| Metamath
Proof Explorer Theorem List (p. 113 of 499) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30888) |
(30889-32411) |
(32412-49816) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | leid 11201 | 'Less than or equal to' is reflexive. (Contributed by NM, 18-Aug-1999.) |
| ⊢ (𝐴 ∈ ℝ → 𝐴 ≤ 𝐴) | ||
| Theorem | ltne 11202 | 'Less than' implies not equal. (Contributed by NM, 9-Oct-1999.) (Revised by Mario Carneiro, 16-Sep-2015.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐵 ≠ 𝐴) | ||
| Theorem | ltnsym 11203 | 'Less than' is not symmetric. (Contributed by NM, 8-Jan-2002.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 → ¬ 𝐵 < 𝐴)) | ||
| Theorem | ltnsym2 11204 | 'Less than' is antisymmetric and irreflexive. (Contributed by NM, 13-Aug-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ¬ (𝐴 < 𝐵 ∧ 𝐵 < 𝐴)) | ||
| Theorem | letric 11205 | Trichotomy law. (Contributed by NM, 18-Aug-1999.) (Proof shortened by Andrew Salmon, 19-Nov-2011.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ∨ 𝐵 ≤ 𝐴)) | ||
| Theorem | ltlen 11206 | 'Less than' expressed in terms of 'less than or equal to'. (Contributed by NM, 27-Oct-1999.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ (𝐴 ≤ 𝐵 ∧ 𝐵 ≠ 𝐴))) | ||
| Theorem | eqle 11207 | Equality implies 'less than or equal to'. (Contributed by NM, 4-Apr-2005.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 = 𝐵) → 𝐴 ≤ 𝐵) | ||
| Theorem | eqled 11208 | Equality implies 'less than or equal to'. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → 𝐴 ≤ 𝐵) | ||
| Theorem | ltadd2 11209 | Addition to both sides of 'less than'. (Contributed by NM, 12-Nov-1999.) (Revised by Mario Carneiro, 27-May-2016.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐵 ↔ (𝐶 + 𝐴) < (𝐶 + 𝐵))) | ||
| Theorem | ne0gt0 11210 | A nonzero nonnegative number is positive. (Contributed by NM, 20-Nov-2007.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝐴 ≠ 0 ↔ 0 < 𝐴)) | ||
| Theorem | lecasei 11211 | Ordering elimination by cases. (Contributed by NM, 6-Jul-2007.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝐴 ≤ 𝐵) → 𝜓) & ⊢ ((𝜑 ∧ 𝐵 ≤ 𝐴) → 𝜓) ⇒ ⊢ (𝜑 → 𝜓) | ||
| Theorem | lelttric 11212 | Trichotomy law. (Contributed by NM, 4-Apr-2005.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ∨ 𝐵 < 𝐴)) | ||
| Theorem | ltlecasei 11213 | Ordering elimination by cases. (Contributed by NM, 1-Jul-2007.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
| ⊢ ((𝜑 ∧ 𝐴 < 𝐵) → 𝜓) & ⊢ ((𝜑 ∧ 𝐵 ≤ 𝐴) → 𝜓) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → 𝜓) | ||
| Theorem | ltnri 11214 | 'Less than' is irreflexive. (Contributed by NM, 18-Aug-1999.) |
| ⊢ 𝐴 ∈ ℝ ⇒ ⊢ ¬ 𝐴 < 𝐴 | ||
| Theorem | eqlei 11215 | Equality implies 'less than or equal to'. (Contributed by NM, 23-May-1999.) (Revised by Alexander van der Vekens, 20-Mar-2018.) |
| ⊢ 𝐴 ∈ ℝ ⇒ ⊢ (𝐴 = 𝐵 → 𝐴 ≤ 𝐵) | ||
| Theorem | eqlei2 11216 | Equality implies 'less than or equal to'. (Contributed by Alexander van der Vekens, 20-Mar-2018.) |
| ⊢ 𝐴 ∈ ℝ ⇒ ⊢ (𝐵 = 𝐴 → 𝐵 ≤ 𝐴) | ||
| Theorem | gtneii 11217 | 'Less than' implies not equal. (Contributed by Mario Carneiro, 30-Sep-2013.) |
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐴 < 𝐵 ⇒ ⊢ 𝐵 ≠ 𝐴 | ||
| Theorem | ltneii 11218 | 'Greater than' implies not equal. (Contributed by Mario Carneiro, 16-Sep-2015.) |
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐴 < 𝐵 ⇒ ⊢ 𝐴 ≠ 𝐵 | ||
| Theorem | lttri2i 11219 | Consequence of trichotomy. (Contributed by NM, 19-Jan-1997.) |
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ ⇒ ⊢ (𝐴 ≠ 𝐵 ↔ (𝐴 < 𝐵 ∨ 𝐵 < 𝐴)) | ||
| Theorem | lttri3i 11220 | Consequence of trichotomy. (Contributed by NM, 14-May-1999.) |
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ ⇒ ⊢ (𝐴 = 𝐵 ↔ (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴)) | ||
| Theorem | letri3i 11221 | Consequence of trichotomy. (Contributed by NM, 14-May-1999.) |
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ ⇒ ⊢ (𝐴 = 𝐵 ↔ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴)) | ||
| Theorem | leloei 11222 | 'Less than or equal to' in terms of 'less than'. (Contributed by NM, 14-May-1999.) |
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ ⇒ ⊢ (𝐴 ≤ 𝐵 ↔ (𝐴 < 𝐵 ∨ 𝐴 = 𝐵)) | ||
| Theorem | ltleni 11223 | 'Less than' expressed in terms of 'less than or equal to'. (Contributed by NM, 27-Oct-1999.) |
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ ⇒ ⊢ (𝐴 < 𝐵 ↔ (𝐴 ≤ 𝐵 ∧ 𝐵 ≠ 𝐴)) | ||
| Theorem | ltnsymi 11224 | 'Less than' is not symmetric. (Contributed by NM, 6-May-1999.) |
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ ⇒ ⊢ (𝐴 < 𝐵 → ¬ 𝐵 < 𝐴) | ||
| Theorem | lenlti 11225 | 'Less than or equal to' in terms of 'less than'. (Contributed by NM, 24-May-1999.) |
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ ⇒ ⊢ (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴) | ||
| Theorem | ltnlei 11226 | 'Less than' in terms of 'less than or equal to'. (Contributed by NM, 11-Jul-2005.) |
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ ⇒ ⊢ (𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴) | ||
| Theorem | ltlei 11227 | 'Less than' implies 'less than or equal to'. (Contributed by NM, 14-May-1999.) |
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ ⇒ ⊢ (𝐴 < 𝐵 → 𝐴 ≤ 𝐵) | ||
| Theorem | ltleii 11228 | 'Less than' implies 'less than or equal to' (inference). (Contributed by NM, 22-Aug-1999.) |
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ & ⊢ 𝐴 < 𝐵 ⇒ ⊢ 𝐴 ≤ 𝐵 | ||
| Theorem | ltnei 11229 | 'Less than' implies not equal. (Contributed by NM, 28-Jul-1999.) |
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ ⇒ ⊢ (𝐴 < 𝐵 → 𝐵 ≠ 𝐴) | ||
| Theorem | letrii 11230 | Trichotomy law for 'less than or equal to'. (Contributed by NM, 2-Aug-1999.) |
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ ⇒ ⊢ (𝐴 ≤ 𝐵 ∨ 𝐵 ≤ 𝐴) | ||
| Theorem | lttri 11231 | 'Less than' is transitive. Theorem I.17 of [Apostol] p. 20. (Contributed by NM, 14-May-1999.) |
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ & ⊢ 𝐶 ∈ ℝ ⇒ ⊢ ((𝐴 < 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶) | ||
| Theorem | lelttri 11232 | 'Less than or equal to', 'less than' transitive law. (Contributed by NM, 14-May-1999.) |
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ & ⊢ 𝐶 ∈ ℝ ⇒ ⊢ ((𝐴 ≤ 𝐵 ∧ 𝐵 < 𝐶) → 𝐴 < 𝐶) | ||
| Theorem | ltletri 11233 | 'Less than', 'less than or equal to' transitive law. (Contributed by NM, 14-May-1999.) |
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ & ⊢ 𝐶 ∈ ℝ ⇒ ⊢ ((𝐴 < 𝐵 ∧ 𝐵 ≤ 𝐶) → 𝐴 < 𝐶) | ||
| Theorem | letri 11234 | 'Less than or equal to' is transitive. (Contributed by NM, 14-May-1999.) |
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ & ⊢ 𝐶 ∈ ℝ ⇒ ⊢ ((𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶) → 𝐴 ≤ 𝐶) | ||
| Theorem | le2tri3i 11235 | Extended trichotomy law for 'less than or equal to'. (Contributed by NM, 14-Aug-2000.) |
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ & ⊢ 𝐶 ∈ ℝ ⇒ ⊢ ((𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶 ∧ 𝐶 ≤ 𝐴) ↔ (𝐴 = 𝐵 ∧ 𝐵 = 𝐶 ∧ 𝐶 = 𝐴)) | ||
| Theorem | ltadd2i 11236 | Addition to both sides of 'less than'. (Contributed by NM, 21-Jan-1997.) (Proof shortened by OpenAI, 25-Mar-2020.) |
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ & ⊢ 𝐶 ∈ ℝ ⇒ ⊢ (𝐴 < 𝐵 ↔ (𝐶 + 𝐴) < (𝐶 + 𝐵)) | ||
| Theorem | mulgt0i 11237 | The product of two positive numbers is positive. (Contributed by NM, 16-May-1999.) |
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ ⇒ ⊢ ((0 < 𝐴 ∧ 0 < 𝐵) → 0 < (𝐴 · 𝐵)) | ||
| Theorem | mulgt0ii 11238 | The product of two positive numbers is positive. (Contributed by NM, 18-May-1999.) |
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ & ⊢ 0 < 𝐴 & ⊢ 0 < 𝐵 ⇒ ⊢ 0 < (𝐴 · 𝐵) | ||
| Theorem | ltnrd 11239 | 'Less than' is irreflexive. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → ¬ 𝐴 < 𝐴) | ||
| Theorem | gtned 11240 | 'Less than' implies not equal. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) ⇒ ⊢ (𝜑 → 𝐵 ≠ 𝐴) | ||
| Theorem | ltned 11241 | 'Greater than' implies not equal. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) ⇒ ⊢ (𝜑 → 𝐴 ≠ 𝐵) | ||
| Theorem | ne0gt0d 11242 | A nonzero nonnegative number is positive. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) & ⊢ (𝜑 → 𝐴 ≠ 0) ⇒ ⊢ (𝜑 → 0 < 𝐴) | ||
| Theorem | lttrid 11243 | Ordering on reals satisfies strict trichotomy. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → (𝐴 < 𝐵 ↔ ¬ (𝐴 = 𝐵 ∨ 𝐵 < 𝐴))) | ||
| Theorem | lttri2d 11244 | Consequence of trichotomy. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → (𝐴 ≠ 𝐵 ↔ (𝐴 < 𝐵 ∨ 𝐵 < 𝐴))) | ||
| Theorem | lttri3d 11245 | Consequence of trichotomy. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → (𝐴 = 𝐵 ↔ (¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴))) | ||
| Theorem | lttri4d 11246 | Trichotomy law for 'less than'. (Contributed by NM, 20-Sep-2007.) (Proof shortened by Andrew Salmon, 19-Nov-2011.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → (𝐴 < 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 < 𝐴)) | ||
| Theorem | letri3d 11247 | Consequence of trichotomy. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → (𝐴 = 𝐵 ↔ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴))) | ||
| Theorem | leloed 11248 | 'Less than or equal to' in terms of 'less than'. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → (𝐴 ≤ 𝐵 ↔ (𝐴 < 𝐵 ∨ 𝐴 = 𝐵))) | ||
| Theorem | eqleltd 11249 | Equality in terms of 'less than or equal to', 'less than'. (Contributed by NM, 7-Apr-2001.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → (𝐴 = 𝐵 ↔ (𝐴 ≤ 𝐵 ∧ ¬ 𝐴 < 𝐵))) | ||
| Theorem | ltlend 11250 | 'Less than' expressed in terms of 'less than or equal to'. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → (𝐴 < 𝐵 ↔ (𝐴 ≤ 𝐵 ∧ 𝐵 ≠ 𝐴))) | ||
| Theorem | lenltd 11251 | 'Less than or equal to' in terms of 'less than'. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) | ||
| Theorem | ltnled 11252 | 'Less than' in terms of 'less than or equal to'. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → (𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴)) | ||
| Theorem | ltled 11253 | 'Less than' implies 'less than or equal to'. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) ⇒ ⊢ (𝜑 → 𝐴 ≤ 𝐵) | ||
| Theorem | ltnsymd 11254 | 'Less than' implies 'less than or equal to'. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) ⇒ ⊢ (𝜑 → ¬ 𝐵 < 𝐴) | ||
| Theorem | nltled 11255 | 'Not less than ' implies 'less than or equal to'. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → ¬ 𝐵 < 𝐴) ⇒ ⊢ (𝜑 → 𝐴 ≤ 𝐵) | ||
| Theorem | lensymd 11256 | 'Less than or equal to' implies 'not less than'. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) ⇒ ⊢ (𝜑 → ¬ 𝐵 < 𝐴) | ||
| Theorem | letrid 11257 | Trichotomy law for 'less than or equal to'. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → (𝐴 ≤ 𝐵 ∨ 𝐵 ≤ 𝐴)) | ||
| Theorem | leltned 11258 | 'Less than or equal to' implies 'less than' is not 'equals'. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) ⇒ ⊢ (𝜑 → (𝐴 < 𝐵 ↔ 𝐵 ≠ 𝐴)) | ||
| Theorem | leneltd 11259 | 'Less than or equal to' and 'not equals' implies 'less than'. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) & ⊢ (𝜑 → 𝐵 ≠ 𝐴) ⇒ ⊢ (𝜑 → 𝐴 < 𝐵) | ||
| Theorem | mulgt0d 11260 | The product of two positive numbers is positive. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 0 < 𝐴) & ⊢ (𝜑 → 0 < 𝐵) ⇒ ⊢ (𝜑 → 0 < (𝐴 · 𝐵)) | ||
| Theorem | ltadd2d 11261 | Addition to both sides of 'less than'. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) ⇒ ⊢ (𝜑 → (𝐴 < 𝐵 ↔ (𝐶 + 𝐴) < (𝐶 + 𝐵))) | ||
| Theorem | letrd 11262 | Transitive law deduction for 'less than or equal to'. (Contributed by NM, 20-May-2005.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) & ⊢ (𝜑 → 𝐵 ≤ 𝐶) ⇒ ⊢ (𝜑 → 𝐴 ≤ 𝐶) | ||
| Theorem | lelttrd 11263 | Transitive law deduction for 'less than or equal to', 'less than'. (Contributed by NM, 8-Jan-2006.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) & ⊢ (𝜑 → 𝐵 < 𝐶) ⇒ ⊢ (𝜑 → 𝐴 < 𝐶) | ||
| Theorem | ltadd2dd 11264 | Addition to both sides of 'less than'. (Contributed by Mario Carneiro, 30-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) ⇒ ⊢ (𝜑 → (𝐶 + 𝐴) < (𝐶 + 𝐵)) | ||
| Theorem | ltletrd 11265 | Transitive law deduction for 'less than', 'less than or equal to'. (Contributed by NM, 9-Jan-2006.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) & ⊢ (𝜑 → 𝐵 ≤ 𝐶) ⇒ ⊢ (𝜑 → 𝐴 < 𝐶) | ||
| Theorem | lttrd 11266 | Transitive law deduction for 'less than'. (Contributed by NM, 9-Jan-2006.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) & ⊢ (𝜑 → 𝐵 < 𝐶) ⇒ ⊢ (𝜑 → 𝐴 < 𝐶) | ||
| Theorem | lelttrdi 11267 | If a number is less than another number, and the other number is less than or equal to a third number, the first number is less than the third number. (Contributed by Alexander van der Vekens, 24-Mar-2018.) |
| ⊢ (𝜑 → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) & ⊢ (𝜑 → 𝐵 ≤ 𝐶) ⇒ ⊢ (𝜑 → (𝐴 < 𝐵 → 𝐴 < 𝐶)) | ||
| Theorem | dedekind 11268* | The Dedekind cut theorem. This theorem, which may be used to replace ax-pre-sup 11076 with appropriate adjustments, states that, if 𝐴 completely preceeds 𝐵, then there is some number separating the two of them. (Contributed by Scott Fenton, 13-Jun-2013.) |
| ⊢ ((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 < 𝑦) → ∃𝑧 ∈ ℝ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)) | ||
| Theorem | dedekindle 11269* | The Dedekind cut theorem, with the hypothesis weakened to only require non-strict less than. (Contributed by Scott Fenton, 2-Jul-2013.) |
| ⊢ ((𝐴 ⊆ ℝ ∧ 𝐵 ⊆ ℝ ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 ≤ 𝑦) → ∃𝑧 ∈ ℝ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)) | ||
| Theorem | mul12 11270 | Commutative/associative law for multiplication. (Contributed by NM, 30-Apr-2005.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · (𝐵 · 𝐶)) = (𝐵 · (𝐴 · 𝐶))) | ||
| Theorem | mul32 11271 | Commutative/associative law. (Contributed by NM, 8-Oct-1999.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = ((𝐴 · 𝐶) · 𝐵)) | ||
| Theorem | mul31 11272 | Commutative/associative law. (Contributed by Scott Fenton, 3-Jan-2013.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = ((𝐶 · 𝐵) · 𝐴)) | ||
| Theorem | mul4 11273 | Rearrangement of 4 factors. (Contributed by NM, 8-Oct-1999.) |
| ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 · 𝐵) · (𝐶 · 𝐷)) = ((𝐴 · 𝐶) · (𝐵 · 𝐷))) | ||
| Theorem | mul4r 11274 | Rearrangement of 4 factors: swap the right factors in the factors of a product of two products. (Contributed by AV, 4-Mar-2023.) |
| ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 · 𝐵) · (𝐶 · 𝐷)) = ((𝐴 · 𝐷) · (𝐶 · 𝐵))) | ||
| Theorem | muladd11 11275 | A simple product of sums expansion. (Contributed by NM, 21-Feb-2005.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((1 + 𝐴) · (1 + 𝐵)) = ((1 + 𝐴) + (𝐵 + (𝐴 · 𝐵)))) | ||
| Theorem | 1p1times 11276 | Two times a number. (Contributed by NM, 18-May-1999.) (Revised by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝐴 ∈ ℂ → ((1 + 1) · 𝐴) = (𝐴 + 𝐴)) | ||
| Theorem | peano2cn 11277 | A theorem for complex numbers analogous the second Peano postulate peano2nn 12129. (Contributed by NM, 17-Aug-2005.) |
| ⊢ (𝐴 ∈ ℂ → (𝐴 + 1) ∈ ℂ) | ||
| Theorem | peano2re 11278 | A theorem for reals analogous the second Peano postulate peano2nn 12129. (Contributed by NM, 5-Jul-2005.) |
| ⊢ (𝐴 ∈ ℝ → (𝐴 + 1) ∈ ℝ) | ||
| Theorem | readdcan 11279 | Cancellation law for addition over the reals. (Contributed by Scott Fenton, 3-Jan-2013.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐶 + 𝐴) = (𝐶 + 𝐵) ↔ 𝐴 = 𝐵)) | ||
| Theorem | 00id 11280 | 0 is its own additive identity. (Contributed by Scott Fenton, 3-Jan-2013.) |
| ⊢ (0 + 0) = 0 | ||
| Theorem | mul02lem1 11281 | Lemma for mul02 11283. If any real does not produce 0 when multiplied by 0, then any complex is equal to double itself. (Contributed by Scott Fenton, 3-Jan-2013.) |
| ⊢ (((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ 𝐵 ∈ ℂ) → 𝐵 = (𝐵 + 𝐵)) | ||
| Theorem | mul02lem2 11282 | Lemma for mul02 11283. Zero times a real is zero. (Contributed by Scott Fenton, 3-Jan-2013.) |
| ⊢ (𝐴 ∈ ℝ → (0 · 𝐴) = 0) | ||
| Theorem | mul02 11283 | Multiplication by 0. Theorem I.6 of [Apostol] p. 18. Based on ideas by Eric Schmidt. (Contributed by NM, 10-Aug-1999.) (Revised by Scott Fenton, 3-Jan-2013.) |
| ⊢ (𝐴 ∈ ℂ → (0 · 𝐴) = 0) | ||
| Theorem | mul01 11284 | Multiplication by 0. Theorem I.6 of [Apostol] p. 18. (Contributed by NM, 15-May-1999.) (Revised by Scott Fenton, 3-Jan-2013.) |
| ⊢ (𝐴 ∈ ℂ → (𝐴 · 0) = 0) | ||
| Theorem | addrid 11285 | 0 is an additive identity. This used to be one of our complex number axioms, until it was found to be dependent on the others. Based on ideas by Eric Schmidt. (Contributed by Scott Fenton, 3-Jan-2013.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴) | ||
| Theorem | cnegex 11286* | Existence of the negative of a complex number. (Contributed by Eric Schmidt, 21-May-2007.) (Revised by Scott Fenton, 3-Jan-2013.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝐴 ∈ ℂ → ∃𝑥 ∈ ℂ (𝐴 + 𝑥) = 0) | ||
| Theorem | cnegex2 11287* | Existence of a left inverse for addition. (Contributed by Scott Fenton, 3-Jan-2013.) |
| ⊢ (𝐴 ∈ ℂ → ∃𝑥 ∈ ℂ (𝑥 + 𝐴) = 0) | ||
| Theorem | addlid 11288 | 0 is a left identity for addition. This used to be one of our complex number axioms, until it was discovered that it was dependent on the others. Based on ideas by Eric Schmidt. (Contributed by Scott Fenton, 3-Jan-2013.) |
| ⊢ (𝐴 ∈ ℂ → (0 + 𝐴) = 𝐴) | ||
| Theorem | addcan 11289 | Cancellation law for addition. Theorem I.1 of [Apostol] p. 18. (Contributed by NM, 22-Nov-1994.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) = (𝐴 + 𝐶) ↔ 𝐵 = 𝐶)) | ||
| Theorem | addcan2 11290 | Cancellation law for addition. (Contributed by NM, 30-Jul-2004.) (Revised by Scott Fenton, 3-Jan-2013.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐶) = (𝐵 + 𝐶) ↔ 𝐴 = 𝐵)) | ||
| Theorem | addcom 11291 | Addition commutes. This used to be one of our complex number axioms, until it was found to be dependent on the others. Based on ideas by Eric Schmidt. (Contributed by Scott Fenton, 3-Jan-2013.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) = (𝐵 + 𝐴)) | ||
| Theorem | addridi 11292 | 0 is an additive identity. (Contributed by NM, 23-Nov-1994.) (Revised by Scott Fenton, 3-Jan-2013.) |
| ⊢ 𝐴 ∈ ℂ ⇒ ⊢ (𝐴 + 0) = 𝐴 | ||
| Theorem | addlidi 11293 | 0 is a left identity for addition. (Contributed by NM, 3-Jan-2013.) |
| ⊢ 𝐴 ∈ ℂ ⇒ ⊢ (0 + 𝐴) = 𝐴 | ||
| Theorem | mul02i 11294 | Multiplication by 0. Theorem I.6 of [Apostol] p. 18. (Contributed by NM, 23-Nov-1994.) |
| ⊢ 𝐴 ∈ ℂ ⇒ ⊢ (0 · 𝐴) = 0 | ||
| Theorem | mul01i 11295 | Multiplication by 0. Theorem I.6 of [Apostol] p. 18. (Contributed by NM, 23-Nov-1994.) (Revised by Scott Fenton, 3-Jan-2013.) |
| ⊢ 𝐴 ∈ ℂ ⇒ ⊢ (𝐴 · 0) = 0 | ||
| Theorem | addcomi 11296 | Addition commutes. Based on ideas by Eric Schmidt. (Contributed by Scott Fenton, 3-Jan-2013.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ (𝐴 + 𝐵) = (𝐵 + 𝐴) | ||
| Theorem | addcomli 11297 | Addition commutes. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ (𝐴 + 𝐵) = 𝐶 ⇒ ⊢ (𝐵 + 𝐴) = 𝐶 | ||
| Theorem | addcani 11298 | Cancellation law for addition. Theorem I.1 of [Apostol] p. 18. (Contributed by NM, 27-Oct-1999.) (Revised by Scott Fenton, 3-Jan-2013.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ ⇒ ⊢ ((𝐴 + 𝐵) = (𝐴 + 𝐶) ↔ 𝐵 = 𝐶) | ||
| Theorem | addcan2i 11299 | Cancellation law for addition. Theorem I.1 of [Apostol] p. 18. (Contributed by NM, 14-May-2003.) (Revised by Scott Fenton, 3-Jan-2013.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ ⇒ ⊢ ((𝐴 + 𝐶) = (𝐵 + 𝐶) ↔ 𝐴 = 𝐵) | ||
| Theorem | mul12i 11300 | Commutative/associative law that swaps the first two factors in a triple product. (Contributed by NM, 11-May-1999.) (Proof shortened by Andrew Salmon, 19-Nov-2011.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ ⇒ ⊢ (𝐴 · (𝐵 · 𝐶)) = (𝐵 · (𝐴 · 𝐶)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |