 𝐺 ∈ 𝑆) & ⊢ (𝜑 → 𝐹𝑇𝐺) & ⊢ 𝑋 = ∪ {𝑐 ∈ 𝐵 ∣ (𝐹‘𝑐) ∈ (𝐺‘𝑐)} & ⊢ 𝑂 = OrdIso( E , (𝐺 supp ∅)) & ⊢ 𝐻 = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑o (𝑂‘𝑘)) ·o (𝐺‘(𝑂‘𝑘))) +o 𝑧)), ∅) ⇒ ⊢ (𝜑 → ((𝐴 CNF 𝐵)‘(𝑥 ∈ 𝐵 ↦ if(𝑥 ⊆ 𝑋, (𝐹‘𝑥), ∅))) ∈ (𝐻‘suc (◡𝑂‘𝑋))) | ||
| Theorem | cantnflem1 9649* | Lemma for cantnf 9653. This part of the proof is showing uniqueness of the Cantor normal form. We already know that the relation 𝑇 is a strict order, but we haven't shown it is a well-order yet. But being a strict order is enough to show that two distinct 𝐹, 𝐺 are 𝑇 -related as 𝐹 < 𝐺 or 𝐺 < 𝐹, and WLOG assuming that 𝐹 < 𝐺, we show that CNF respects this order and maps these two to different ordinals. (Contributed by Mario Carneiro, 28-May-2015.) (Revised by AV, 2-Jul-2019.) |
| ⊢ 𝑆 = dom (𝐴 CNF 𝐵) & ⊢ (𝜑 → 𝐴 ∈ On) & ⊢ (𝜑 → 𝐵 ∈ On) & ⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐵 ((𝑥‘𝑧) ∈ (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐵 (𝑧 ∈ 𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤)))} & ⊢ (𝜑 → 𝐹 ∈ 𝑆) & ⊢ (𝜑 → 𝐺 ∈ 𝑆) & ⊢ (𝜑 → 𝐹𝑇𝐺) & ⊢ 𝑋 = ∪ {𝑐 ∈ 𝐵 ∣ (𝐹‘𝑐) ∈ (𝐺‘𝑐)} & ⊢ 𝑂 = OrdIso( E , (𝐺 supp ∅)) & ⊢ 𝐻 = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑o (𝑂‘𝑘)) ·o (𝐺‘(𝑂‘𝑘))) +o 𝑧)), ∅) ⇒ ⊢ (𝜑 → ((𝐴 CNF 𝐵)‘𝐹) ∈ ((𝐴 CNF 𝐵)‘𝐺)) | ||
| Theorem | cantnflem2 9650* | Lemma for cantnf 9653. (Contributed by Mario Carneiro, 28-May-2015.) |
| ⊢ 𝑆 = dom (𝐴 CNF 𝐵) & ⊢ (𝜑 → 𝐴 ∈ On) & ⊢ (𝜑 → 𝐵 ∈ On) & ⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐵 ((𝑥‘𝑧) ∈ (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐵 (𝑧 ∈ 𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤)))} & ⊢ (𝜑 → 𝐶 ∈ (𝐴 ↑o 𝐵)) & ⊢ (𝜑 → 𝐶 ⊆ ran (𝐴 CNF 𝐵)) & ⊢ (𝜑 → ∅ ∈ 𝐶) ⇒ ⊢ (𝜑 → (𝐴 ∈ (On ∖ 2o) ∧ 𝐶 ∈ (On ∖ 1o))) | ||
| Theorem | cantnflem3 9651* | Lemma for cantnf 9653. Here we show existence of Cantor normal forms. Assuming (by transfinite induction) that every number less than 𝐶 has a normal form, we can use oeeu 8570 to factor 𝐶 into the form ((𝐴 ↑o 𝑋) ·o 𝑌) +o 𝑍 where 0 < 𝑌 < 𝐴 and 𝑍 < (𝐴 ↑o 𝑋) (and a fortiori 𝑋 < 𝐵). Then since 𝑍 < (𝐴 ↑o 𝑋) ≤ (𝐴 ↑o 𝑋) ·o 𝑌 ≤ 𝐶, 𝑍 has a normal form, and by appending the term (𝐴 ↑o 𝑋) ·o 𝑌 using cantnfp1 9641 we get a normal form for 𝐶. (Contributed by Mario Carneiro, 28-May-2015.) |
| ⊢ 𝑆 = dom (𝐴 CNF 𝐵) & ⊢ (𝜑 → 𝐴 ∈ On) & ⊢ (𝜑 → 𝐵 ∈ On) & ⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐵 ((𝑥‘𝑧) ∈ (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐵 (𝑧 ∈ 𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤)))} & ⊢ (𝜑 → 𝐶 ∈ (𝐴 ↑o 𝐵)) & ⊢ (𝜑 → 𝐶 ⊆ ran (𝐴 CNF 𝐵)) & ⊢ (𝜑 → ∅ ∈ 𝐶) & ⊢ 𝑋 = ∪ ∩ {𝑐 ∈ On ∣ 𝐶 ∈ (𝐴 ↑o 𝑐)} & ⊢ 𝑃 = (℩𝑑∃𝑎 ∈ On ∃𝑏 ∈ (𝐴 ↑o 𝑋)(𝑑 = 〈𝑎, 𝑏〉 ∧ (((𝐴 ↑o 𝑋) ·o 𝑎) +o 𝑏) = 𝐶)) & ⊢ 𝑌 = (1st ‘𝑃) & ⊢ 𝑍 = (2nd ‘𝑃) & ⊢ (𝜑 → 𝐺 ∈ 𝑆) & ⊢ (𝜑 → ((𝐴 CNF 𝐵)‘𝐺) = 𝑍) & ⊢ 𝐹 = (𝑡 ∈ 𝐵 ↦ if(𝑡 = 𝑋, 𝑌, (𝐺‘𝑡))) ⇒ ⊢ (𝜑 → 𝐶 ∈ ran (𝐴 CNF 𝐵)) | ||
| Theorem | cantnflem4 9652* | Lemma for cantnf 9653. Complete the induction step of cantnflem3 9651. (Contributed by Mario Carneiro, 25-May-2015.) |
| ⊢ 𝑆 = dom (𝐴 CNF 𝐵) & ⊢ (𝜑 → 𝐴 ∈ On) & ⊢ (𝜑 → 𝐵 ∈ On) & ⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐵 ((𝑥‘𝑧) ∈ (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐵 (𝑧 ∈ 𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤)))} & ⊢ (𝜑 → 𝐶 ∈ (𝐴 ↑o 𝐵)) & ⊢ (𝜑 → 𝐶 ⊆ ran (𝐴 CNF 𝐵)) & ⊢ (𝜑 → ∅ ∈ 𝐶) & ⊢ 𝑋 = ∪ ∩ {𝑐 ∈ On ∣ 𝐶 ∈ (𝐴 ↑o 𝑐)} & ⊢ 𝑃 = (℩𝑑∃𝑎 ∈ On ∃𝑏 ∈ (𝐴 ↑o 𝑋)(𝑑 = 〈𝑎, 𝑏〉 ∧ (((𝐴 ↑o 𝑋) ·o 𝑎) +o 𝑏) = 𝐶)) & ⊢ 𝑌 = (1st ‘𝑃) & ⊢ 𝑍 = (2nd ‘𝑃) ⇒ ⊢ (𝜑 → 𝐶 ∈ ran (𝐴 CNF 𝐵)) | ||
| Theorem | cantnf 9653* | The Cantor Normal Form theorem. The function (𝐴 CNF 𝐵), which maps a finitely supported function from 𝐵 to 𝐴 to the sum ((𝐴 ↑o 𝑓(𝑎1)) ∘ 𝑎1) +o ((𝐴 ↑o 𝑓(𝑎2)) ∘ 𝑎2) +o ... over all indices 𝑎 < 𝐵 such that 𝑓(𝑎) is nonzero, is an order isomorphism from the ordering 𝑇 of finitely supported functions to the set (𝐴 ↑o 𝐵) under the natural order. Setting 𝐴 = ω and letting 𝐵 be arbitrarily large, the surjectivity of this function implies that every ordinal has a Cantor normal form (and injectivity, together with coherence cantnfres 9637, implies that such a representation is unique). (Contributed by Mario Carneiro, 28-May-2015.) |
| ⊢ 𝑆 = dom (𝐴 CNF 𝐵) & ⊢ (𝜑 → 𝐴 ∈ On) & ⊢ (𝜑 → 𝐵 ∈ On) & ⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐵 ((𝑥‘𝑧) ∈ (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐵 (𝑧 ∈ 𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤)))} ⇒ ⊢ (𝜑 → (𝐴 CNF 𝐵) Isom 𝑇, E (𝑆, (𝐴 ↑o 𝐵))) | ||
| Theorem | oemapwe 9654* | The lexicographic order on a function space of ordinals gives a well-ordering with order type equal to the ordinal exponential. This provides an alternate definition of the ordinal exponential. (Contributed by Mario Carneiro, 28-May-2015.) |
| ⊢ 𝑆 = dom (𝐴 CNF 𝐵) & ⊢ (𝜑 → 𝐴 ∈ On) & ⊢ (𝜑 → 𝐵 ∈ On) & ⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐵 ((𝑥‘𝑧) ∈ (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐵 (𝑧 ∈ 𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤)))} ⇒ ⊢ (𝜑 → (𝑇 We 𝑆 ∧ dom OrdIso(𝑇, 𝑆) = (𝐴 ↑o 𝐵))) | ||
| Theorem | cantnffval2 9655* | An alternate definition of df-cnf 9622 which relies on cantnf 9653. (Note that although the use of 𝑆 seems self-referential, one can use cantnfdm 9624 to eliminate it.) (Contributed by Mario Carneiro, 28-May-2015.) |
| ⊢ 𝑆 = dom (𝐴 CNF 𝐵) & ⊢ (𝜑 → 𝐴 ∈ On) & ⊢ (𝜑 → 𝐵 ∈ On) & ⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐵 ((𝑥‘𝑧) ∈ (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐵 (𝑧 ∈ 𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤)))} ⇒ ⊢ (𝜑 → (𝐴 CNF 𝐵) = ◡OrdIso(𝑇, 𝑆)) | ||
| Theorem | cantnff1o 9656 | Simplify the isomorphism of cantnf 9653 to simple bijection. (Contributed by Mario Carneiro, 30-May-2015.) |
| ⊢ 𝑆 = dom (𝐴 CNF 𝐵) & ⊢ (𝜑 → 𝐴 ∈ On) & ⊢ (𝜑 → 𝐵 ∈ On) ⇒ ⊢ (𝜑 → (𝐴 CNF 𝐵):𝑆–1-1-onto→(𝐴 ↑o 𝐵)) | ||
| Theorem | wemapwe 9657* | Construct lexicographic order on a function space based on a reverse well-ordering of the indices and a well-ordering of the values. (Contributed by Mario Carneiro, 29-May-2015.) (Revised by AV, 3-Jul-2019.) |
| ⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐴 ((𝑥‘𝑧)𝑆(𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐴 (𝑧𝑅𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤)))} & ⊢ 𝑈 = {𝑥 ∈ (𝐵 ↑m 𝐴) ∣ 𝑥 finSupp 𝑍} & ⊢ (𝜑 → 𝑅 We 𝐴) & ⊢ (𝜑 → 𝑆 We 𝐵) & ⊢ (𝜑 → 𝐵 ≠ ∅) & ⊢ 𝐹 = OrdIso(𝑅, 𝐴) & ⊢ 𝐺 = OrdIso(𝑆, 𝐵) & ⊢ 𝑍 = (𝐺‘∅) ⇒ ⊢ (𝜑 → 𝑇 We 𝑈) | ||
| Theorem | oef1o 9658* | A bijection of the base sets induces a bijection on ordinal exponentials. (The assumption (𝐹‘∅) = ∅ can be discharged using fveqf1o 7280.) (Contributed by Mario Carneiro, 30-May-2015.) (Revised by AV, 3-Jul-2019.) |
| ⊢ (𝜑 → 𝐹:𝐴–1-1-onto→𝐶) & ⊢ (𝜑 → 𝐺:𝐵–1-1-onto→𝐷) & ⊢ (𝜑 → 𝐴 ∈ (On ∖ 1o)) & ⊢ (𝜑 → 𝐵 ∈ On) & ⊢ (𝜑 → 𝐶 ∈ On) & ⊢ (𝜑 → 𝐷 ∈ On) & ⊢ (𝜑 → (𝐹‘∅) = ∅) & ⊢ 𝐾 = (𝑦 ∈ {𝑥 ∈ (𝐴 ↑m 𝐵) ∣ 𝑥 finSupp ∅} ↦ (𝐹 ∘ (𝑦 ∘ ◡𝐺))) & ⊢ 𝐻 = (((𝐶 CNF 𝐷) ∘ 𝐾) ∘ ◡(𝐴 CNF 𝐵)) ⇒ ⊢ (𝜑 → 𝐻:(𝐴 ↑o 𝐵)–1-1-onto→(𝐶 ↑o 𝐷)) | ||
| Theorem | cnfcomlem 9659* | Lemma for cnfcom 9660. (Contributed by Mario Carneiro, 30-May-2015.) (Revised by AV, 3-Jul-2019.) |
| ⊢ 𝑆 = dom (ω CNF 𝐴) & ⊢ (𝜑 → 𝐴 ∈ On) & ⊢ (𝜑 → 𝐵 ∈ (ω ↑o 𝐴)) & ⊢ 𝐹 = (◡(ω CNF 𝐴)‘𝐵) & ⊢ 𝐺 = OrdIso( E , (𝐹 supp ∅)) & ⊢ 𝐻 = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (𝑀 +o 𝑧)), ∅) & ⊢ 𝑇 = seqω((𝑘 ∈ V, 𝑓 ∈ V ↦ 𝐾), ∅) & ⊢ 𝑀 = ((ω ↑o (𝐺‘𝑘)) ·o (𝐹‘(𝐺‘𝑘))) & ⊢ 𝐾 = ((𝑥 ∈ 𝑀 ↦ (dom 𝑓 +o 𝑥)) ∪ ◡(𝑥 ∈ dom 𝑓 ↦ (𝑀 +o 𝑥))) & ⊢ (𝜑 → 𝐼 ∈ dom 𝐺) & ⊢ (𝜑 → 𝑂 ∈ (ω ↑o (𝐺‘𝐼))) & ⊢ (𝜑 → (𝑇‘𝐼):(𝐻‘𝐼)–1-1-onto→𝑂) ⇒ ⊢ (𝜑 → (𝑇‘suc 𝐼):(𝐻‘suc 𝐼)–1-1-onto→((ω ↑o (𝐺‘𝐼)) ·o (𝐹‘(𝐺‘𝐼)))) | ||
| Theorem | cnfcom 9660* | Any ordinal 𝐵 is equinumerous to the leading term of its Cantor normal form. Here we show that bijection explicitly. (Contributed by Mario Carneiro, 30-May-2015.) (Revised by AV, 3-Jul-2019.) |
| ⊢ 𝑆 = dom (ω CNF 𝐴) & ⊢ (𝜑 → 𝐴 ∈ On) & ⊢ (𝜑 → 𝐵 ∈ (ω ↑o 𝐴)) & ⊢ 𝐹 = (◡(ω CNF 𝐴)‘𝐵) & ⊢ 𝐺 = OrdIso( E , (𝐹 supp ∅)) & ⊢ 𝐻 = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (𝑀 +o 𝑧)), ∅) & ⊢ 𝑇 = seqω((𝑘 ∈ V, 𝑓 ∈ V ↦ 𝐾), ∅) & ⊢ 𝑀 = ((ω ↑o (𝐺‘𝑘)) ·o (𝐹‘(𝐺‘𝑘))) & ⊢ 𝐾 = ((𝑥 ∈ 𝑀 ↦ (dom 𝑓 +o 𝑥)) ∪ ◡(𝑥 ∈ dom 𝑓 ↦ (𝑀 +o 𝑥))) & ⊢ (𝜑 → 𝐼 ∈ dom 𝐺) ⇒ ⊢ (𝜑 → (𝑇‘suc 𝐼):(𝐻‘suc 𝐼)–1-1-onto→((ω ↑o (𝐺‘𝐼)) ·o (𝐹‘(𝐺‘𝐼)))) | ||
| Theorem | cnfcom2lem 9661* | Lemma for cnfcom2 9662. (Contributed by Mario Carneiro, 30-May-2015.) (Revised by AV, 3-Jul-2019.) |
| ⊢ 𝑆 = dom (ω CNF 𝐴) & ⊢ (𝜑 → 𝐴 ∈ On) & ⊢ (𝜑 → 𝐵 ∈ (ω ↑o 𝐴)) & ⊢ 𝐹 = (◡(ω CNF 𝐴)‘𝐵) & ⊢ 𝐺 = OrdIso( E , (𝐹 supp ∅)) & ⊢ 𝐻 = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (𝑀 +o 𝑧)), ∅) & ⊢ 𝑇 = seqω((𝑘 ∈ V, 𝑓 ∈ V ↦ 𝐾), ∅) & ⊢ 𝑀 = ((ω ↑o (𝐺‘𝑘)) ·o (𝐹‘(𝐺‘𝑘))) & ⊢ 𝐾 = ((𝑥 ∈ 𝑀 ↦ (dom 𝑓 +o 𝑥)) ∪ ◡(𝑥 ∈ dom 𝑓 ↦ (𝑀 +o 𝑥))) & ⊢ 𝑊 = (𝐺‘∪ dom 𝐺) & ⊢ (𝜑 → ∅ ∈ 𝐵) ⇒ ⊢ (𝜑 → dom 𝐺 = suc ∪ dom 𝐺) | ||
| Theorem | cnfcom2 9662* | Any nonzero ordinal 𝐵 is equinumerous to the leading term of its Cantor normal form. (Contributed by Mario Carneiro, 30-May-2015.) (Revised by AV, 3-Jul-2019.) |
| ⊢ 𝑆 = dom (ω CNF 𝐴) & ⊢ (𝜑 → 𝐴 ∈ On) & ⊢ (𝜑 → 𝐵 ∈ (ω ↑o 𝐴)) & ⊢ 𝐹 = (◡(ω CNF 𝐴)‘𝐵) & ⊢ 𝐺 = OrdIso( E , (𝐹 supp ∅)) & ⊢ 𝐻 = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (𝑀 +o 𝑧)), ∅) & ⊢ 𝑇 = seqω((𝑘 ∈ V, 𝑓 ∈ V ↦ 𝐾), ∅) & ⊢ 𝑀 = ((ω ↑o (𝐺‘𝑘)) ·o (𝐹‘(𝐺‘𝑘))) & ⊢ 𝐾 = ((𝑥 ∈ 𝑀 ↦ (dom 𝑓 +o 𝑥)) ∪ ◡(𝑥 ∈ dom 𝑓 ↦ (𝑀 +o 𝑥))) & ⊢ 𝑊 = (𝐺‘∪ dom 𝐺) & ⊢ (𝜑 → ∅ ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑇‘dom 𝐺):𝐵–1-1-onto→((ω ↑o 𝑊) ·o (𝐹‘𝑊))) | ||
| Theorem | cnfcom3lem 9663* | Lemma for cnfcom3 9664. (Contributed by Mario Carneiro, 30-May-2015.) (Revised by AV, 4-Jul-2019.) |
| ⊢ 𝑆 = dom (ω CNF 𝐴) & ⊢ (𝜑 → 𝐴 ∈ On) & ⊢ (𝜑 → 𝐵 ∈ (ω ↑o 𝐴)) & ⊢ 𝐹 = (◡(ω CNF 𝐴)‘𝐵) & ⊢ 𝐺 = OrdIso( E , (𝐹 supp ∅)) & ⊢ 𝐻 = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (𝑀 +o 𝑧)), ∅) & ⊢ 𝑇 = seqω((𝑘 ∈ V, 𝑓 ∈ V ↦ 𝐾), ∅) & ⊢ 𝑀 = ((ω ↑o (𝐺‘𝑘)) ·o (𝐹‘(𝐺‘𝑘))) & ⊢ 𝐾 = ((𝑥 ∈ 𝑀 ↦ (dom 𝑓 +o 𝑥)) ∪ ◡(𝑥 ∈ dom 𝑓 ↦ (𝑀 +o 𝑥))) & ⊢ 𝑊 = (𝐺‘∪ dom 𝐺) & ⊢ (𝜑 → ω ⊆ 𝐵) ⇒ ⊢ (𝜑 → 𝑊 ∈ (On ∖ 1o)) | ||
| Theorem | cnfcom3 9664* | Any infinite ordinal 𝐵 is equinumerous to a power of ω. (We are being careful here to show explicit bijections rather than simple equinumerosity because we want a uniform construction for cnfcom3c 9666.) (Contributed by Mario Carneiro, 28-May-2015.) (Revised by AV, 4-Jul-2019.) |
| ⊢ 𝑆 = dom (ω CNF 𝐴) & ⊢ (𝜑 → 𝐴 ∈ On) & ⊢ (𝜑 → 𝐵 ∈ (ω ↑o 𝐴)) & ⊢ 𝐹 = (◡(ω CNF 𝐴)‘𝐵) & ⊢ 𝐺 = OrdIso( E , (𝐹 supp ∅)) & ⊢ 𝐻 = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (𝑀 +o 𝑧)), ∅) & ⊢ 𝑇 = seqω((𝑘 ∈ V, 𝑓 ∈ V ↦ 𝐾), ∅) & ⊢ 𝑀 = ((ω ↑o (𝐺‘𝑘)) ·o (𝐹‘(𝐺‘𝑘))) & ⊢ 𝐾 = ((𝑥 ∈ 𝑀 ↦ (dom 𝑓 +o 𝑥)) ∪ ◡(𝑥 ∈ dom 𝑓 ↦ (𝑀 +o 𝑥))) & ⊢ 𝑊 = (𝐺‘∪ dom 𝐺) & ⊢ (𝜑 → ω ⊆ 𝐵) & ⊢ 𝑋 = (𝑢 ∈ (𝐹‘𝑊), 𝑣 ∈ (ω ↑o 𝑊) ↦ (((𝐹‘𝑊) ·o 𝑣) +o 𝑢)) & ⊢ 𝑌 = (𝑢 ∈ (𝐹‘𝑊), 𝑣 ∈ (ω ↑o 𝑊) ↦ (((ω ↑o 𝑊) ·o 𝑢) +o 𝑣)) & ⊢ 𝑁 = ((𝑋 ∘ ◡𝑌) ∘ (𝑇‘dom 𝐺)) ⇒ ⊢ (𝜑 → 𝑁:𝐵–1-1-onto→(ω ↑o 𝑊)) | ||
| Theorem | cnfcom3clem 9665* | Lemma for cnfcom3c 9666. (Contributed by Mario Carneiro, 30-May-2015.) (Revised by AV, 4-Jul-2019.) |
| ⊢ 𝑆 = dom (ω CNF 𝐴) & ⊢ 𝐹 = (◡(ω CNF 𝐴)‘𝑏) & ⊢ 𝐺 = OrdIso( E , (𝐹 supp ∅)) & ⊢ 𝐻 = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (𝑀 +o 𝑧)), ∅) & ⊢ 𝑇 = seqω((𝑘 ∈ V, 𝑓 ∈ V ↦ 𝐾), ∅) & ⊢ 𝑀 = ((ω ↑o (𝐺‘𝑘)) ·o (𝐹‘(𝐺‘𝑘))) & ⊢ 𝐾 = ((𝑥 ∈ 𝑀 ↦ (dom 𝑓 +o 𝑥)) ∪ ◡(𝑥 ∈ dom 𝑓 ↦ (𝑀 +o 𝑥))) & ⊢ 𝑊 = (𝐺‘∪ dom 𝐺) & ⊢ 𝑋 = (𝑢 ∈ (𝐹‘𝑊), 𝑣 ∈ (ω ↑o 𝑊) ↦ (((𝐹‘𝑊) ·o 𝑣) +o 𝑢)) & ⊢ 𝑌 = (𝑢 ∈ (𝐹‘𝑊), 𝑣 ∈ (ω ↑o 𝑊) ↦ (((ω ↑o 𝑊) ·o 𝑢) +o 𝑣)) & ⊢ 𝑁 = ((𝑋 ∘ ◡𝑌) ∘ (𝑇‘dom 𝐺)) & ⊢ 𝐿 = (𝑏 ∈ (ω ↑o 𝐴) ↦ 𝑁) ⇒ ⊢ (𝐴 ∈ On → ∃𝑔∀𝑏 ∈ 𝐴 (ω ⊆ 𝑏 → ∃𝑤 ∈ (On ∖ 1o)(𝑔‘𝑏):𝑏–1-1-onto→(ω ↑o 𝑤))) | ||
| Theorem | cnfcom3c 9666* | Wrap the construction of cnfcom3 9664 into an existential quantifier. For any ω ⊆ 𝑏, there is a bijection from 𝑏 to some power of ω. Furthermore, this bijection is canonical , which means that we can find a single function 𝑔 which will give such bijections for every 𝑏 less than some arbitrarily large bound 𝐴. (Contributed by Mario Carneiro, 30-May-2015.) |
| ⊢ (𝐴 ∈ On → ∃𝑔∀𝑏 ∈ 𝐴 (ω ⊆ 𝑏 → ∃𝑤 ∈ (On ∖ 1o)(𝑔‘𝑏):𝑏–1-1-onto→(ω ↑o 𝑤))) | ||
| Syntax | cttrcl 9667 | Declare the syntax for the transitive closure of a class. |
| class t++𝑅 | ||
| Definition | df-ttrcl 9668* | Define the transitive closure of a class. This is the smallest relation containing 𝑅 (or more precisely, the relation (𝑅 ↾ V) induced by 𝑅) and having the transitive property. Definition from [Levy] p. 59, who denotes it as 𝑅∗ and calls it the "ancestral" of 𝑅. (Contributed by Scott Fenton, 17-Oct-2024.) |
| ⊢ t++𝑅 = {〈𝑥, 𝑦〉 ∣ ∃𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑦) ∧ ∀𝑚 ∈ 𝑛 (𝑓‘𝑚)𝑅(𝑓‘suc 𝑚))} | ||
| Theorem | ttrcleq 9669 | Equality theorem for transitive closure. (Contributed by Scott Fenton, 17-Oct-2024.) |
| ⊢ (𝑅 = 𝑆 → t++𝑅 = t++𝑆) | ||
| Theorem | nfttrcld 9670 | Bound variable hypothesis builder for transitive closure. Deduction form. (Contributed by Scott Fenton, 26-Oct-2024.) |
| ⊢ (𝜑 → Ⅎ𝑥𝑅) ⇒ ⊢ (𝜑 → Ⅎ𝑥t++𝑅) | ||
| Theorem | nfttrcl 9671 | Bound variable hypothesis builder for transitive closure. (Contributed by Scott Fenton, 17-Oct-2024.) |
| ⊢ Ⅎ𝑥𝑅 ⇒ ⊢ Ⅎ𝑥t++𝑅 | ||
| Theorem | relttrcl 9672 | The transitive closure of a class is a relation. (Contributed by Scott Fenton, 17-Oct-2024.) |
| ⊢ Rel t++𝑅 | ||
| Theorem | brttrcl 9673* | Characterization of elements of the transitive closure of a relation. (Contributed by Scott Fenton, 18-Aug-2024.) |
| ⊢ (𝐴t++𝑅𝐵 ↔ ∃𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓‘𝑛) = 𝐵) ∧ ∀𝑎 ∈ 𝑛 (𝑓‘𝑎)𝑅(𝑓‘suc 𝑎))) | ||
| Theorem | brttrcl2 9674* | Characterization of elements of the transitive closure of a relation. (Contributed by Scott Fenton, 24-Aug-2024.) |
| ⊢ (𝐴t++𝑅𝐵 ↔ ∃𝑛 ∈ ω ∃𝑓(𝑓 Fn suc suc 𝑛 ∧ ((𝑓‘∅) = 𝐴 ∧ (𝑓‘suc 𝑛) = 𝐵) ∧ ∀𝑎 ∈ suc 𝑛(𝑓‘𝑎)𝑅(𝑓‘suc 𝑎))) | ||
| Theorem | ssttrcl 9675 | If 𝑅 is a relation, then it is a subclass of its transitive closure. (Contributed by Scott Fenton, 17-Oct-2024.) |
| ⊢ (Rel 𝑅 → 𝑅 ⊆ t++𝑅) | ||
| Theorem | ttrcltr 9676 | The transitive closure of a class is transitive. (Contributed by Scott Fenton, 17-Oct-2024.) |
| ⊢ (t++𝑅 ∘ t++𝑅) ⊆ t++𝑅 | ||
| Theorem | ttrclresv 9677 | The transitive closure of 𝑅 restricted to V is the same as the transitive closure of 𝑅 itself. (Contributed by Scott Fenton, 20-Oct-2024.) |
| ⊢ t++(𝑅 ↾ V) = t++𝑅 | ||
| Theorem | ttrclco 9678 | Composition law for the transitive closure of a relation. (Contributed by Scott Fenton, 20-Oct-2024.) |
| ⊢ (t++𝑅 ∘ 𝑅) ⊆ t++𝑅 | ||
| Theorem | cottrcl 9679 | Composition law for the transitive closure of a relation. (Contributed by Scott Fenton, 20-Oct-2024.) |
| ⊢ (𝑅 ∘ t++𝑅) ⊆ t++𝑅 | ||
| Theorem | ttrclss 9680 | If 𝑅 is a subclass of 𝑆 and 𝑆 is transitive, then the transitive closure of 𝑅 is a subclass of 𝑆. (Contributed by Scott Fenton, 20-Oct-2024.) |
| ⊢ ((𝑅 ⊆ 𝑆 ∧ (𝑆 ∘ 𝑆) ⊆ 𝑆) → t++𝑅 ⊆ 𝑆) | ||
| Theorem | dmttrcl 9681 | The domain of a transitive closure is the same as the domain of the original class. (Contributed by Scott Fenton, 26-Oct-2024.) |
| ⊢ dom t++𝑅 = dom 𝑅 | ||
| Theorem | rnttrcl 9682 | The range of a transitive closure is the same as the range of the original class. (Contributed by Scott Fenton, 26-Oct-2024.) |
| ⊢ ran t++𝑅 = ran 𝑅 | ||
| Theorem | ttrclexg 9683 | If 𝑅 is a set, then so is t++𝑅. (Contributed by Scott Fenton, 26-Oct-2024.) |
| ⊢ (𝑅 ∈ 𝑉 → t++𝑅 ∈ V) | ||
| Theorem | dfttrcl2 9684* | When 𝑅 is a set and a relation, then its transitive closure can be defined by an intersection. (Contributed by Scott Fenton, 26-Oct-2024.) |
| ⊢ ((𝑅 ∈ 𝑉 ∧ Rel 𝑅) → t++𝑅 = ∩ {𝑧 ∣ (𝑅 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)}) | ||
| Theorem | ttrclselem1 9685* | Lemma for ttrclse 9687. Show that all finite ordinal function values of 𝐹 are subsets of 𝐴. (Contributed by Scott Fenton, 31-Oct-2024.) |
| ⊢ 𝐹 = rec((𝑏 ∈ V ↦ ∪ 𝑤 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑋)) ⇒ ⊢ (𝑁 ∈ ω → (𝐹‘𝑁) ⊆ 𝐴) | ||
| Theorem | ttrclselem2 9686* | Lemma for ttrclse 9687. Show that a suc 𝑁 element long chain gives membership in the 𝑁-th predecessor class and vice-versa. (Contributed by Scott Fenton, 31-Oct-2024.) |
| ⊢ 𝐹 = rec((𝑏 ∈ V ↦ ∪ 𝑤 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑤)), Pred(𝑅, 𝐴, 𝑋)) ⇒ ⊢ ((𝑁 ∈ ω ∧ 𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴) → (∃𝑓(𝑓 Fn suc suc 𝑁 ∧ ((𝑓‘∅) = 𝑦 ∧ (𝑓‘suc 𝑁) = 𝑋) ∧ ∀𝑎 ∈ suc 𝑁(𝑓‘𝑎)(𝑅 ↾ 𝐴)(𝑓‘suc 𝑎)) ↔ 𝑦 ∈ (𝐹‘𝑁))) | ||
| Theorem | ttrclse 9687 |
If 𝑅 is set-like over 𝐴, then
the transitive closure of the
restriction of 𝑅 to 𝐴 is set-like over 𝐴.
This theorem requires the axioms of infinity and replacement for its proof. (Contributed by Scott Fenton, 31-Oct-2024.) |
| ⊢ (𝑅 Se 𝐴 → t++(𝑅 ↾ 𝐴) Se 𝐴) | ||
| Theorem | trcl 9688* | For any set 𝐴, show the properties of its transitive closure 𝐶. Similar to Theorem 9.1 of [TakeutiZaring] p. 73 except that we show an explicit expression for the transitive closure rather than just its existence. See tz9.1 9689 for an abbreviated version showing existence. (Contributed by NM, 14-Sep-2003.) (Revised by Mario Carneiro, 11-Sep-2015.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐹 = (rec((𝑧 ∈ V ↦ (𝑧 ∪ ∪ 𝑧)), 𝐴) ↾ ω) & ⊢ 𝐶 = ∪ 𝑦 ∈ ω (𝐹‘𝑦) ⇒ ⊢ (𝐴 ⊆ 𝐶 ∧ Tr 𝐶 ∧ ∀𝑥((𝐴 ⊆ 𝑥 ∧ Tr 𝑥) → 𝐶 ⊆ 𝑥)) | ||
| Theorem | tz9.1 9689* |
Every set has a transitive closure (the smallest transitive extension).
Theorem 9.1 of [TakeutiZaring] p.
73. See trcl 9688 for an explicit
expression for the transitive closure. Apparently open problems are
whether this theorem can be proved without the Axiom of Infinity; if
not, then whether it implies Infinity; and if not, what is the
"property" that Infinity has that the other axioms don't have
that is
weaker than Infinity itself?
(Added 22-Mar-2011) The following article seems to answer the first question, that it can't be proved without Infinity, in the affirmative: Mancini, Antonella and Zambella, Domenico (2001). "A note on recursive models of set theories." Notre Dame Journal of Formal Logic, 42(2):109-115. (Thanks to Scott Fenton.) (Contributed by NM, 15-Sep-2003.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ ∃𝑥(𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ∧ ∀𝑦((𝐴 ⊆ 𝑦 ∧ Tr 𝑦) → 𝑥 ⊆ 𝑦)) | ||
| Theorem | tz9.1c 9690* | Alternate expression for the existence of transitive closures tz9.1 9689: the intersection of all transitive sets containing 𝐴 is a set. (Contributed by Mario Carneiro, 22-Mar-2013.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ ∩ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ Tr 𝑥)} ∈ V | ||
| Theorem | epfrs 9691* | The strong form of the Axiom of Regularity (no sethood requirement on 𝐴), with the axiom itself present as an antecedent. See also zfregs 9692. (Contributed by Mario Carneiro, 22-Mar-2013.) |
| ⊢ (( E Fr 𝐴 ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 (𝑥 ∩ 𝐴) = ∅) | ||
| Theorem | zfregs 9692* | The strong form of the Axiom of Regularity, which does not require that 𝐴 be a set. Axiom 6' of [TakeutiZaring] p. 21. See also epfrs 9691. (Contributed by NM, 17-Sep-2003.) |
| ⊢ (𝐴 ≠ ∅ → ∃𝑥 ∈ 𝐴 (𝑥 ∩ 𝐴) = ∅) | ||
| Theorem | zfregs2 9693* | Alternate strong form of the Axiom of Regularity. Not every element of a nonempty class contains some element of that class. (Contributed by Alan Sare, 24-Oct-2011.) (Proof shortened by Wolf Lammen, 27-Sep-2013.) |
| ⊢ (𝐴 ≠ ∅ → ¬ ∀𝑥 ∈ 𝐴 ∃𝑦(𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥)) | ||
| Theorem | setind 9694* | Set (epsilon) induction. Theorem 5.22 of [TakeutiZaring] p. 21. (Contributed by NM, 17-Sep-2003.) |
| ⊢ (∀𝑥(𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴) → 𝐴 = V) | ||
| Theorem | setind2 9695 | Set (epsilon) induction, stated compactly. Given as a homework problem in 1992 by George Boolos (1940-1996). (Contributed by NM, 17-Sep-2003.) |
| ⊢ (𝒫 𝐴 ⊆ 𝐴 → 𝐴 = V) | ||
| Syntax | ctc 9696 | Extend class notation to include the transitive closure function. |
| class TC | ||
| Definition | df-tc 9697* | The transitive closure function. (Contributed by Mario Carneiro, 23-Jun-2013.) |
| ⊢ TC = (𝑥 ∈ V ↦ ∩ {𝑦 ∣ (𝑥 ⊆ 𝑦 ∧ Tr 𝑦)}) | ||
| Theorem | tcvalg 9698* | Value of the transitive closure function. (The fact that this intersection exists is a non-trivial fact that depends on ax-inf 9598; see tz9.1 9689.) (Contributed by Mario Carneiro, 23-Jun-2013.) |
| ⊢ (𝐴 ∈ 𝑉 → (TC‘𝐴) = ∩ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ Tr 𝑥)}) | ||
| Theorem | tcid 9699 | Defining property of the transitive closure function: it contains its argument as a subset. (Contributed by Mario Carneiro, 23-Jun-2013.) |
| ⊢ (𝐴 ∈ 𝑉 → 𝐴 ⊆ (TC‘𝐴)) | ||
| Theorem | tctr 9700 | Defining property of the transitive closure function: it is transitive. (Contributed by Mario Carneiro, 23-Jun-2013.) |
| ⊢ Tr (TC‘𝐴) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |