| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-ax12 | Structured version Visualization version GIF version | ||
| Description: Remove a DV condition from bj-ax12v 36657 (using core axioms only). (Contributed by BJ, 26-Dec-2020.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-ax12 | ⊢ ∀𝑥(𝑥 = 𝑡 → (𝜑 → ∀𝑥(𝑥 = 𝑡 → 𝜑))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-ax12v 36657 | . . 3 ⊢ ∀𝑥(𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) | |
| 2 | equequ2 2025 | . . . . 5 ⊢ (𝑦 = 𝑡 → (𝑥 = 𝑦 ↔ 𝑥 = 𝑡)) | |
| 3 | 2 | imbi1d 341 | . . . . . . 7 ⊢ (𝑦 = 𝑡 → ((𝑥 = 𝑦 → 𝜑) ↔ (𝑥 = 𝑡 → 𝜑))) |
| 4 | 3 | albidv 1920 | . . . . . 6 ⊢ (𝑦 = 𝑡 → (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ ∀𝑥(𝑥 = 𝑡 → 𝜑))) |
| 5 | 4 | imbi2d 340 | . . . . 5 ⊢ (𝑦 = 𝑡 → ((𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑)) ↔ (𝜑 → ∀𝑥(𝑥 = 𝑡 → 𝜑)))) |
| 6 | 2, 5 | imbi12d 344 | . . . 4 ⊢ (𝑦 = 𝑡 → ((𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) ↔ (𝑥 = 𝑡 → (𝜑 → ∀𝑥(𝑥 = 𝑡 → 𝜑))))) |
| 7 | 6 | albidv 1920 | . . 3 ⊢ (𝑦 = 𝑡 → (∀𝑥(𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) ↔ ∀𝑥(𝑥 = 𝑡 → (𝜑 → ∀𝑥(𝑥 = 𝑡 → 𝜑))))) |
| 8 | 1, 7 | mpbii 233 | . 2 ⊢ (𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑡 → (𝜑 → ∀𝑥(𝑥 = 𝑡 → 𝜑)))) |
| 9 | ax6ev 1969 | . 2 ⊢ ∃𝑦 𝑦 = 𝑡 | |
| 10 | 8, 9 | exlimiiv 1931 | 1 ⊢ ∀𝑥(𝑥 = 𝑡 → (𝜑 → ∀𝑥(𝑥 = 𝑡 → 𝜑))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-12 2177 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 |
| This theorem is referenced by: bj-ax12ssb 36659 bj-subst 36662 |
| Copyright terms: Public domain | W3C validator |