MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axinf2 Structured version   Visualization version   GIF version

Theorem axinf2 9091
Description: A standard version of Axiom of Infinity, expanded to primitives, derived from our version of Infinity ax-inf 9089 and Regularity ax-reg 9044.

This theorem should not be referenced in any proof. Instead, use ax-inf2 9092 below so that the ordinary uses of Regularity can be more easily identified. (New usage is discouraged.) (Contributed by NM, 3-Nov-1996.)

Assertion
Ref Expression
axinf2 𝑥(∃𝑦(𝑦𝑥 ∧ ∀𝑧 ¬ 𝑧𝑦) ∧ ∀𝑦(𝑦𝑥 → ∃𝑧(𝑧𝑥 ∧ ∀𝑤(𝑤𝑧 ↔ (𝑤𝑦𝑤 = 𝑦)))))
Distinct variable group:   𝑥,𝑦,𝑧,𝑤

Proof of Theorem axinf2
StepHypRef Expression
1 peano1 7586 . . 3 ∅ ∈ ω
2 peano2 7587 . . . 4 (𝑦 ∈ ω → suc 𝑦 ∈ ω)
32ax-gen 1797 . . 3 𝑦(𝑦 ∈ ω → suc 𝑦 ∈ ω)
4 zfinf 9090 . . . . . 6 𝑥(𝑦𝑥 ∧ ∀𝑦(𝑦𝑥 → ∃𝑧(𝑦𝑧𝑧𝑥)))
54inf2 9074 . . . . 5 𝑥(𝑥 ≠ ∅ ∧ 𝑥 𝑥)
65inf3 9086 . . . 4 ω ∈ V
7 eleq2 2902 . . . . 5 (𝑥 = ω → (∅ ∈ 𝑥 ↔ ∅ ∈ ω))
8 eleq2 2902 . . . . . . 7 (𝑥 = ω → (𝑦𝑥𝑦 ∈ ω))
9 eleq2 2902 . . . . . . 7 (𝑥 = ω → (suc 𝑦𝑥 ↔ suc 𝑦 ∈ ω))
108, 9imbi12d 348 . . . . . 6 (𝑥 = ω → ((𝑦𝑥 → suc 𝑦𝑥) ↔ (𝑦 ∈ ω → suc 𝑦 ∈ ω)))
1110albidv 1921 . . . . 5 (𝑥 = ω → (∀𝑦(𝑦𝑥 → suc 𝑦𝑥) ↔ ∀𝑦(𝑦 ∈ ω → suc 𝑦 ∈ ω)))
127, 11anbi12d 633 . . . 4 (𝑥 = ω → ((∅ ∈ 𝑥 ∧ ∀𝑦(𝑦𝑥 → suc 𝑦𝑥)) ↔ (∅ ∈ ω ∧ ∀𝑦(𝑦 ∈ ω → suc 𝑦 ∈ ω))))
136, 12spcev 3582 . . 3 ((∅ ∈ ω ∧ ∀𝑦(𝑦 ∈ ω → suc 𝑦 ∈ ω)) → ∃𝑥(∅ ∈ 𝑥 ∧ ∀𝑦(𝑦𝑥 → suc 𝑦𝑥)))
141, 3, 13mp2an 691 . 2 𝑥(∅ ∈ 𝑥 ∧ ∀𝑦(𝑦𝑥 → suc 𝑦𝑥))
15 0el 4292 . . . . 5 (∅ ∈ 𝑥 ↔ ∃𝑦𝑥𝑧 ¬ 𝑧𝑦)
16 df-rex 3136 . . . . 5 (∃𝑦𝑥𝑧 ¬ 𝑧𝑦 ↔ ∃𝑦(𝑦𝑥 ∧ ∀𝑧 ¬ 𝑧𝑦))
1715, 16bitri 278 . . . 4 (∅ ∈ 𝑥 ↔ ∃𝑦(𝑦𝑥 ∧ ∀𝑧 ¬ 𝑧𝑦))
18 sucel 6242 . . . . . . 7 (suc 𝑦𝑥 ↔ ∃𝑧𝑥𝑤(𝑤𝑧 ↔ (𝑤𝑦𝑤 = 𝑦)))
19 df-rex 3136 . . . . . . 7 (∃𝑧𝑥𝑤(𝑤𝑧 ↔ (𝑤𝑦𝑤 = 𝑦)) ↔ ∃𝑧(𝑧𝑥 ∧ ∀𝑤(𝑤𝑧 ↔ (𝑤𝑦𝑤 = 𝑦))))
2018, 19bitri 278 . . . . . 6 (suc 𝑦𝑥 ↔ ∃𝑧(𝑧𝑥 ∧ ∀𝑤(𝑤𝑧 ↔ (𝑤𝑦𝑤 = 𝑦))))
2120imbi2i 339 . . . . 5 ((𝑦𝑥 → suc 𝑦𝑥) ↔ (𝑦𝑥 → ∃𝑧(𝑧𝑥 ∧ ∀𝑤(𝑤𝑧 ↔ (𝑤𝑦𝑤 = 𝑦)))))
2221albii 1821 . . . 4 (∀𝑦(𝑦𝑥 → suc 𝑦𝑥) ↔ ∀𝑦(𝑦𝑥 → ∃𝑧(𝑧𝑥 ∧ ∀𝑤(𝑤𝑧 ↔ (𝑤𝑦𝑤 = 𝑦)))))
2317, 22anbi12i 629 . . 3 ((∅ ∈ 𝑥 ∧ ∀𝑦(𝑦𝑥 → suc 𝑦𝑥)) ↔ (∃𝑦(𝑦𝑥 ∧ ∀𝑧 ¬ 𝑧𝑦) ∧ ∀𝑦(𝑦𝑥 → ∃𝑧(𝑧𝑥 ∧ ∀𝑤(𝑤𝑧 ↔ (𝑤𝑦𝑤 = 𝑦))))))
2423exbii 1849 . 2 (∃𝑥(∅ ∈ 𝑥 ∧ ∀𝑦(𝑦𝑥 → suc 𝑦𝑥)) ↔ ∃𝑥(∃𝑦(𝑦𝑥 ∧ ∀𝑧 ¬ 𝑧𝑦) ∧ ∀𝑦(𝑦𝑥 → ∃𝑧(𝑧𝑥 ∧ ∀𝑤(𝑤𝑧 ↔ (𝑤𝑦𝑤 = 𝑦))))))
2514, 24mpbi 233 1 𝑥(∃𝑦(𝑦𝑥 ∧ ∀𝑧 ¬ 𝑧𝑦) ∧ ∀𝑦(𝑦𝑥 → ∃𝑧(𝑧𝑥 ∧ ∀𝑤(𝑤𝑧 ↔ (𝑤𝑦𝑤 = 𝑦)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 844  wal 1536   = wceq 1538  wex 1781  wcel 2114  wrex 3131  c0 4265  suc csuc 6171  ωcom 7565
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446  ax-reg 9044  ax-inf 9089
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-ral 3135  df-rex 3136  df-reu 3137  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4814  df-iun 4896  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5437  df-eprel 5442  df-po 5451  df-so 5452  df-fr 5491  df-we 5493  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-om 7566  df-wrecs 7934  df-recs 7995  df-rdg 8033
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator