MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax-mulcl Structured version   Visualization version   GIF version

Axiom ax-mulcl 10864
Description: Closure law for multiplication of complex numbers. Axiom 6 of 22 for real and complex numbers, justified by Theorem axmulcl 10840. Proofs should normally use mulcl 10886 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.)
Assertion
Ref Expression
ax-mulcl ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ)

Detailed syntax breakdown of Axiom ax-mulcl
StepHypRef Expression
1 cA . . . 4 class 𝐴
2 cc 10800 . . . 4 class
31, 2wcel 2108 . . 3 wff 𝐴 ∈ ℂ
4 cB . . . 4 class 𝐵
54, 2wcel 2108 . . 3 wff 𝐵 ∈ ℂ
63, 5wa 395 . 2 wff (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ)
7 cmul 10807 . . . 4 class ·
81, 4, 7co 7255 . . 3 class (𝐴 · 𝐵)
98, 2wcel 2108 . 2 wff (𝐴 · 𝐵) ∈ ℂ
106, 9wi 4 1 wff ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ)
Colors of variables: wff setvar class
This axiom is referenced by:  mulcl  10886
  Copyright terms: Public domain W3C validator