Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-ax12v Structured version   Visualization version   GIF version

Theorem bj-ax12v 34837
Description: A weaker form of ax-12 2171 and ax12v 2172, namely the generalization over 𝑥 of the latter. In this statement, all occurrences of 𝑥 are bound. (Contributed by BJ, 26-Dec-2020.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-ax12v 𝑥(𝑥 = 𝑡 → (𝜑 → ∀𝑥(𝑥 = 𝑡𝜑)))
Distinct variable groups:   𝑥,𝑡   𝜑,𝑡
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem bj-ax12v
StepHypRef Expression
1 ax12v 2172 . 2 (𝑥 = 𝑡 → (𝜑 → ∀𝑥(𝑥 = 𝑡𝜑)))
21ax-gen 1798 1 𝑥(𝑥 = 𝑡 → (𝜑 → ∀𝑥(𝑥 = 𝑡𝜑)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-gen 1798  ax-5 1913  ax-12 2171
This theorem is referenced by:  bj-ax12  34838
  Copyright terms: Public domain W3C validator