MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax-gen Structured version   Visualization version   GIF version

Axiom ax-gen 1795
Description: Rule of (universal) generalization. In our axiomatization, this is the only postulated (that is, axiomatic) rule of inference of predicate calculus (together with the rule of modus ponens ax-mp 5 of propositional calculus). See, e.g., Rule 2 of [Hamilton] p. 74. This rule says that if something is unconditionally true, then it is true for all values of a variable. For example, if we have proved 𝑥 = 𝑥, then we can conclude 𝑥𝑥 = 𝑥 or even 𝑦𝑥 = 𝑥. Theorem altru 1807 shows the special case 𝑥. The converse rule of inference spi 2185 (universal instantiation, or universal specialization) shows that we can also go the other way: in other words, we can add or remove universal quantifiers from the beginning of any theorem as required. Note that the closed form (𝜑 → ∀𝑥𝜑) need not hold (but may hold in special cases, see ax-5 1910). (Contributed by NM, 3-Jan-1993.)
Hypothesis
Ref Expression
ax-gen.1 𝜑
Assertion
Ref Expression
ax-gen 𝑥𝜑

Detailed syntax breakdown of Axiom ax-gen
StepHypRef Expression
1 wph . 2 wff 𝜑
2 vx . 2 setvar 𝑥
31, 2wal 1538 1 wff 𝑥𝜑
Colors of variables: wff setvar class
This axiom is referenced by:  gen2  1796  mpg  1797  mpgbi  1798  mpgbir  1799  hbth  1803  altru  1807  alfal  1808  stdpc6  2028  sbt  2067  ax13dgen3  2140  ceqsalg  3483  vtoclegft  3554  elabg  3643  mosub  3684  sbcth  3768  sbciegf  3792  sbcg  3826  csbiegf  3895  sbcnestgw  4386  csbnestgw  4387  sbcnestg  4391  csbnestg  4392  csbnest1g  4395  al0ssb  5263  intidg  5417  ssopab2i  5510  relssi  5750  xpidtr  6095  funcnvsn  6566  caovmo  7626  trom  7851  peano1  7865  abrexexg  7939  tfrlem7  8351  1onn  8604  2onn  8606  findcard  9127  findcard2  9128  pssnn  9132  ssfi  9137  fiint  9277  fiintOLD  9278  inf0  9574  axinf2  9593  trcl  9681  axac3  10417  brdom3  10481  axpowndlem4  10553  axregndlem2  10556  axinfnd  10559  wfgru  10769  nqerf  10883  uzrdgfni  13923  ltweuz  13926  trclfvcotr  14975  fclim  15519  letsr  18552  cnsubrglem  21333  distop  22882  fctop  22891  cctop  22893  ulmdm  26302  upgr0eopALT  29043  bnj1023  34770  bnj1109  34776  bnj907  34957  funen1cnv  35078  axnulg  35082  loop1cycl  35124  umgr2cycl  35128  hbimg  35797  fnsingle  35907  funimage  35916  funpartfun  35931  hftr  36170  itgeq12i  36194  filnetlem3  36368  bj-genr  36594  bj-genl  36595  bj-genan  36596  bj-mpgs  36597  bj-cbvalim  36633  bj-cbvexim  36634  bj-ax12v  36644  bj-ceqsalg0  36876  bj-ceqsalgALT  36878  bj-ceqsalgvALT  36880  bj-vtoclgfALT  37047  vtoclefex  37322  rdgeqoa  37358  exrecfnpw  37369  riscer  37982  trressn  38436  disjALTV0  38746  ax12eq  38934  cdleme32fva  40431  sbalexi  42201  unielss  43207  tfsconcatlem  43325  eu0  43509  dfrcl2  43663  rr-grothprim  44289  rr-grothshort  44293  pm11.11  44363  sbc3orgVD  44840  ordelordALTVD  44856  trsbcVD  44866  undif3VD  44871  sbcssgVD  44872  csbingVD  44873  onfrALTlem1VD  44879  onfrALTVD  44880  csbsngVD  44882  csbxpgVD  44883  csbresgVD  44884  csbrngVD  44885  csbima12gALTVD  44886  csbunigVD  44887  csbfv12gALTVD  44888  19.41rgVD  44891  unisnALT  44915  wfaxrep  44984  permaxsep  44997  permaxnul  44998  permaxpow  44999  permaxpr  45000  permaxun  45001  permaxinf2lem  45002  refsum2cnlem1  45031  dvnprodlem3  45946  sge00  46374  sinnpoly  46892  eusnsn  47027  aiota0def  47097  sprssspr  47482  spcdvw  49668  setrec2lem2  49683  onsetrec  49697
  Copyright terms: Public domain W3C validator