| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > axinf2 | Structured version Visualization version GIF version | ||
| Description: A standard version of
Axiom of Infinity, expanded to primitives, derived
from our version of Infinity ax-inf 9657 and Regularity ax-reg 9611.
This theorem should not be referenced in any proof. Instead, use ax-inf2 9660 below so that the ordinary uses of Regularity can be more easily identified. (New usage is discouraged.) (Contributed by NM, 3-Nov-1996.) |
| Ref | Expression |
|---|---|
| axinf2 | ⊢ ∃𝑥(∃𝑦(𝑦 ∈ 𝑥 ∧ ∀𝑧 ¬ 𝑧 ∈ 𝑦) ∧ ∀𝑦(𝑦 ∈ 𝑥 → ∃𝑧(𝑧 ∈ 𝑥 ∧ ∀𝑤(𝑤 ∈ 𝑧 ↔ (𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | peano1 7889 | . . 3 ⊢ ∅ ∈ ω | |
| 2 | peano2 7891 | . . . 4 ⊢ (𝑦 ∈ ω → suc 𝑦 ∈ ω) | |
| 3 | 2 | ax-gen 1795 | . . 3 ⊢ ∀𝑦(𝑦 ∈ ω → suc 𝑦 ∈ ω) |
| 4 | zfinf 9658 | . . . . . 6 ⊢ ∃𝑥(𝑦 ∈ 𝑥 ∧ ∀𝑦(𝑦 ∈ 𝑥 → ∃𝑧(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥))) | |
| 5 | 4 | inf2 9642 | . . . . 5 ⊢ ∃𝑥(𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥) |
| 6 | 5 | inf3 9654 | . . . 4 ⊢ ω ∈ V |
| 7 | eleq2 2824 | . . . . 5 ⊢ (𝑥 = ω → (∅ ∈ 𝑥 ↔ ∅ ∈ ω)) | |
| 8 | eleq2 2824 | . . . . . . 7 ⊢ (𝑥 = ω → (𝑦 ∈ 𝑥 ↔ 𝑦 ∈ ω)) | |
| 9 | eleq2 2824 | . . . . . . 7 ⊢ (𝑥 = ω → (suc 𝑦 ∈ 𝑥 ↔ suc 𝑦 ∈ ω)) | |
| 10 | 8, 9 | imbi12d 344 | . . . . . 6 ⊢ (𝑥 = ω → ((𝑦 ∈ 𝑥 → suc 𝑦 ∈ 𝑥) ↔ (𝑦 ∈ ω → suc 𝑦 ∈ ω))) |
| 11 | 10 | albidv 1920 | . . . . 5 ⊢ (𝑥 = ω → (∀𝑦(𝑦 ∈ 𝑥 → suc 𝑦 ∈ 𝑥) ↔ ∀𝑦(𝑦 ∈ ω → suc 𝑦 ∈ ω))) |
| 12 | 7, 11 | anbi12d 632 | . . . 4 ⊢ (𝑥 = ω → ((∅ ∈ 𝑥 ∧ ∀𝑦(𝑦 ∈ 𝑥 → suc 𝑦 ∈ 𝑥)) ↔ (∅ ∈ ω ∧ ∀𝑦(𝑦 ∈ ω → suc 𝑦 ∈ ω)))) |
| 13 | 6, 12 | spcev 3590 | . . 3 ⊢ ((∅ ∈ ω ∧ ∀𝑦(𝑦 ∈ ω → suc 𝑦 ∈ ω)) → ∃𝑥(∅ ∈ 𝑥 ∧ ∀𝑦(𝑦 ∈ 𝑥 → suc 𝑦 ∈ 𝑥))) |
| 14 | 1, 3, 13 | mp2an 692 | . 2 ⊢ ∃𝑥(∅ ∈ 𝑥 ∧ ∀𝑦(𝑦 ∈ 𝑥 → suc 𝑦 ∈ 𝑥)) |
| 15 | 0el 4343 | . . . . 5 ⊢ (∅ ∈ 𝑥 ↔ ∃𝑦 ∈ 𝑥 ∀𝑧 ¬ 𝑧 ∈ 𝑦) | |
| 16 | df-rex 3062 | . . . . 5 ⊢ (∃𝑦 ∈ 𝑥 ∀𝑧 ¬ 𝑧 ∈ 𝑦 ↔ ∃𝑦(𝑦 ∈ 𝑥 ∧ ∀𝑧 ¬ 𝑧 ∈ 𝑦)) | |
| 17 | 15, 16 | bitri 275 | . . . 4 ⊢ (∅ ∈ 𝑥 ↔ ∃𝑦(𝑦 ∈ 𝑥 ∧ ∀𝑧 ¬ 𝑧 ∈ 𝑦)) |
| 18 | sucel 6433 | . . . . . . 7 ⊢ (suc 𝑦 ∈ 𝑥 ↔ ∃𝑧 ∈ 𝑥 ∀𝑤(𝑤 ∈ 𝑧 ↔ (𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦))) | |
| 19 | df-rex 3062 | . . . . . . 7 ⊢ (∃𝑧 ∈ 𝑥 ∀𝑤(𝑤 ∈ 𝑧 ↔ (𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦)) ↔ ∃𝑧(𝑧 ∈ 𝑥 ∧ ∀𝑤(𝑤 ∈ 𝑧 ↔ (𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦)))) | |
| 20 | 18, 19 | bitri 275 | . . . . . 6 ⊢ (suc 𝑦 ∈ 𝑥 ↔ ∃𝑧(𝑧 ∈ 𝑥 ∧ ∀𝑤(𝑤 ∈ 𝑧 ↔ (𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦)))) |
| 21 | 20 | imbi2i 336 | . . . . 5 ⊢ ((𝑦 ∈ 𝑥 → suc 𝑦 ∈ 𝑥) ↔ (𝑦 ∈ 𝑥 → ∃𝑧(𝑧 ∈ 𝑥 ∧ ∀𝑤(𝑤 ∈ 𝑧 ↔ (𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦))))) |
| 22 | 21 | albii 1819 | . . . 4 ⊢ (∀𝑦(𝑦 ∈ 𝑥 → suc 𝑦 ∈ 𝑥) ↔ ∀𝑦(𝑦 ∈ 𝑥 → ∃𝑧(𝑧 ∈ 𝑥 ∧ ∀𝑤(𝑤 ∈ 𝑧 ↔ (𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦))))) |
| 23 | 17, 22 | anbi12i 628 | . . 3 ⊢ ((∅ ∈ 𝑥 ∧ ∀𝑦(𝑦 ∈ 𝑥 → suc 𝑦 ∈ 𝑥)) ↔ (∃𝑦(𝑦 ∈ 𝑥 ∧ ∀𝑧 ¬ 𝑧 ∈ 𝑦) ∧ ∀𝑦(𝑦 ∈ 𝑥 → ∃𝑧(𝑧 ∈ 𝑥 ∧ ∀𝑤(𝑤 ∈ 𝑧 ↔ (𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦)))))) |
| 24 | 23 | exbii 1848 | . 2 ⊢ (∃𝑥(∅ ∈ 𝑥 ∧ ∀𝑦(𝑦 ∈ 𝑥 → suc 𝑦 ∈ 𝑥)) ↔ ∃𝑥(∃𝑦(𝑦 ∈ 𝑥 ∧ ∀𝑧 ¬ 𝑧 ∈ 𝑦) ∧ ∀𝑦(𝑦 ∈ 𝑥 → ∃𝑧(𝑧 ∈ 𝑥 ∧ ∀𝑤(𝑤 ∈ 𝑧 ↔ (𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦)))))) |
| 25 | 14, 24 | mpbi 230 | 1 ⊢ ∃𝑥(∃𝑦(𝑦 ∈ 𝑥 ∧ ∀𝑧 ¬ 𝑧 ∈ 𝑦) ∧ ∀𝑦(𝑦 ∈ 𝑥 → ∃𝑧(𝑧 ∈ 𝑥 ∧ ∀𝑤(𝑤 ∈ 𝑧 ↔ (𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦))))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∀wal 1538 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∃wrex 3061 ∅c0 4313 suc csuc 6359 ωcom 7866 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-reg 9611 ax-inf 9657 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-om 7867 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |