MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax-gen Structured version   Visualization version   GIF version

Axiom ax-gen 1803
Description: Rule of (universal) generalization. In our axiomatization, this is the only postulated (that is, axiomatic) rule of inference of predicate calculus (together with the rule of modus ponens ax-mp 5 of propositional calculus). See, e.g., Rule 2 of [Hamilton] p. 74. This rule says that if something is unconditionally true, then it is true for all values of a variable. For example, if we have proved 𝑥 = 𝑥, then we can conclude 𝑥𝑥 = 𝑥 or even 𝑦𝑥 = 𝑥. Theorem altru 1815 shows the special case 𝑥. The converse rule of inference spi 2183 (universal instantiation, or universal specialization) shows that we can also go the other way: in other words, we can add or remove universal quantifiers from the beginning of any theorem as required. Note that the closed form (𝜑 → ∀𝑥𝜑) need not hold (but may hold in special cases, see ax-5 1918). (Contributed by NM, 3-Jan-1993.)
Hypothesis
Ref Expression
ax-gen.1 𝜑
Assertion
Ref Expression
ax-gen 𝑥𝜑

Detailed syntax breakdown of Axiom ax-gen
StepHypRef Expression
1 wph . 2 wff 𝜑
2 vx . 2 setvar 𝑥
31, 2wal 1541 1 wff 𝑥𝜑
Colors of variables: wff setvar class
This axiom is referenced by:  gen2  1804  mpg  1805  mpgbi  1806  mpgbir  1807  hbth  1811  altru  1815  alfal  1816  stdpc6  2036  sbt  2074  ax13dgen3  2141  ceqsalg  3455  ceqsralvOLD  3461  mosub  3644  sbcth  3727  sbciegf  3751  sbcg  3792  csbiegf  3863  sbcnestgw  4352  csbnestgw  4353  sbcnestg  4357  csbnestg  4358  csbnest1g  4361  mpteq2daOLD  5168  mpteq2iaOLD  5173  al0ssb  5225  ssopab2i  5455  relssi  5685  xpidtr  6015  funcnvsn  6465  caovmo  7484  trom  7693  wfrfun  8107  tfrlem7  8161  findcard  8885  findcard2  8886  pssnn  8890  ssfi  8895  pssnnOLD  8943  findcard2OLD  8961  fiint  8996  inf0  9284  axinf2  9303  trcl  9392  axac3  10126  brdom3  10190  axpowndlem4  10262  axregndlem2  10265  axinfnd  10268  wfgru  10478  nqerf  10592  uzrdgfni  13581  ltweuz  13584  trclfvcotr  14623  fclim  15165  letsr  18201  distop  22028  fctop  22037  cctop  22039  ulmdm  25432  upgr0eopALT  27364  bnj1023  32635  bnj1109  32641  bnj907  32822  funen1cnv  32935  loop1cycl  32974  umgr2cycl  32978  hbimg  33666  fnsingle  34123  funimage  34132  funpartfun  34147  hftr  34386  filnetlem3  34471  bj-genr  34690  bj-genl  34691  bj-genan  34692  bj-mpgs  34693  bj-cbvalim  34728  bj-cbvexim  34729  bj-ax12v  34739  bj-ceqsalg0  34975  bj-ceqsalgALT  34977  bj-ceqsalgvALT  34979  bj-vtoclgfALT  35132  vtoclefex  35411  rdgeqoa  35447  exrecfnpw  35458  riscer  36052  disjALTV0  36768  ax12eq  36861  cdleme32fva  38357  eu0  40997  dfrcl2  41144  rr-grothprim  41780  rr-grothshort  41784  pm11.11  41854  sbc3orgVD  42333  ordelordALTVD  42349  trsbcVD  42359  undif3VD  42364  sbcssgVD  42365  csbingVD  42366  onfrALTlem1VD  42372  onfrALTVD  42373  csbsngVD  42375  csbxpgVD  42376  csbresgVD  42377  csbrngVD  42378  csbima12gALTVD  42379  csbunigVD  42380  csbfv12gALTVD  42381  19.41rgVD  42384  unisnALT  42408  refsum2cnlem1  42442  dvnprodlem3  43352  sge00  43777  eusnsn  44380  aiota0def  44448  sprssspr  44794  spcdvw  46244  setrec2lem2  46259  onsetrec  46272
  Copyright terms: Public domain W3C validator