MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax-gen Structured version   Visualization version   GIF version

Axiom ax-gen 1795
Description: Rule of (universal) generalization. In our axiomatization, this is the only postulated (that is, axiomatic) rule of inference of predicate calculus (together with the rule of modus ponens ax-mp 5 of propositional calculus). See, e.g., Rule 2 of [Hamilton] p. 74. This rule says that if something is unconditionally true, then it is true for all values of a variable. For example, if we have proved 𝑥 = 𝑥, then we can conclude 𝑥𝑥 = 𝑥 or even 𝑦𝑥 = 𝑥. Theorem altru 1807 shows the special case 𝑥. The converse rule of inference spi 2185 (universal instantiation, or universal specialization) shows that we can also go the other way: in other words, we can add or remove universal quantifiers from the beginning of any theorem as required. Note that the closed form (𝜑 → ∀𝑥𝜑) need not hold (but may hold in special cases, see ax-5 1910). (Contributed by NM, 3-Jan-1993.)
Hypothesis
Ref Expression
ax-gen.1 𝜑
Assertion
Ref Expression
ax-gen 𝑥𝜑

Detailed syntax breakdown of Axiom ax-gen
StepHypRef Expression
1 wph . 2 wff 𝜑
2 vx . 2 setvar 𝑥
31, 2wal 1538 1 wff 𝑥𝜑
Colors of variables: wff setvar class
This axiom is referenced by:  gen2  1796  mpg  1797  mpgbi  1798  mpgbir  1799  hbth  1803  altru  1807  alfal  1808  stdpc6  2028  sbt  2067  ax13dgen3  2140  ceqsalg  3474  vtoclegft  3545  elabg  3634  mosub  3675  sbcth  3759  sbciegf  3783  sbcg  3817  csbiegf  3886  sbcnestgw  4376  csbnestgw  4377  sbcnestg  4381  csbnestg  4382  csbnest1g  4385  al0ssb  5250  intidg  5404  ssopab2i  5497  relssi  5734  xpidtr  6075  funcnvsn  6536  caovmo  7590  trom  7815  peano1  7829  abrexexg  7903  tfrlem7  8312  1onn  8565  2onn  8567  findcard  9087  findcard2  9088  pssnn  9092  ssfi  9097  fiint  9235  fiintOLD  9236  inf0  9536  axinf2  9555  trcl  9643  axac3  10377  brdom3  10441  axpowndlem4  10513  axregndlem2  10516  axinfnd  10519  wfgru  10729  nqerf  10843  uzrdgfni  13883  ltweuz  13886  trclfvcotr  14934  fclim  15478  letsr  18517  cnsubrglem  21341  distop  22898  fctop  22907  cctop  22909  ulmdm  26318  upgr0eopALT  29079  bnj1023  34746  bnj1109  34752  bnj907  34933  funen1cnv  35054  axnulg  35058  tz9.1regs  35066  loop1cycl  35109  umgr2cycl  35113  hbimg  35782  fnsingle  35892  funimage  35901  funpartfun  35916  hftr  36155  itgeq12i  36179  filnetlem3  36353  bj-genr  36579  bj-genl  36580  bj-genan  36581  bj-mpgs  36582  bj-cbvalim  36618  bj-cbvexim  36619  bj-ax12v  36629  bj-ceqsalg0  36861  bj-ceqsalgALT  36863  bj-ceqsalgvALT  36865  bj-vtoclgfALT  37032  vtoclefex  37307  rdgeqoa  37343  exrecfnpw  37354  riscer  37967  trressn  38421  disjALTV0  38731  ax12eq  38919  cdleme32fva  40416  sbalexi  42186  unielss  43191  tfsconcatlem  43309  eu0  43493  dfrcl2  43647  rr-grothprim  44273  rr-grothshort  44277  pm11.11  44347  sbc3orgVD  44824  ordelordALTVD  44840  trsbcVD  44850  undif3VD  44855  sbcssgVD  44856  csbingVD  44857  onfrALTlem1VD  44863  onfrALTVD  44864  csbsngVD  44866  csbxpgVD  44867  csbresgVD  44868  csbrngVD  44869  csbima12gALTVD  44870  csbunigVD  44871  csbfv12gALTVD  44872  19.41rgVD  44875  unisnALT  44899  wfaxrep  44968  permaxsep  44981  permaxnul  44982  permaxpow  44983  permaxpr  44984  permaxun  44985  permaxinf2lem  44986  refsum2cnlem1  45015  dvnprodlem3  45930  sge00  46358  sinnpoly  46876  eusnsn  47011  aiota0def  47081  sprssspr  47466  spcdvw  49665  setrec2lem2  49680  onsetrec  49694
  Copyright terms: Public domain W3C validator