MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax-gen Structured version   Visualization version   GIF version

Axiom ax-gen 1796
Description: Rule of (universal) generalization. In our axiomatization, this is the only postulated (that is, axiomatic) rule of inference of predicate calculus (together with the rule of modus ponens ax-mp 5 of propositional calculus). See, e.g., Rule 2 of [Hamilton] p. 74. This rule says that if something is unconditionally true, then it is true for all values of a variable. For example, if we have proved 𝑥 = 𝑥, then we can conclude 𝑥𝑥 = 𝑥 or even 𝑦𝑥 = 𝑥. Theorem altru 1808 shows the special case 𝑥. The converse rule of inference spi 2189 (universal instantiation, or universal specialization) shows that we can also go the other way: in other words, we can add or remove universal quantifiers from the beginning of any theorem as required. Note that the closed form (𝜑 → ∀𝑥𝜑) need not hold (but may hold in special cases, see ax-5 1911). (Contributed by NM, 3-Jan-1993.)
Hypothesis
Ref Expression
ax-gen.1 𝜑
Assertion
Ref Expression
ax-gen 𝑥𝜑

Detailed syntax breakdown of Axiom ax-gen
StepHypRef Expression
1 wph . 2 wff 𝜑
2 vx . 2 setvar 𝑥
31, 2wal 1539 1 wff 𝑥𝜑
Colors of variables: wff setvar class
This axiom is referenced by:  gen2  1797  mpg  1798  mpgbi  1799  mpgbir  1800  hbth  1804  altru  1808  alfal  1809  stdpc6  2029  sbtlem  2070  ax13dgen3  2144  ceqsalg  3473  vtoclegft  3540  elabg  3628  mosub  3668  sbcth  3752  sbciegf  3776  sbcg  3810  csbiegf  3879  sbcnestgw  4372  csbnestgw  4373  sbcnestg  4377  csbnestg  4378  csbnest1g  4381  al0ssb  5248  intidg  5400  ssopab2i  5493  relssi  5731  xpidtr  6073  funcnvsn  6536  caovmo  7589  trom  7811  peano1  7825  abrexexg  7899  tfrlem7  8308  1onn  8561  2onn  8563  findcard  9080  findcard2  9081  pssnn  9085  ssfi  9089  fiint  9218  inf0  9518  axinf2  9537  trcl  9625  axac3  10362  brdom3  10426  axpowndlem4  10498  axregndlem2  10501  axinfnd  10504  wfgru  10714  nqerf  10828  uzrdgfni  13867  ltweuz  13870  trclfvcotr  14918  fclim  15462  letsr  18501  cnsubrglem  21355  distop  22911  fctop  22920  cctop  22922  ulmdm  26330  upgr0eopALT  29096  bnj1023  34813  bnj1109  34819  bnj907  35000  funen1cnv  35121  axnulg  35140  tz9.1regs  35151  loop1cycl  35202  umgr2cycl  35206  hbimg  35872  fnsingle  35982  funimage  35991  funpartfun  36008  hftr  36247  itgeq12i  36271  filnetlem3  36445  bj-genr  36671  bj-genl  36672  bj-genan  36673  bj-mpgs  36674  bj-cbvalim  36710  bj-cbvexim  36711  bj-ax12v  36721  bj-ceqsalg0  36953  bj-ceqsalgALT  36955  bj-ceqsalgvALT  36957  bj-vtoclgfALT  37124  vtoclefex  37399  rdgeqoa  37435  exrecfnpw  37446  riscer  38048  trressn  38567  disjALTV0  38872  ax12eq  39060  cdleme32fva  40556  sbalexi  42326  unielss  43335  tfsconcatlem  43453  eu0  43637  dfrcl2  43791  rr-grothprim  44417  rr-grothshort  44421  pm11.11  44491  sbc3orgVD  44967  ordelordALTVD  44983  trsbcVD  44993  undif3VD  44998  sbcssgVD  44999  csbingVD  45000  onfrALTlem1VD  45006  onfrALTVD  45007  csbsngVD  45009  csbxpgVD  45010  csbresgVD  45011  csbrngVD  45012  csbima12gALTVD  45013  csbunigVD  45014  csbfv12gALTVD  45015  19.41rgVD  45018  unisnALT  45042  wfaxrep  45111  permaxsep  45124  permaxnul  45125  permaxpow  45126  permaxpr  45127  permaxun  45128  permaxinf2lem  45129  refsum2cnlem1  45158  dvnprodlem3  46070  sge00  46498  sinnpoly  47015  eusnsn  47150  aiota0def  47220  sprssspr  47605  spcdvw  49804  setrec2lem2  49819  onsetrec  49833
  Copyright terms: Public domain W3C validator