MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax-gen Structured version   Visualization version   GIF version

Axiom ax-gen 1795
Description: Rule of (universal) generalization. In our axiomatization, this is the only postulated (that is, axiomatic) rule of inference of predicate calculus (together with the rule of modus ponens ax-mp 5 of propositional calculus). See, e.g., Rule 2 of [Hamilton] p. 74. This rule says that if something is unconditionally true, then it is true for all values of a variable. For example, if we have proved 𝑥 = 𝑥, then we can conclude 𝑥𝑥 = 𝑥 or even 𝑦𝑥 = 𝑥. Theorem altru 1807 shows the special case 𝑥. The converse rule of inference spi 2185 (universal instantiation, or universal specialization) shows that we can also go the other way: in other words, we can add or remove universal quantifiers from the beginning of any theorem as required. Note that the closed form (𝜑 → ∀𝑥𝜑) need not hold (but may hold in special cases, see ax-5 1910). (Contributed by NM, 3-Jan-1993.)
Hypothesis
Ref Expression
ax-gen.1 𝜑
Assertion
Ref Expression
ax-gen 𝑥𝜑

Detailed syntax breakdown of Axiom ax-gen
StepHypRef Expression
1 wph . 2 wff 𝜑
2 vx . 2 setvar 𝑥
31, 2wal 1538 1 wff 𝑥𝜑
Colors of variables: wff setvar class
This axiom is referenced by:  gen2  1796  mpg  1797  mpgbi  1798  mpgbir  1799  hbth  1803  altru  1807  alfal  1808  stdpc6  2028  sbt  2067  ax13dgen3  2140  ceqsalg  3486  vtoclegft  3557  elabg  3646  mosub  3687  sbcth  3771  sbciegf  3795  sbcg  3829  csbiegf  3898  sbcnestgw  4389  csbnestgw  4390  sbcnestg  4394  csbnestg  4395  csbnest1g  4398  al0ssb  5266  intidg  5420  ssopab2i  5513  relssi  5753  xpidtr  6098  funcnvsn  6569  caovmo  7629  trom  7854  peano1  7868  abrexexg  7942  tfrlem7  8354  1onn  8607  2onn  8609  findcard  9133  findcard2  9134  pssnn  9138  ssfi  9143  fiint  9284  fiintOLD  9285  inf0  9581  axinf2  9600  trcl  9688  axac3  10424  brdom3  10488  axpowndlem4  10560  axregndlem2  10563  axinfnd  10566  wfgru  10776  nqerf  10890  uzrdgfni  13930  ltweuz  13933  trclfvcotr  14982  fclim  15526  letsr  18559  cnsubrglem  21340  distop  22889  fctop  22898  cctop  22900  ulmdm  26309  upgr0eopALT  29050  bnj1023  34777  bnj1109  34783  bnj907  34964  funen1cnv  35085  axnulg  35089  loop1cycl  35131  umgr2cycl  35135  hbimg  35804  fnsingle  35914  funimage  35923  funpartfun  35938  hftr  36177  itgeq12i  36201  filnetlem3  36375  bj-genr  36601  bj-genl  36602  bj-genan  36603  bj-mpgs  36604  bj-cbvalim  36640  bj-cbvexim  36641  bj-ax12v  36651  bj-ceqsalg0  36883  bj-ceqsalgALT  36885  bj-ceqsalgvALT  36887  bj-vtoclgfALT  37054  vtoclefex  37329  rdgeqoa  37365  exrecfnpw  37376  riscer  37989  trressn  38443  disjALTV0  38753  ax12eq  38941  cdleme32fva  40438  sbalexi  42208  unielss  43214  tfsconcatlem  43332  eu0  43516  dfrcl2  43670  rr-grothprim  44296  rr-grothshort  44300  pm11.11  44370  sbc3orgVD  44847  ordelordALTVD  44863  trsbcVD  44873  undif3VD  44878  sbcssgVD  44879  csbingVD  44880  onfrALTlem1VD  44886  onfrALTVD  44887  csbsngVD  44889  csbxpgVD  44890  csbresgVD  44891  csbrngVD  44892  csbima12gALTVD  44893  csbunigVD  44894  csbfv12gALTVD  44895  19.41rgVD  44898  unisnALT  44922  wfaxrep  44991  permaxsep  45004  permaxnul  45005  permaxpow  45006  permaxpr  45007  permaxun  45008  permaxinf2lem  45009  refsum2cnlem1  45038  dvnprodlem3  45953  sge00  46381  eusnsn  47031  aiota0def  47101  sprssspr  47486  spcdvw  49672  setrec2lem2  49687  onsetrec  49701
  Copyright terms: Public domain W3C validator