MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax-gen Structured version   Visualization version   GIF version

Axiom ax-gen 1793
Description: Rule of (universal) generalization. In our axiomatization, this is the only postulated (that is, axiomatic) rule of inference of predicate calculus (together with the rule of modus ponens ax-mp 5 of propositional calculus). See, e.g., Rule 2 of [Hamilton] p. 74. This rule says that if something is unconditionally true, then it is true for all values of a variable. For example, if we have proved 𝑥 = 𝑥, then we can conclude 𝑥𝑥 = 𝑥 or even 𝑦𝑥 = 𝑥. Theorem altru 1805 shows the special case 𝑥. The converse rule of inference spi 2185 (universal instantiation, or universal specialization) shows that we can also go the other way: in other words, we can add or remove universal quantifiers from the beginning of any theorem as required. Note that the closed form (𝜑 → ∀𝑥𝜑) need not hold (but may hold in special cases, see ax-5 1909). (Contributed by NM, 3-Jan-1993.)
Hypothesis
Ref Expression
ax-gen.1 𝜑
Assertion
Ref Expression
ax-gen 𝑥𝜑

Detailed syntax breakdown of Axiom ax-gen
StepHypRef Expression
1 wph . 2 wff 𝜑
2 vx . 2 setvar 𝑥
31, 2wal 1535 1 wff 𝑥𝜑
Colors of variables: wff setvar class
This axiom is referenced by:  gen2  1794  mpg  1795  mpgbi  1796  mpgbir  1797  hbth  1801  altru  1805  alfal  1806  stdpc6  2027  sbt  2066  ax13dgen3  2139  ceqsalg  3525  ceqsralvOLD  3532  vtoclegft  3601  mosub  3735  sbcth  3819  sbciegf  3844  sbcg  3883  csbiegf  3955  sbcnestgw  4446  csbnestgw  4447  sbcnestg  4451  csbnestg  4452  csbnest1g  4455  mpteq2daOLD  5265  mpteq2iaOLD  5270  al0ssb  5326  intidg  5477  ssopab2i  5569  relssi  5806  xpidtr  6149  funcnvsn  6623  caovmo  7681  trom  7906  peano1  7921  abrexexg  7995  wfrfunOLD  8369  tfrlem7  8433  1onn  8690  2onn  8692  findcard  9223  findcard2  9224  pssnn  9228  ssfi  9234  fiint  9388  fiintOLD  9389  inf0  9684  axinf2  9703  trcl  9791  axac3  10527  brdom3  10591  axpowndlem4  10663  axregndlem2  10666  axinfnd  10669  wfgru  10879  nqerf  10993  uzrdgfni  14003  ltweuz  14006  trclfvcotr  15052  fclim  15593  letsr  18657  cnsubrglem  21451  distop  23015  fctop  23024  cctop  23026  ulmdm  26446  upgr0eopALT  29143  bnj1023  34748  bnj1109  34754  bnj907  34935  funen1cnv  35056  axnulg  35060  loop1cycl  35097  umgr2cycl  35101  hbimg  35765  fnsingle  35875  funimage  35884  funpartfun  35899  hftr  36138  itgeq12i  36162  filnetlem3  36338  bj-genr  36564  bj-genl  36565  bj-genan  36566  bj-mpgs  36567  bj-cbvalim  36603  bj-cbvexim  36604  bj-ax12v  36614  bj-ceqsalg0  36846  bj-ceqsalgALT  36848  bj-ceqsalgvALT  36850  bj-vtoclgfALT  37017  vtoclefex  37292  rdgeqoa  37328  exrecfnpw  37339  riscer  37940  trressn  38393  disjALTV0  38702  ax12eq  38889  cdleme32fva  40386  sbalexi  42198  unielss  43174  tfsconcatlem  43293  eu0  43477  dfrcl2  43631  rr-grothprim  44264  rr-grothshort  44268  pm11.11  44338  sbc3orgVD  44817  ordelordALTVD  44833  trsbcVD  44843  undif3VD  44848  sbcssgVD  44849  csbingVD  44850  onfrALTlem1VD  44856  onfrALTVD  44857  csbsngVD  44859  csbxpgVD  44860  csbresgVD  44861  csbrngVD  44862  csbima12gALTVD  44863  csbunigVD  44864  csbfv12gALTVD  44865  19.41rgVD  44868  unisnALT  44892  refsum2cnlem1  44926  dvnprodlem3  45858  sge00  46286  eusnsn  46930  aiota0def  47000  sprssspr  47344  spcdvw  48760  setrec2lem2  48775  onsetrec  48789
  Copyright terms: Public domain W3C validator