![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > axinf2 | Structured version Visualization version GIF version |
Description: A standard version of
Axiom of Infinity, expanded to primitives, derived
from our version of Infinity ax-inf 9676 and Regularity ax-reg 9630.
This theorem should not be referenced in any proof. Instead, use ax-inf2 9679 below so that the ordinary uses of Regularity can be more easily identified. (New usage is discouraged.) (Contributed by NM, 3-Nov-1996.) |
Ref | Expression |
---|---|
axinf2 | ⊢ ∃𝑥(∃𝑦(𝑦 ∈ 𝑥 ∧ ∀𝑧 ¬ 𝑧 ∈ 𝑦) ∧ ∀𝑦(𝑦 ∈ 𝑥 → ∃𝑧(𝑧 ∈ 𝑥 ∧ ∀𝑤(𝑤 ∈ 𝑧 ↔ (𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | peano1 7911 | . . 3 ⊢ ∅ ∈ ω | |
2 | peano2 7913 | . . . 4 ⊢ (𝑦 ∈ ω → suc 𝑦 ∈ ω) | |
3 | 2 | ax-gen 1792 | . . 3 ⊢ ∀𝑦(𝑦 ∈ ω → suc 𝑦 ∈ ω) |
4 | zfinf 9677 | . . . . . 6 ⊢ ∃𝑥(𝑦 ∈ 𝑥 ∧ ∀𝑦(𝑦 ∈ 𝑥 → ∃𝑧(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥))) | |
5 | 4 | inf2 9661 | . . . . 5 ⊢ ∃𝑥(𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥) |
6 | 5 | inf3 9673 | . . . 4 ⊢ ω ∈ V |
7 | eleq2 2828 | . . . . 5 ⊢ (𝑥 = ω → (∅ ∈ 𝑥 ↔ ∅ ∈ ω)) | |
8 | eleq2 2828 | . . . . . . 7 ⊢ (𝑥 = ω → (𝑦 ∈ 𝑥 ↔ 𝑦 ∈ ω)) | |
9 | eleq2 2828 | . . . . . . 7 ⊢ (𝑥 = ω → (suc 𝑦 ∈ 𝑥 ↔ suc 𝑦 ∈ ω)) | |
10 | 8, 9 | imbi12d 344 | . . . . . 6 ⊢ (𝑥 = ω → ((𝑦 ∈ 𝑥 → suc 𝑦 ∈ 𝑥) ↔ (𝑦 ∈ ω → suc 𝑦 ∈ ω))) |
11 | 10 | albidv 1918 | . . . . 5 ⊢ (𝑥 = ω → (∀𝑦(𝑦 ∈ 𝑥 → suc 𝑦 ∈ 𝑥) ↔ ∀𝑦(𝑦 ∈ ω → suc 𝑦 ∈ ω))) |
12 | 7, 11 | anbi12d 632 | . . . 4 ⊢ (𝑥 = ω → ((∅ ∈ 𝑥 ∧ ∀𝑦(𝑦 ∈ 𝑥 → suc 𝑦 ∈ 𝑥)) ↔ (∅ ∈ ω ∧ ∀𝑦(𝑦 ∈ ω → suc 𝑦 ∈ ω)))) |
13 | 6, 12 | spcev 3606 | . . 3 ⊢ ((∅ ∈ ω ∧ ∀𝑦(𝑦 ∈ ω → suc 𝑦 ∈ ω)) → ∃𝑥(∅ ∈ 𝑥 ∧ ∀𝑦(𝑦 ∈ 𝑥 → suc 𝑦 ∈ 𝑥))) |
14 | 1, 3, 13 | mp2an 692 | . 2 ⊢ ∃𝑥(∅ ∈ 𝑥 ∧ ∀𝑦(𝑦 ∈ 𝑥 → suc 𝑦 ∈ 𝑥)) |
15 | 0el 4369 | . . . . 5 ⊢ (∅ ∈ 𝑥 ↔ ∃𝑦 ∈ 𝑥 ∀𝑧 ¬ 𝑧 ∈ 𝑦) | |
16 | df-rex 3069 | . . . . 5 ⊢ (∃𝑦 ∈ 𝑥 ∀𝑧 ¬ 𝑧 ∈ 𝑦 ↔ ∃𝑦(𝑦 ∈ 𝑥 ∧ ∀𝑧 ¬ 𝑧 ∈ 𝑦)) | |
17 | 15, 16 | bitri 275 | . . . 4 ⊢ (∅ ∈ 𝑥 ↔ ∃𝑦(𝑦 ∈ 𝑥 ∧ ∀𝑧 ¬ 𝑧 ∈ 𝑦)) |
18 | sucel 6460 | . . . . . . 7 ⊢ (suc 𝑦 ∈ 𝑥 ↔ ∃𝑧 ∈ 𝑥 ∀𝑤(𝑤 ∈ 𝑧 ↔ (𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦))) | |
19 | df-rex 3069 | . . . . . . 7 ⊢ (∃𝑧 ∈ 𝑥 ∀𝑤(𝑤 ∈ 𝑧 ↔ (𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦)) ↔ ∃𝑧(𝑧 ∈ 𝑥 ∧ ∀𝑤(𝑤 ∈ 𝑧 ↔ (𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦)))) | |
20 | 18, 19 | bitri 275 | . . . . . 6 ⊢ (suc 𝑦 ∈ 𝑥 ↔ ∃𝑧(𝑧 ∈ 𝑥 ∧ ∀𝑤(𝑤 ∈ 𝑧 ↔ (𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦)))) |
21 | 20 | imbi2i 336 | . . . . 5 ⊢ ((𝑦 ∈ 𝑥 → suc 𝑦 ∈ 𝑥) ↔ (𝑦 ∈ 𝑥 → ∃𝑧(𝑧 ∈ 𝑥 ∧ ∀𝑤(𝑤 ∈ 𝑧 ↔ (𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦))))) |
22 | 21 | albii 1816 | . . . 4 ⊢ (∀𝑦(𝑦 ∈ 𝑥 → suc 𝑦 ∈ 𝑥) ↔ ∀𝑦(𝑦 ∈ 𝑥 → ∃𝑧(𝑧 ∈ 𝑥 ∧ ∀𝑤(𝑤 ∈ 𝑧 ↔ (𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦))))) |
23 | 17, 22 | anbi12i 628 | . . 3 ⊢ ((∅ ∈ 𝑥 ∧ ∀𝑦(𝑦 ∈ 𝑥 → suc 𝑦 ∈ 𝑥)) ↔ (∃𝑦(𝑦 ∈ 𝑥 ∧ ∀𝑧 ¬ 𝑧 ∈ 𝑦) ∧ ∀𝑦(𝑦 ∈ 𝑥 → ∃𝑧(𝑧 ∈ 𝑥 ∧ ∀𝑤(𝑤 ∈ 𝑧 ↔ (𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦)))))) |
24 | 23 | exbii 1845 | . 2 ⊢ (∃𝑥(∅ ∈ 𝑥 ∧ ∀𝑦(𝑦 ∈ 𝑥 → suc 𝑦 ∈ 𝑥)) ↔ ∃𝑥(∃𝑦(𝑦 ∈ 𝑥 ∧ ∀𝑧 ¬ 𝑧 ∈ 𝑦) ∧ ∀𝑦(𝑦 ∈ 𝑥 → ∃𝑧(𝑧 ∈ 𝑥 ∧ ∀𝑤(𝑤 ∈ 𝑧 ↔ (𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦)))))) |
25 | 14, 24 | mpbi 230 | 1 ⊢ ∃𝑥(∃𝑦(𝑦 ∈ 𝑥 ∧ ∀𝑧 ¬ 𝑧 ∈ 𝑦) ∧ ∀𝑦(𝑦 ∈ 𝑥 → ∃𝑧(𝑧 ∈ 𝑥 ∧ ∀𝑤(𝑤 ∈ 𝑧 ↔ (𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦))))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∀wal 1535 = wceq 1537 ∃wex 1776 ∈ wcel 2106 ∃wrex 3068 ∅c0 4339 suc csuc 6388 ωcom 7887 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-reg 9630 ax-inf 9676 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-ov 7434 df-om 7888 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |