![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > axinf2 | Structured version Visualization version GIF version |
Description: A standard version of
Axiom of Infinity, expanded to primitives, derived
from our version of Infinity ax-inf 9661 and Regularity ax-reg 9615.
This theorem should not be referenced in any proof. Instead, use ax-inf2 9664 below so that the ordinary uses of Regularity can be more easily identified. (New usage is discouraged.) (Contributed by NM, 3-Nov-1996.) |
Ref | Expression |
---|---|
axinf2 | ⊢ ∃𝑥(∃𝑦(𝑦 ∈ 𝑥 ∧ ∀𝑧 ¬ 𝑧 ∈ 𝑦) ∧ ∀𝑦(𝑦 ∈ 𝑥 → ∃𝑧(𝑧 ∈ 𝑥 ∧ ∀𝑤(𝑤 ∈ 𝑧 ↔ (𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | peano1 7894 | . . 3 ⊢ ∅ ∈ ω | |
2 | peano2 7896 | . . . 4 ⊢ (𝑦 ∈ ω → suc 𝑦 ∈ ω) | |
3 | 2 | ax-gen 1790 | . . 3 ⊢ ∀𝑦(𝑦 ∈ ω → suc 𝑦 ∈ ω) |
4 | zfinf 9662 | . . . . . 6 ⊢ ∃𝑥(𝑦 ∈ 𝑥 ∧ ∀𝑦(𝑦 ∈ 𝑥 → ∃𝑧(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥))) | |
5 | 4 | inf2 9646 | . . . . 5 ⊢ ∃𝑥(𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥) |
6 | 5 | inf3 9658 | . . . 4 ⊢ ω ∈ V |
7 | eleq2 2818 | . . . . 5 ⊢ (𝑥 = ω → (∅ ∈ 𝑥 ↔ ∅ ∈ ω)) | |
8 | eleq2 2818 | . . . . . . 7 ⊢ (𝑥 = ω → (𝑦 ∈ 𝑥 ↔ 𝑦 ∈ ω)) | |
9 | eleq2 2818 | . . . . . . 7 ⊢ (𝑥 = ω → (suc 𝑦 ∈ 𝑥 ↔ suc 𝑦 ∈ ω)) | |
10 | 8, 9 | imbi12d 344 | . . . . . 6 ⊢ (𝑥 = ω → ((𝑦 ∈ 𝑥 → suc 𝑦 ∈ 𝑥) ↔ (𝑦 ∈ ω → suc 𝑦 ∈ ω))) |
11 | 10 | albidv 1916 | . . . . 5 ⊢ (𝑥 = ω → (∀𝑦(𝑦 ∈ 𝑥 → suc 𝑦 ∈ 𝑥) ↔ ∀𝑦(𝑦 ∈ ω → suc 𝑦 ∈ ω))) |
12 | 7, 11 | anbi12d 631 | . . . 4 ⊢ (𝑥 = ω → ((∅ ∈ 𝑥 ∧ ∀𝑦(𝑦 ∈ 𝑥 → suc 𝑦 ∈ 𝑥)) ↔ (∅ ∈ ω ∧ ∀𝑦(𝑦 ∈ ω → suc 𝑦 ∈ ω)))) |
13 | 6, 12 | spcev 3593 | . . 3 ⊢ ((∅ ∈ ω ∧ ∀𝑦(𝑦 ∈ ω → suc 𝑦 ∈ ω)) → ∃𝑥(∅ ∈ 𝑥 ∧ ∀𝑦(𝑦 ∈ 𝑥 → suc 𝑦 ∈ 𝑥))) |
14 | 1, 3, 13 | mp2an 691 | . 2 ⊢ ∃𝑥(∅ ∈ 𝑥 ∧ ∀𝑦(𝑦 ∈ 𝑥 → suc 𝑦 ∈ 𝑥)) |
15 | 0el 4361 | . . . . 5 ⊢ (∅ ∈ 𝑥 ↔ ∃𝑦 ∈ 𝑥 ∀𝑧 ¬ 𝑧 ∈ 𝑦) | |
16 | df-rex 3068 | . . . . 5 ⊢ (∃𝑦 ∈ 𝑥 ∀𝑧 ¬ 𝑧 ∈ 𝑦 ↔ ∃𝑦(𝑦 ∈ 𝑥 ∧ ∀𝑧 ¬ 𝑧 ∈ 𝑦)) | |
17 | 15, 16 | bitri 275 | . . . 4 ⊢ (∅ ∈ 𝑥 ↔ ∃𝑦(𝑦 ∈ 𝑥 ∧ ∀𝑧 ¬ 𝑧 ∈ 𝑦)) |
18 | sucel 6443 | . . . . . . 7 ⊢ (suc 𝑦 ∈ 𝑥 ↔ ∃𝑧 ∈ 𝑥 ∀𝑤(𝑤 ∈ 𝑧 ↔ (𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦))) | |
19 | df-rex 3068 | . . . . . . 7 ⊢ (∃𝑧 ∈ 𝑥 ∀𝑤(𝑤 ∈ 𝑧 ↔ (𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦)) ↔ ∃𝑧(𝑧 ∈ 𝑥 ∧ ∀𝑤(𝑤 ∈ 𝑧 ↔ (𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦)))) | |
20 | 18, 19 | bitri 275 | . . . . . 6 ⊢ (suc 𝑦 ∈ 𝑥 ↔ ∃𝑧(𝑧 ∈ 𝑥 ∧ ∀𝑤(𝑤 ∈ 𝑧 ↔ (𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦)))) |
21 | 20 | imbi2i 336 | . . . . 5 ⊢ ((𝑦 ∈ 𝑥 → suc 𝑦 ∈ 𝑥) ↔ (𝑦 ∈ 𝑥 → ∃𝑧(𝑧 ∈ 𝑥 ∧ ∀𝑤(𝑤 ∈ 𝑧 ↔ (𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦))))) |
22 | 21 | albii 1814 | . . . 4 ⊢ (∀𝑦(𝑦 ∈ 𝑥 → suc 𝑦 ∈ 𝑥) ↔ ∀𝑦(𝑦 ∈ 𝑥 → ∃𝑧(𝑧 ∈ 𝑥 ∧ ∀𝑤(𝑤 ∈ 𝑧 ↔ (𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦))))) |
23 | 17, 22 | anbi12i 627 | . . 3 ⊢ ((∅ ∈ 𝑥 ∧ ∀𝑦(𝑦 ∈ 𝑥 → suc 𝑦 ∈ 𝑥)) ↔ (∃𝑦(𝑦 ∈ 𝑥 ∧ ∀𝑧 ¬ 𝑧 ∈ 𝑦) ∧ ∀𝑦(𝑦 ∈ 𝑥 → ∃𝑧(𝑧 ∈ 𝑥 ∧ ∀𝑤(𝑤 ∈ 𝑧 ↔ (𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦)))))) |
24 | 23 | exbii 1843 | . 2 ⊢ (∃𝑥(∅ ∈ 𝑥 ∧ ∀𝑦(𝑦 ∈ 𝑥 → suc 𝑦 ∈ 𝑥)) ↔ ∃𝑥(∃𝑦(𝑦 ∈ 𝑥 ∧ ∀𝑧 ¬ 𝑧 ∈ 𝑦) ∧ ∀𝑦(𝑦 ∈ 𝑥 → ∃𝑧(𝑧 ∈ 𝑥 ∧ ∀𝑤(𝑤 ∈ 𝑧 ↔ (𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦)))))) |
25 | 14, 24 | mpbi 229 | 1 ⊢ ∃𝑥(∃𝑦(𝑦 ∈ 𝑥 ∧ ∀𝑧 ¬ 𝑧 ∈ 𝑦) ∧ ∀𝑦(𝑦 ∈ 𝑥 → ∃𝑧(𝑧 ∈ 𝑥 ∧ ∀𝑤(𝑤 ∈ 𝑧 ↔ (𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦))))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∨ wo 846 ∀wal 1532 = wceq 1534 ∃wex 1774 ∈ wcel 2099 ∃wrex 3067 ∅c0 4323 suc csuc 6371 ωcom 7870 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-reg 9615 ax-inf 9661 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-ov 7423 df-om 7871 df-2nd 7994 df-frecs 8286 df-wrecs 8317 df-recs 8391 df-rdg 8430 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |