| Metamath
Proof Explorer Theorem List (p. 113 of 497) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30845) |
(30846-32368) |
(32369-49617) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Axiom | ax-pre-lttri 11201 | Ordering on reals satisfies strict trichotomy. Axiom 18 of 22 for real and complex numbers, justified by Theorem axpre-lttri 11177. Note: The more general version for extended reals is axlttri 11304. Normally new proofs would use xrlttri 13153. (New usage is discouraged.) (Contributed by NM, 13-Oct-2005.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 <ℝ 𝐵 ↔ ¬ (𝐴 = 𝐵 ∨ 𝐵 <ℝ 𝐴))) | ||
| Axiom | ax-pre-lttrn 11202 | Ordering on reals is transitive. Axiom 19 of 22 for real and complex numbers, justified by Theorem axpre-lttrn 11178. Note: The more general version for extended reals is axlttrn 11305. Normally new proofs would use lttr 11309. (New usage is discouraged.) (Contributed by NM, 13-Oct-2005.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 <ℝ 𝐵 ∧ 𝐵 <ℝ 𝐶) → 𝐴 <ℝ 𝐶)) | ||
| Axiom | ax-pre-ltadd 11203 | Ordering property of addition on reals. Axiom 20 of 22 for real and complex numbers, justified by Theorem axpre-ltadd 11179. Normally new proofs would use axltadd 11306. (New usage is discouraged.) (Contributed by NM, 13-Oct-2005.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 <ℝ 𝐵 → (𝐶 + 𝐴) <ℝ (𝐶 + 𝐵))) | ||
| Axiom | ax-pre-mulgt0 11204 | The product of two positive reals is positive. Axiom 21 of 22 for real and complex numbers, justified by Theorem axpre-mulgt0 11180. Normally new proofs would use axmulgt0 11307. (New usage is discouraged.) (Contributed by NM, 13-Oct-2005.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 <ℝ 𝐴 ∧ 0 <ℝ 𝐵) → 0 <ℝ (𝐴 · 𝐵))) | ||
| Axiom | ax-pre-sup 11205* | A nonempty, bounded-above set of reals has a supremum. Axiom 22 of 22 for real and complex numbers, justified by Theorem axpre-sup 11181. Note: Normally new proofs would use axsup 11308. (New usage is discouraged.) (Contributed by NM, 13-Oct-2005.) |
| ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 <ℝ 𝑥) → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 ¬ 𝑥 <ℝ 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 <ℝ 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 <ℝ 𝑧))) | ||
| Axiom | ax-addf 11206 |
Addition is an operation on the complex numbers. This deprecated axiom is
provided for historical compatibility but is not a bona fide axiom for
complex numbers (independent of set theory) since it cannot be interpreted
as a first-order or second-order statement (see
https://us.metamath.org/downloads/schmidt-cnaxioms.pdf).
It may be
deleted in the future and should be avoided for new theorems. Instead,
the less specific addcl 11209 should be used. Note that uses of ax-addf 11206 can
be eliminated by using the defined operation
(𝑥
∈ ℂ, 𝑦 ∈
ℂ ↦ (𝑥 + 𝑦)) in place of +, from which
this axiom (with the defined operation in place of +) follows as a
theorem.
This axiom is justified by Theorem axaddf 11157. (New usage is discouraged.) (Contributed by NM, 19-Oct-2004.) |
| ⊢ + :(ℂ × ℂ)⟶ℂ | ||
| Axiom | ax-mulf 11207 |
Multiplication is an operation on the complex numbers. This axiom tells
us that · is defined only on complex
numbers which is analogous to
the way that other operations are defined, for example see subf 11482
or
eff 16095. However, while Metamath can handle this
axiom, if we wish to work
with weaker complex number axioms, we can avoid it by using the less
specific mulcl 11211. Note that uses of ax-mulf 11207 can be eliminated by using
the defined operation (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)) in place of
·, as seen in mpomulf 11222.
This axiom is justified by Theorem axmulf 11158. (New usage is discouraged.) (Contributed by NM, 19-Oct-2004.) |
| ⊢ · :(ℂ × ℂ)⟶ℂ | ||
| Theorem | cnex 11208 | Alias for ax-cnex 11183. See also cnexALT 13000. (Contributed by Mario Carneiro, 17-Nov-2014.) |
| ⊢ ℂ ∈ V | ||
| Theorem | addcl 11209 | Alias for ax-addcl 11187, for naming consistency with addcli 11239. Use this theorem instead of ax-addcl 11187 or axaddcl 11163. (Contributed by NM, 10-Mar-2008.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ) | ||
| Theorem | readdcl 11210 | Alias for ax-addrcl 11188, for naming consistency with readdcli 11248. (Contributed by NM, 10-Mar-2008.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ) | ||
| Theorem | mulcl 11211 | Alias for ax-mulcl 11189, for naming consistency with mulcli 11240. (Contributed by NM, 10-Mar-2008.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ) | ||
| Theorem | remulcl 11212 | Alias for ax-mulrcl 11190, for naming consistency with remulcli 11249. (Contributed by NM, 10-Mar-2008.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ) | ||
| Theorem | mulcom 11213 | Alias for ax-mulcom 11191, for naming consistency with mulcomi 11241. (Contributed by NM, 10-Mar-2008.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴)) | ||
| Theorem | addass 11214 | Alias for ax-addass 11192, for naming consistency with addassi 11243. (Contributed by NM, 10-Mar-2008.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) | ||
| Theorem | mulass 11215 | Alias for ax-mulass 11193, for naming consistency with mulassi 11244. (Contributed by NM, 10-Mar-2008.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))) | ||
| Theorem | adddi 11216 | Alias for ax-distr 11194, for naming consistency with adddii 11245. (Contributed by NM, 10-Mar-2008.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶))) | ||
| Theorem | recn 11217 | A real number is a complex number. (Contributed by NM, 10-Aug-1999.) |
| ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | ||
| Theorem | reex 11218 | The real numbers form a set. See also reexALT 12998. (Contributed by Mario Carneiro, 17-Nov-2014.) |
| ⊢ ℝ ∈ V | ||
| Theorem | reelprrecn 11219 | Reals are a subset of the pair of real and complex numbers. (Contributed by David A. Wheeler, 8-Dec-2018.) |
| ⊢ ℝ ∈ {ℝ, ℂ} | ||
| Theorem | cnelprrecn 11220 | Complex numbers are a subset of the pair of real and complex numbers . (Contributed by David A. Wheeler, 8-Dec-2018.) |
| ⊢ ℂ ∈ {ℝ, ℂ} | ||
| Theorem | mpoaddf 11221* | Addition is an operation on complex numbers. Version of ax-addf 11206 using maps-to notation, proved from the axioms of set theory and ax-addcl 11187. (Contributed by GG, 31-Mar-2025.) |
| ⊢ (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦)):(ℂ × ℂ)⟶ℂ | ||
| Theorem | mpomulf 11222* | Multiplication is an operation on complex numbers. Version of ax-mulf 11207 using maps-to notation, proved from the axioms of set theory and ax-mulcl 11189. (Contributed by GG, 16-Mar-2025.) |
| ⊢ (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦)):(ℂ × ℂ)⟶ℂ | ||
| Theorem | elimne0 11223 | Hypothesis for weak deduction theorem to eliminate 𝐴 ≠ 0. (Contributed by NM, 15-May-1999.) |
| ⊢ if(𝐴 ≠ 0, 𝐴, 1) ≠ 0 | ||
| Theorem | adddir 11224 | Distributive law for complex numbers (right-distributivity). (Contributed by NM, 10-Oct-2004.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) · 𝐶) = ((𝐴 · 𝐶) + (𝐵 · 𝐶))) | ||
| Theorem | 0cn 11225 | Zero is a complex number. See also 0cnALT 11468. (Contributed by NM, 19-Feb-2005.) |
| ⊢ 0 ∈ ℂ | ||
| Theorem | 0cnd 11226 | Zero is a complex number, deduction form. (Contributed by David A. Wheeler, 8-Dec-2018.) |
| ⊢ (𝜑 → 0 ∈ ℂ) | ||
| Theorem | c0ex 11227 | Zero is a set. (Contributed by David A. Wheeler, 7-Jul-2016.) |
| ⊢ 0 ∈ V | ||
| Theorem | 1cnd 11228 | One is a complex number, deduction form. (Contributed by David A. Wheeler, 6-Dec-2018.) |
| ⊢ (𝜑 → 1 ∈ ℂ) | ||
| Theorem | 1ex 11229 | One is a set. (Contributed by David A. Wheeler, 7-Jul-2016.) |
| ⊢ 1 ∈ V | ||
| Theorem | cnre 11230* | Alias for ax-cnre 11200, for naming consistency. (Contributed by NM, 3-Jan-2013.) |
| ⊢ (𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦))) | ||
| Theorem | mulrid 11231 | The number 1 is an identity element for multiplication. Based on ideas by Eric Schmidt. (Contributed by Scott Fenton, 3-Jan-2013.) |
| ⊢ (𝐴 ∈ ℂ → (𝐴 · 1) = 𝐴) | ||
| Theorem | mullid 11232 | Identity law for multiplication. See mulrid 11231 for commuted version. (Contributed by NM, 8-Oct-1999.) |
| ⊢ (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴) | ||
| Theorem | 1re 11233 | The number 1 is real. This used to be one of our postulates for complex numbers, but Eric Schmidt discovered that it could be derived from a weaker postulate, ax-1cn 11185, by exploiting properties of the imaginary unit i. (Contributed by Eric Schmidt, 11-Apr-2007.) (Revised by Scott Fenton, 3-Jan-2013.) |
| ⊢ 1 ∈ ℝ | ||
| Theorem | 1red 11234 | The number 1 is real, deduction form. (Contributed by David A. Wheeler, 6-Dec-2018.) |
| ⊢ (𝜑 → 1 ∈ ℝ) | ||
| Theorem | 0re 11235 | The number 0 is real. Remark: the first step could also be ax-icn 11186. See also 0reALT 11578. (Contributed by Eric Schmidt, 21-May-2007.) (Revised by Scott Fenton, 3-Jan-2013.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 11-Oct-2022.) |
| ⊢ 0 ∈ ℝ | ||
| Theorem | 0red 11236 | The number 0 is real, deduction form. (Contributed by David A. Wheeler, 6-Dec-2018.) |
| ⊢ (𝜑 → 0 ∈ ℝ) | ||
| Theorem | mulridi 11237 | Identity law for multiplication. (Contributed by NM, 14-Feb-1995.) |
| ⊢ 𝐴 ∈ ℂ ⇒ ⊢ (𝐴 · 1) = 𝐴 | ||
| Theorem | mullidi 11238 | Identity law for multiplication. (Contributed by NM, 14-Feb-1995.) |
| ⊢ 𝐴 ∈ ℂ ⇒ ⊢ (1 · 𝐴) = 𝐴 | ||
| Theorem | addcli 11239 | Closure law for addition. (Contributed by NM, 23-Nov-1994.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ (𝐴 + 𝐵) ∈ ℂ | ||
| Theorem | mulcli 11240 | Closure law for multiplication. (Contributed by NM, 23-Nov-1994.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ (𝐴 · 𝐵) ∈ ℂ | ||
| Theorem | mulcomi 11241 | Commutative law for multiplication. (Contributed by NM, 23-Nov-1994.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ (𝐴 · 𝐵) = (𝐵 · 𝐴) | ||
| Theorem | mulcomli 11242 | Commutative law for multiplication. (Contributed by NM, 23-Nov-1994.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ (𝐴 · 𝐵) = 𝐶 ⇒ ⊢ (𝐵 · 𝐴) = 𝐶 | ||
| Theorem | addassi 11243 | Associative law for addition. (Contributed by NM, 23-Nov-1994.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ ⇒ ⊢ ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶)) | ||
| Theorem | mulassi 11244 | Associative law for multiplication. (Contributed by NM, 23-Nov-1994.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ ⇒ ⊢ ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶)) | ||
| Theorem | adddii 11245 | Distributive law (left-distributivity). (Contributed by NM, 23-Nov-1994.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ ⇒ ⊢ (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶)) | ||
| Theorem | adddiri 11246 | Distributive law (right-distributivity). (Contributed by NM, 16-Feb-1995.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ ⇒ ⊢ ((𝐴 + 𝐵) · 𝐶) = ((𝐴 · 𝐶) + (𝐵 · 𝐶)) | ||
| Theorem | recni 11247 | A real number is a complex number. (Contributed by NM, 1-Mar-1995.) |
| ⊢ 𝐴 ∈ ℝ ⇒ ⊢ 𝐴 ∈ ℂ | ||
| Theorem | readdcli 11248 | Closure law for addition of reals. (Contributed by NM, 17-Jan-1997.) |
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ ⇒ ⊢ (𝐴 + 𝐵) ∈ ℝ | ||
| Theorem | remulcli 11249 | Closure law for multiplication of reals. (Contributed by NM, 17-Jan-1997.) |
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ ⇒ ⊢ (𝐴 · 𝐵) ∈ ℝ | ||
| Theorem | mulridd 11250 | Identity law for multiplication. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐴 · 1) = 𝐴) | ||
| Theorem | mullidd 11251 | Identity law for multiplication. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (1 · 𝐴) = 𝐴) | ||
| Theorem | addcld 11252 | Closure law for addition. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐴 + 𝐵) ∈ ℂ) | ||
| Theorem | mulcld 11253 | Closure law for multiplication. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐴 · 𝐵) ∈ ℂ) | ||
| Theorem | mulcomd 11254 | Commutative law for multiplication. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐴 · 𝐵) = (𝐵 · 𝐴)) | ||
| Theorem | addassd 11255 | Associative law for addition. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) | ||
| Theorem | mulassd 11256 | Associative law for multiplication. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))) | ||
| Theorem | adddid 11257 | Distributive law (left-distributivity). (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶))) | ||
| Theorem | adddird 11258 | Distributive law (right-distributivity). (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → ((𝐴 + 𝐵) · 𝐶) = ((𝐴 · 𝐶) + (𝐵 · 𝐶))) | ||
| Theorem | adddirp1d 11259 | Distributive law, plus 1 version. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → ((𝐴 + 1) · 𝐵) = ((𝐴 · 𝐵) + 𝐵)) | ||
| Theorem | joinlmuladdmuld 11260 | Join AB+CB into (A+C) on LHS. (Contributed by David A. Wheeler, 26-Oct-2019.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → ((𝐴 · 𝐵) + (𝐶 · 𝐵)) = 𝐷) ⇒ ⊢ (𝜑 → ((𝐴 + 𝐶) · 𝐵) = 𝐷) | ||
| Theorem | recnd 11261 | Deduction from real number to complex number. (Contributed by NM, 26-Oct-1999.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → 𝐴 ∈ ℂ) | ||
| Theorem | readdcld 11262 | Closure law for addition of reals. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → (𝐴 + 𝐵) ∈ ℝ) | ||
| Theorem | remulcld 11263 | Closure law for multiplication of reals. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → (𝐴 · 𝐵) ∈ ℝ) | ||
| Syntax | cpnf 11264 | Plus infinity. |
| class +∞ | ||
| Syntax | cmnf 11265 | Minus infinity. |
| class -∞ | ||
| Syntax | cxr 11266 | The set of extended reals (includes plus and minus infinity). |
| class ℝ* | ||
| Syntax | clt 11267 | 'Less than' predicate (extended to include the extended reals). |
| class < | ||
| Syntax | cle 11268 | Extend wff notation to include the 'less than or equal to' relation. |
| class ≤ | ||
| Definition | df-pnf 11269 |
Define plus infinity. Note that the definition is arbitrary, requiring
only that +∞ be a set not in ℝ and different from -∞
(df-mnf 11270). We use 𝒫 ∪ ℂ to make it independent of the
construction of ℂ, and Cantor's Theorem will
show that it is
different from any member of ℂ and therefore
ℝ. See pnfnre 11274,
mnfnre 11276, and pnfnemnf 11288.
A simpler possibility is to define +∞ as ℂ and -∞ as {ℂ}, but that approach requires the Axiom of Regularity to show that +∞ and -∞ are different from each other and from all members of ℝ. (Contributed by NM, 13-Oct-2005.) (New usage is discouraged.) |
| ⊢ +∞ = 𝒫 ∪ ℂ | ||
| Definition | df-mnf 11270 | Define minus infinity as the power set of plus infinity. Note that the definition is arbitrary, requiring only that -∞ be a set not in ℝ and different from +∞ (see mnfnre 11276 and pnfnemnf 11288). (Contributed by NM, 13-Oct-2005.) (New usage is discouraged.) |
| ⊢ -∞ = 𝒫 +∞ | ||
| Definition | df-xr 11271 | Define the set of extended reals that includes plus and minus infinity. Definition 12-3.1 of [Gleason] p. 173. (Contributed by NM, 13-Oct-2005.) |
| ⊢ ℝ* = (ℝ ∪ {+∞, -∞}) | ||
| Definition | df-ltxr 11272* | Define 'less than' on the set of extended reals. Definition 12-3.1 of [Gleason] p. 173. Note that in our postulates for complex numbers, <ℝ is primitive and not necessarily a relation on ℝ. (Contributed by NM, 13-Oct-2005.) |
| ⊢ < = ({〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 <ℝ 𝑦)} ∪ (((ℝ ∪ {-∞}) × {+∞}) ∪ ({-∞} × ℝ))) | ||
| Definition | df-le 11273 | Define 'less than or equal to' on the extended real subset of complex numbers. Theorem leloe 11319 relates it to 'less than' for reals. (Contributed by NM, 13-Oct-2005.) |
| ⊢ ≤ = ((ℝ* × ℝ*) ∖ ◡ < ) | ||
| Theorem | pnfnre 11274 | Plus infinity is not a real number. (Contributed by NM, 13-Oct-2005.) |
| ⊢ +∞ ∉ ℝ | ||
| Theorem | pnfnre2 11275 | Plus infinity is not a real number. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ ¬ +∞ ∈ ℝ | ||
| Theorem | mnfnre 11276 | Minus infinity is not a real number. (Contributed by NM, 13-Oct-2005.) |
| ⊢ -∞ ∉ ℝ | ||
| Theorem | ressxr 11277 | The standard reals are a subset of the extended reals. (Contributed by NM, 14-Oct-2005.) |
| ⊢ ℝ ⊆ ℝ* | ||
| Theorem | rexpssxrxp 11278 | The Cartesian product of standard reals are a subset of the Cartesian product of extended reals. (Contributed by David A. Wheeler, 8-Dec-2018.) |
| ⊢ (ℝ × ℝ) ⊆ (ℝ* × ℝ*) | ||
| Theorem | rexr 11279 | A standard real is an extended real. (Contributed by NM, 14-Oct-2005.) |
| ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*) | ||
| Theorem | 0xr 11280 | Zero is an extended real. (Contributed by Mario Carneiro, 15-Jun-2014.) |
| ⊢ 0 ∈ ℝ* | ||
| Theorem | renepnf 11281 | No (finite) real equals plus infinity. (Contributed by NM, 14-Oct-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.) |
| ⊢ (𝐴 ∈ ℝ → 𝐴 ≠ +∞) | ||
| Theorem | renemnf 11282 | No real equals minus infinity. (Contributed by NM, 14-Oct-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.) |
| ⊢ (𝐴 ∈ ℝ → 𝐴 ≠ -∞) | ||
| Theorem | rexrd 11283 | A standard real is an extended real. (Contributed by Mario Carneiro, 28-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → 𝐴 ∈ ℝ*) | ||
| Theorem | renepnfd 11284 | No (finite) real equals plus infinity. (Contributed by Mario Carneiro, 28-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → 𝐴 ≠ +∞) | ||
| Theorem | renemnfd 11285 | No real equals minus infinity. (Contributed by Mario Carneiro, 28-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → 𝐴 ≠ -∞) | ||
| Theorem | pnfex 11286 | Plus infinity exists. (Contributed by David A. Wheeler, 8-Dec-2018.) (Revised by Steven Nguyen, 7-Dec-2022.) |
| ⊢ +∞ ∈ V | ||
| Theorem | pnfxr 11287 | Plus infinity belongs to the set of extended reals. (Contributed by NM, 13-Oct-2005.) (Proof shortened by Anthony Hart, 29-Aug-2011.) |
| ⊢ +∞ ∈ ℝ* | ||
| Theorem | pnfnemnf 11288 | Plus and minus infinity are different elements of ℝ*. (Contributed by NM, 14-Oct-2005.) |
| ⊢ +∞ ≠ -∞ | ||
| Theorem | mnfnepnf 11289 | Minus and plus infinity are different. (Contributed by David A. Wheeler, 8-Dec-2018.) |
| ⊢ -∞ ≠ +∞ | ||
| Theorem | mnfxr 11290 | Minus infinity belongs to the set of extended reals. (Contributed by NM, 13-Oct-2005.) (Proof shortened by Anthony Hart, 29-Aug-2011.) (Proof shortened by Andrew Salmon, 19-Nov-2011.) |
| ⊢ -∞ ∈ ℝ* | ||
| Theorem | rexri 11291 | A standard real is an extended real (inference form.) (Contributed by David Moews, 28-Feb-2017.) |
| ⊢ 𝐴 ∈ ℝ ⇒ ⊢ 𝐴 ∈ ℝ* | ||
| Theorem | 1xr 11292 | 1 is an extended real number. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| ⊢ 1 ∈ ℝ* | ||
| Theorem | renfdisj 11293 | The reals and the infinities are disjoint. (Contributed by NM, 25-Oct-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.) |
| ⊢ (ℝ ∩ {+∞, -∞}) = ∅ | ||
| Theorem | ltrelxr 11294 | "Less than" is a relation on extended reals. (Contributed by Mario Carneiro, 28-Apr-2015.) |
| ⊢ < ⊆ (ℝ* × ℝ*) | ||
| Theorem | ltrel 11295 | "Less than" is a relation. (Contributed by NM, 14-Oct-2005.) |
| ⊢ Rel < | ||
| Theorem | lerelxr 11296 | "Less than or equal to" is a relation on extended reals. (Contributed by Mario Carneiro, 28-Apr-2015.) |
| ⊢ ≤ ⊆ (ℝ* × ℝ*) | ||
| Theorem | lerel 11297 | "Less than or equal to" is a relation. (Contributed by FL, 2-Aug-2009.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| ⊢ Rel ≤ | ||
| Theorem | xrlenlt 11298 | "Less than or equal to" expressed in terms of "less than", for extended reals. (Contributed by NM, 14-Oct-2005.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) | ||
| Theorem | xrlenltd 11299 | "Less than or equal to" expressed in terms of "less than", for extended reals. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 𝐵 ∈ ℝ*) ⇒ ⊢ (𝜑 → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) | ||
| Theorem | xrltnle 11300 | "Less than" expressed in terms of "less than or equal to", for extended reals. (Contributed by NM, 6-Feb-2007.) |
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |