| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > axinf2 | Structured version Visualization version GIF version | ||
| Description: A standard version of
Axiom of Infinity, expanded to primitives, derived
from our version of Infinity ax-inf 9598 and Regularity ax-reg 9552.
This theorem should not be referenced in any proof. Instead, use ax-inf2 9601 below so that the ordinary uses of Regularity can be more easily identified. (New usage is discouraged.) (Contributed by NM, 3-Nov-1996.) |
| Ref | Expression |
|---|---|
| axinf2 | ⊢ ∃𝑥(∃𝑦(𝑦 ∈ 𝑥 ∧ ∀𝑧 ¬ 𝑧 ∈ 𝑦) ∧ ∀𝑦(𝑦 ∈ 𝑥 → ∃𝑧(𝑧 ∈ 𝑥 ∧ ∀𝑤(𝑤 ∈ 𝑧 ↔ (𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | peano1 7868 | . . 3 ⊢ ∅ ∈ ω | |
| 2 | peano2 7869 | . . . 4 ⊢ (𝑦 ∈ ω → suc 𝑦 ∈ ω) | |
| 3 | 2 | ax-gen 1795 | . . 3 ⊢ ∀𝑦(𝑦 ∈ ω → suc 𝑦 ∈ ω) |
| 4 | zfinf 9599 | . . . . . 6 ⊢ ∃𝑥(𝑦 ∈ 𝑥 ∧ ∀𝑦(𝑦 ∈ 𝑥 → ∃𝑧(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥))) | |
| 5 | 4 | inf2 9583 | . . . . 5 ⊢ ∃𝑥(𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥) |
| 6 | 5 | inf3 9595 | . . . 4 ⊢ ω ∈ V |
| 7 | eleq2 2818 | . . . . 5 ⊢ (𝑥 = ω → (∅ ∈ 𝑥 ↔ ∅ ∈ ω)) | |
| 8 | eleq2 2818 | . . . . . . 7 ⊢ (𝑥 = ω → (𝑦 ∈ 𝑥 ↔ 𝑦 ∈ ω)) | |
| 9 | eleq2 2818 | . . . . . . 7 ⊢ (𝑥 = ω → (suc 𝑦 ∈ 𝑥 ↔ suc 𝑦 ∈ ω)) | |
| 10 | 8, 9 | imbi12d 344 | . . . . . 6 ⊢ (𝑥 = ω → ((𝑦 ∈ 𝑥 → suc 𝑦 ∈ 𝑥) ↔ (𝑦 ∈ ω → suc 𝑦 ∈ ω))) |
| 11 | 10 | albidv 1920 | . . . . 5 ⊢ (𝑥 = ω → (∀𝑦(𝑦 ∈ 𝑥 → suc 𝑦 ∈ 𝑥) ↔ ∀𝑦(𝑦 ∈ ω → suc 𝑦 ∈ ω))) |
| 12 | 7, 11 | anbi12d 632 | . . . 4 ⊢ (𝑥 = ω → ((∅ ∈ 𝑥 ∧ ∀𝑦(𝑦 ∈ 𝑥 → suc 𝑦 ∈ 𝑥)) ↔ (∅ ∈ ω ∧ ∀𝑦(𝑦 ∈ ω → suc 𝑦 ∈ ω)))) |
| 13 | 6, 12 | spcev 3575 | . . 3 ⊢ ((∅ ∈ ω ∧ ∀𝑦(𝑦 ∈ ω → suc 𝑦 ∈ ω)) → ∃𝑥(∅ ∈ 𝑥 ∧ ∀𝑦(𝑦 ∈ 𝑥 → suc 𝑦 ∈ 𝑥))) |
| 14 | 1, 3, 13 | mp2an 692 | . 2 ⊢ ∃𝑥(∅ ∈ 𝑥 ∧ ∀𝑦(𝑦 ∈ 𝑥 → suc 𝑦 ∈ 𝑥)) |
| 15 | 0el 4329 | . . . . 5 ⊢ (∅ ∈ 𝑥 ↔ ∃𝑦 ∈ 𝑥 ∀𝑧 ¬ 𝑧 ∈ 𝑦) | |
| 16 | df-rex 3055 | . . . . 5 ⊢ (∃𝑦 ∈ 𝑥 ∀𝑧 ¬ 𝑧 ∈ 𝑦 ↔ ∃𝑦(𝑦 ∈ 𝑥 ∧ ∀𝑧 ¬ 𝑧 ∈ 𝑦)) | |
| 17 | 15, 16 | bitri 275 | . . . 4 ⊢ (∅ ∈ 𝑥 ↔ ∃𝑦(𝑦 ∈ 𝑥 ∧ ∀𝑧 ¬ 𝑧 ∈ 𝑦)) |
| 18 | sucel 6411 | . . . . . . 7 ⊢ (suc 𝑦 ∈ 𝑥 ↔ ∃𝑧 ∈ 𝑥 ∀𝑤(𝑤 ∈ 𝑧 ↔ (𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦))) | |
| 19 | df-rex 3055 | . . . . . . 7 ⊢ (∃𝑧 ∈ 𝑥 ∀𝑤(𝑤 ∈ 𝑧 ↔ (𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦)) ↔ ∃𝑧(𝑧 ∈ 𝑥 ∧ ∀𝑤(𝑤 ∈ 𝑧 ↔ (𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦)))) | |
| 20 | 18, 19 | bitri 275 | . . . . . 6 ⊢ (suc 𝑦 ∈ 𝑥 ↔ ∃𝑧(𝑧 ∈ 𝑥 ∧ ∀𝑤(𝑤 ∈ 𝑧 ↔ (𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦)))) |
| 21 | 20 | imbi2i 336 | . . . . 5 ⊢ ((𝑦 ∈ 𝑥 → suc 𝑦 ∈ 𝑥) ↔ (𝑦 ∈ 𝑥 → ∃𝑧(𝑧 ∈ 𝑥 ∧ ∀𝑤(𝑤 ∈ 𝑧 ↔ (𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦))))) |
| 22 | 21 | albii 1819 | . . . 4 ⊢ (∀𝑦(𝑦 ∈ 𝑥 → suc 𝑦 ∈ 𝑥) ↔ ∀𝑦(𝑦 ∈ 𝑥 → ∃𝑧(𝑧 ∈ 𝑥 ∧ ∀𝑤(𝑤 ∈ 𝑧 ↔ (𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦))))) |
| 23 | 17, 22 | anbi12i 628 | . . 3 ⊢ ((∅ ∈ 𝑥 ∧ ∀𝑦(𝑦 ∈ 𝑥 → suc 𝑦 ∈ 𝑥)) ↔ (∃𝑦(𝑦 ∈ 𝑥 ∧ ∀𝑧 ¬ 𝑧 ∈ 𝑦) ∧ ∀𝑦(𝑦 ∈ 𝑥 → ∃𝑧(𝑧 ∈ 𝑥 ∧ ∀𝑤(𝑤 ∈ 𝑧 ↔ (𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦)))))) |
| 24 | 23 | exbii 1848 | . 2 ⊢ (∃𝑥(∅ ∈ 𝑥 ∧ ∀𝑦(𝑦 ∈ 𝑥 → suc 𝑦 ∈ 𝑥)) ↔ ∃𝑥(∃𝑦(𝑦 ∈ 𝑥 ∧ ∀𝑧 ¬ 𝑧 ∈ 𝑦) ∧ ∀𝑦(𝑦 ∈ 𝑥 → ∃𝑧(𝑧 ∈ 𝑥 ∧ ∀𝑤(𝑤 ∈ 𝑧 ↔ (𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦)))))) |
| 25 | 14, 24 | mpbi 230 | 1 ⊢ ∃𝑥(∃𝑦(𝑦 ∈ 𝑥 ∧ ∀𝑧 ¬ 𝑧 ∈ 𝑦) ∧ ∀𝑦(𝑦 ∈ 𝑥 → ∃𝑧(𝑧 ∈ 𝑥 ∧ ∀𝑤(𝑤 ∈ 𝑧 ↔ (𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦))))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∀wal 1538 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∃wrex 3054 ∅c0 4299 suc csuc 6337 ωcom 7845 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-reg 9552 ax-inf 9598 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |