MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax-gen Structured version   Visualization version   GIF version

Axiom ax-gen 1794
Description: Rule of (universal) generalization. In our axiomatization, this is the only postulated (that is, axiomatic) rule of inference of predicate calculus (together with the rule of modus ponens ax-mp 5 of propositional calculus). See, e.g., Rule 2 of [Hamilton] p. 74. This rule says that if something is unconditionally true, then it is true for all values of a variable. For example, if we have proved 𝑥 = 𝑥, then we can conclude 𝑥𝑥 = 𝑥 or even 𝑦𝑥 = 𝑥. Theorem altru 1806 shows the special case 𝑥. The converse rule of inference spi 2183 (universal instantiation, or universal specialization) shows that we can also go the other way: in other words, we can add or remove universal quantifiers from the beginning of any theorem as required. Note that the closed form (𝜑 → ∀𝑥𝜑) need not hold (but may hold in special cases, see ax-5 1909). (Contributed by NM, 3-Jan-1993.)
Hypothesis
Ref Expression
ax-gen.1 𝜑
Assertion
Ref Expression
ax-gen 𝑥𝜑

Detailed syntax breakdown of Axiom ax-gen
StepHypRef Expression
1 wph . 2 wff 𝜑
2 vx . 2 setvar 𝑥
31, 2wal 1537 1 wff 𝑥𝜑
Colors of variables: wff setvar class
This axiom is referenced by:  gen2  1795  mpg  1796  mpgbi  1797  mpgbir  1798  hbth  1802  altru  1806  alfal  1807  stdpc6  2026  sbt  2065  ax13dgen3  2138  ceqsalg  3494  vtoclegft  3565  mosub  3694  sbcth  3778  sbciegf  3802  sbcg  3836  csbiegf  3905  sbcnestgw  4396  csbnestgw  4397  sbcnestg  4401  csbnestg  4402  csbnest1g  4405  al0ssb  5275  intidg  5429  ssopab2i  5522  relssi  5763  xpidtr  6108  funcnvsn  6582  caovmo  7638  trom  7864  peano1  7878  abrexexg  7953  wfrfunOLD  8327  tfrlem7  8391  1onn  8646  2onn  8648  findcard  9171  findcard2  9172  pssnn  9176  ssfi  9181  fiint  9332  fiintOLD  9333  inf0  9627  axinf2  9646  trcl  9734  axac3  10470  brdom3  10534  axpowndlem4  10606  axregndlem2  10609  axinfnd  10612  wfgru  10822  nqerf  10936  uzrdgfni  13965  ltweuz  13968  trclfvcotr  15015  fclim  15556  letsr  18588  cnsubrglem  21369  distop  22918  fctop  22927  cctop  22929  ulmdm  26339  upgr0eopALT  29027  bnj1023  34732  bnj1109  34738  bnj907  34919  funen1cnv  35040  axnulg  35044  loop1cycl  35080  umgr2cycl  35084  hbimg  35748  fnsingle  35858  funimage  35867  funpartfun  35882  hftr  36121  itgeq12i  36145  filnetlem3  36319  bj-genr  36545  bj-genl  36546  bj-genan  36547  bj-mpgs  36548  bj-cbvalim  36584  bj-cbvexim  36585  bj-ax12v  36595  bj-ceqsalg0  36827  bj-ceqsalgALT  36829  bj-ceqsalgvALT  36831  bj-vtoclgfALT  36998  vtoclefex  37273  rdgeqoa  37309  exrecfnpw  37320  riscer  37933  trressn  38384  disjALTV0  38693  ax12eq  38880  cdleme32fva  40377  sbalexi  42186  unielss  43167  tfsconcatlem  43285  eu0  43469  dfrcl2  43623  rr-grothprim  44250  rr-grothshort  44254  pm11.11  44324  sbc3orgVD  44802  ordelordALTVD  44818  trsbcVD  44828  undif3VD  44833  sbcssgVD  44834  csbingVD  44835  onfrALTlem1VD  44841  onfrALTVD  44842  csbsngVD  44844  csbxpgVD  44845  csbresgVD  44846  csbrngVD  44847  csbima12gALTVD  44848  csbunigVD  44849  csbfv12gALTVD  44850  19.41rgVD  44853  unisnALT  44877  wfaxrep  44946  permaxsep  44959  permaxnul  44960  permaxpow  44961  permaxpr  44962  permaxun  44963  permaxinf2lem  44964  refsum2cnlem1  44988  dvnprodlem3  45907  sge00  46335  eusnsn  46983  aiota0def  47053  sprssspr  47413  spcdvw  49263  setrec2lem2  49278  onsetrec  49292
  Copyright terms: Public domain W3C validator