Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ax-mulcl | Structured version Visualization version GIF version |
Description: Closure law for multiplication of complex numbers. Axiom 6 of 22 for real and complex numbers, justified by Theorem axmulcl 10918. Proofs should normally use mulcl 10964 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.) |
Ref | Expression |
---|---|
ax-mulcl | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . . 4 class 𝐴 | |
2 | cc 10878 | . . . 4 class ℂ | |
3 | 1, 2 | wcel 2107 | . . 3 wff 𝐴 ∈ ℂ |
4 | cB | . . . 4 class 𝐵 | |
5 | 4, 2 | wcel 2107 | . . 3 wff 𝐵 ∈ ℂ |
6 | 3, 5 | wa 396 | . 2 wff (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) |
7 | cmul 10885 | . . . 4 class · | |
8 | 1, 4, 7 | co 7284 | . . 3 class (𝐴 · 𝐵) |
9 | 8, 2 | wcel 2107 | . 2 wff (𝐴 · 𝐵) ∈ ℂ |
10 | 6, 9 | wi 4 | 1 wff ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ) |
Colors of variables: wff setvar class |
This axiom is referenced by: mulcl 10964 |
Copyright terms: Public domain | W3C validator |