MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax-gen Structured version   Visualization version   GIF version

Axiom ax-gen 1797
Description: Rule of (universal) generalization. In our axiomatization, this is the only postulated (that is, axiomatic) rule of inference of predicate calculus (together with the rule of modus ponens ax-mp 5 of propositional calculus). See, e.g., Rule 2 of [Hamilton] p. 74. This rule says that if something is unconditionally true, then it is true for all values of a variable. For example, if we have proved 𝑥 = 𝑥, then we can conclude 𝑥𝑥 = 𝑥 or even 𝑦𝑥 = 𝑥. Theorem altru 1809 shows the special case 𝑥. The converse rule of inference spi 2181 (universal instantiation, or universal specialization) shows that we can also go the other way: in other words, we can add or remove universal quantifiers from the beginning of any theorem as required. Note that the closed form (𝜑 → ∀𝑥𝜑) need not hold (but may hold in special cases, see ax-5 1911). (Contributed by NM, 3-Jan-1993.)
Hypothesis
Ref Expression
ax-gen.1 𝜑
Assertion
Ref Expression
ax-gen 𝑥𝜑

Detailed syntax breakdown of Axiom ax-gen
StepHypRef Expression
1 wph . 2 wff 𝜑
2 vx . 2 setvar 𝑥
31, 2wal 1536 1 wff 𝑥𝜑
Colors of variables: wff setvar class
This axiom is referenced by:  gen2  1798  mpg  1799  mpgbi  1800  mpgbir  1801  hbth  1805  altru  1809  alfal  1810  stdpc6  2035  sbt  2071  ax13dgen3  2140  ceqsalg  3476  ceqsralv  3480  vtocl2OLD  3510  mosub  3652  sbcth  3735  sbciegf  3757  csbiegf  3861  sbcnestgw  4328  csbnestgw  4329  sbcnestg  4333  csbnestg  4334  csbnest1g  4337  mpteq2ia  5121  mpteq2da  5124  al0ssb  5176  ssopab2i  5402  relssi  5624  xpidtr  5949  funcnvsn  6374  caovmo  7365  ordom  7569  wfrfun  7948  tfrlem7  8002  pssnn  8720  findcard  8741  findcard2  8742  fiint  8779  inf0  9068  axinf2  9087  trcl  9154  axac3  9875  brdom3  9939  axpowndlem4  10011  axregndlem2  10014  axinfnd  10017  wfgru  10227  nqerf  10341  uzrdgfni  13321  ltweuz  13324  trclfvcotr  14360  fclim  14902  letsr  17829  distop  21600  fctop  21609  cctop  21611  ulmdm  24988  upgr0eopALT  26909  bnj1023  32162  bnj1109  32168  bnj907  32349  funen1cnv  32467  loop1cycl  32497  umgr2cycl  32501  hbimg  33167  fnsingle  33493  funimage  33502  funpartfun  33517  hftr  33756  filnetlem3  33841  bj-genr  34053  bj-genl  34054  bj-genan  34055  bj-mpgs  34056  bj-cbvalim  34091  bj-cbvexim  34092  bj-ax12v  34102  bj-ceqsalg0  34328  bj-ceqsalgALT  34330  bj-ceqsalgvALT  34332  bj-vtoclgfALT  34476  vtoclefex  34751  rdgeqoa  34787  exrecfnpw  34798  riscer  35426  disjALTV0  36144  ax12eq  36237  cdleme32fva  37733  eu0  40228  dfrcl2  40375  rr-grothprim  41008  pm11.11  41078  sbc3orgVD  41557  ordelordALTVD  41573  trsbcVD  41583  undif3VD  41588  sbcssgVD  41589  csbingVD  41590  onfrALTlem1VD  41596  onfrALTVD  41597  csbsngVD  41599  csbxpgVD  41600  csbresgVD  41601  csbrngVD  41602  csbima12gALTVD  41603  csbunigVD  41604  csbfv12gALTVD  41605  19.41rgVD  41608  unisnALT  41632  refsum2cnlem1  41666  dvnprodlem3  42590  sge00  43015  eusnsn  43618  aiota0def  43651  sprssspr  43998  spcdvw  45209  setrec2lem2  45224  onsetrec  45237
  Copyright terms: Public domain W3C validator