Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ax-addrcl | Structured version Visualization version GIF version |
Description: Closure law for addition in the real subfield of complex numbers. Axiom 6 of 23 for real and complex numbers, justified by Theorem axaddrcl 10766. Proofs should normally use readdcl 10812 instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994.) |
Ref | Expression |
---|---|
ax-addrcl | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . . 4 class 𝐴 | |
2 | cr 10728 | . . . 4 class ℝ | |
3 | 1, 2 | wcel 2110 | . . 3 wff 𝐴 ∈ ℝ |
4 | cB | . . . 4 class 𝐵 | |
5 | 4, 2 | wcel 2110 | . . 3 wff 𝐵 ∈ ℝ |
6 | 3, 5 | wa 399 | . 2 wff (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) |
7 | caddc 10732 | . . . 4 class + | |
8 | 1, 4, 7 | co 7213 | . . 3 class (𝐴 + 𝐵) |
9 | 8, 2 | wcel 2110 | . 2 wff (𝐴 + 𝐵) ∈ ℝ |
10 | 6, 9 | wi 4 | 1 wff ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ) |
Colors of variables: wff setvar class |
This axiom is referenced by: readdcl 10812 |
Copyright terms: Public domain | W3C validator |