MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axinf2 Structured version   Visualization version   GIF version

Theorem axinf2 9681
Description: A standard version of Axiom of Infinity, expanded to primitives, derived from our version of Infinity ax-inf 9679 and Regularity ax-reg 9633.

This theorem should not be referenced in any proof. Instead, use ax-inf2 9682 below so that the ordinary uses of Regularity can be more easily identified. (New usage is discouraged.) (Contributed by NM, 3-Nov-1996.)

Assertion
Ref Expression
axinf2 𝑥(∃𝑦(𝑦𝑥 ∧ ∀𝑧 ¬ 𝑧𝑦) ∧ ∀𝑦(𝑦𝑥 → ∃𝑧(𝑧𝑥 ∧ ∀𝑤(𝑤𝑧 ↔ (𝑤𝑦𝑤 = 𝑦)))))
Distinct variable group:   𝑥,𝑦,𝑧,𝑤

Proof of Theorem axinf2
StepHypRef Expression
1 peano1 7911 . . 3 ∅ ∈ ω
2 peano2 7913 . . . 4 (𝑦 ∈ ω → suc 𝑦 ∈ ω)
32ax-gen 1794 . . 3 𝑦(𝑦 ∈ ω → suc 𝑦 ∈ ω)
4 zfinf 9680 . . . . . 6 𝑥(𝑦𝑥 ∧ ∀𝑦(𝑦𝑥 → ∃𝑧(𝑦𝑧𝑧𝑥)))
54inf2 9664 . . . . 5 𝑥(𝑥 ≠ ∅ ∧ 𝑥 𝑥)
65inf3 9676 . . . 4 ω ∈ V
7 eleq2 2829 . . . . 5 (𝑥 = ω → (∅ ∈ 𝑥 ↔ ∅ ∈ ω))
8 eleq2 2829 . . . . . . 7 (𝑥 = ω → (𝑦𝑥𝑦 ∈ ω))
9 eleq2 2829 . . . . . . 7 (𝑥 = ω → (suc 𝑦𝑥 ↔ suc 𝑦 ∈ ω))
108, 9imbi12d 344 . . . . . 6 (𝑥 = ω → ((𝑦𝑥 → suc 𝑦𝑥) ↔ (𝑦 ∈ ω → suc 𝑦 ∈ ω)))
1110albidv 1919 . . . . 5 (𝑥 = ω → (∀𝑦(𝑦𝑥 → suc 𝑦𝑥) ↔ ∀𝑦(𝑦 ∈ ω → suc 𝑦 ∈ ω)))
127, 11anbi12d 632 . . . 4 (𝑥 = ω → ((∅ ∈ 𝑥 ∧ ∀𝑦(𝑦𝑥 → suc 𝑦𝑥)) ↔ (∅ ∈ ω ∧ ∀𝑦(𝑦 ∈ ω → suc 𝑦 ∈ ω))))
136, 12spcev 3605 . . 3 ((∅ ∈ ω ∧ ∀𝑦(𝑦 ∈ ω → suc 𝑦 ∈ ω)) → ∃𝑥(∅ ∈ 𝑥 ∧ ∀𝑦(𝑦𝑥 → suc 𝑦𝑥)))
141, 3, 13mp2an 692 . 2 𝑥(∅ ∈ 𝑥 ∧ ∀𝑦(𝑦𝑥 → suc 𝑦𝑥))
15 0el 4362 . . . . 5 (∅ ∈ 𝑥 ↔ ∃𝑦𝑥𝑧 ¬ 𝑧𝑦)
16 df-rex 3070 . . . . 5 (∃𝑦𝑥𝑧 ¬ 𝑧𝑦 ↔ ∃𝑦(𝑦𝑥 ∧ ∀𝑧 ¬ 𝑧𝑦))
1715, 16bitri 275 . . . 4 (∅ ∈ 𝑥 ↔ ∃𝑦(𝑦𝑥 ∧ ∀𝑧 ¬ 𝑧𝑦))
18 sucel 6457 . . . . . . 7 (suc 𝑦𝑥 ↔ ∃𝑧𝑥𝑤(𝑤𝑧 ↔ (𝑤𝑦𝑤 = 𝑦)))
19 df-rex 3070 . . . . . . 7 (∃𝑧𝑥𝑤(𝑤𝑧 ↔ (𝑤𝑦𝑤 = 𝑦)) ↔ ∃𝑧(𝑧𝑥 ∧ ∀𝑤(𝑤𝑧 ↔ (𝑤𝑦𝑤 = 𝑦))))
2018, 19bitri 275 . . . . . 6 (suc 𝑦𝑥 ↔ ∃𝑧(𝑧𝑥 ∧ ∀𝑤(𝑤𝑧 ↔ (𝑤𝑦𝑤 = 𝑦))))
2120imbi2i 336 . . . . 5 ((𝑦𝑥 → suc 𝑦𝑥) ↔ (𝑦𝑥 → ∃𝑧(𝑧𝑥 ∧ ∀𝑤(𝑤𝑧 ↔ (𝑤𝑦𝑤 = 𝑦)))))
2221albii 1818 . . . 4 (∀𝑦(𝑦𝑥 → suc 𝑦𝑥) ↔ ∀𝑦(𝑦𝑥 → ∃𝑧(𝑧𝑥 ∧ ∀𝑤(𝑤𝑧 ↔ (𝑤𝑦𝑤 = 𝑦)))))
2317, 22anbi12i 628 . . 3 ((∅ ∈ 𝑥 ∧ ∀𝑦(𝑦𝑥 → suc 𝑦𝑥)) ↔ (∃𝑦(𝑦𝑥 ∧ ∀𝑧 ¬ 𝑧𝑦) ∧ ∀𝑦(𝑦𝑥 → ∃𝑧(𝑧𝑥 ∧ ∀𝑤(𝑤𝑧 ↔ (𝑤𝑦𝑤 = 𝑦))))))
2423exbii 1847 . 2 (∃𝑥(∅ ∈ 𝑥 ∧ ∀𝑦(𝑦𝑥 → suc 𝑦𝑥)) ↔ ∃𝑥(∃𝑦(𝑦𝑥 ∧ ∀𝑧 ¬ 𝑧𝑦) ∧ ∀𝑦(𝑦𝑥 → ∃𝑧(𝑧𝑥 ∧ ∀𝑤(𝑤𝑧 ↔ (𝑤𝑦𝑤 = 𝑦))))))
2514, 24mpbi 230 1 𝑥(∃𝑦(𝑦𝑥 ∧ ∀𝑧 ¬ 𝑧𝑦) ∧ ∀𝑦(𝑦𝑥 → ∃𝑧(𝑧𝑥 ∧ ∀𝑤(𝑤𝑧 ↔ (𝑤𝑦𝑤 = 𝑦)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  wal 1537   = wceq 1539  wex 1778  wcel 2107  wrex 3069  c0 4332  suc csuc 6385  ωcom 7888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-reg 9633  ax-inf 9679
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-ov 7435  df-om 7889  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator