MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax-gen Structured version   Visualization version   GIF version

Axiom ax-gen 1796
Description: Rule of (universal) generalization. In our axiomatization, this is the only postulated (that is, axiomatic) rule of inference of predicate calculus (together with the rule of modus ponens ax-mp 5 of propositional calculus). See, e.g., Rule 2 of [Hamilton] p. 74. This rule says that if something is unconditionally true, then it is true for all values of a variable. For example, if we have proved 𝑥 = 𝑥, then we can conclude 𝑥𝑥 = 𝑥 or even 𝑦𝑥 = 𝑥. Theorem altru 1808 shows the special case 𝑥. The converse rule of inference spi 2187 (universal instantiation, or universal specialization) shows that we can also go the other way: in other words, we can add or remove universal quantifiers from the beginning of any theorem as required. Note that the closed form (𝜑 → ∀𝑥𝜑) need not hold (but may hold in special cases, see ax-5 1911). (Contributed by NM, 3-Jan-1993.)
Hypothesis
Ref Expression
ax-gen.1 𝜑
Assertion
Ref Expression
ax-gen 𝑥𝜑

Detailed syntax breakdown of Axiom ax-gen
StepHypRef Expression
1 wph . 2 wff 𝜑
2 vx . 2 setvar 𝑥
31, 2wal 1539 1 wff 𝑥𝜑
Colors of variables: wff setvar class
This axiom is referenced by:  gen2  1797  mpg  1798  mpgbi  1799  mpgbir  1800  hbth  1804  altru  1808  alfal  1809  stdpc6  2029  sbt  2069  ax13dgen3  2142  ceqsalg  3472  vtoclegft  3543  elabg  3632  mosub  3672  sbcth  3756  sbciegf  3780  sbcg  3814  csbiegf  3883  sbcnestgw  4373  csbnestgw  4374  sbcnestg  4378  csbnestg  4379  csbnest1g  4382  al0ssb  5246  intidg  5398  ssopab2i  5490  relssi  5727  xpidtr  6069  funcnvsn  6531  caovmo  7583  trom  7805  peano1  7819  abrexexg  7893  tfrlem7  8302  1onn  8555  2onn  8557  findcard  9073  findcard2  9074  pssnn  9078  ssfi  9082  fiint  9211  inf0  9511  axinf2  9530  trcl  9618  axac3  10352  brdom3  10416  axpowndlem4  10488  axregndlem2  10491  axinfnd  10494  wfgru  10704  nqerf  10818  uzrdgfni  13862  ltweuz  13865  trclfvcotr  14913  fclim  15457  letsr  18496  cnsubrglem  21351  distop  22908  fctop  22917  cctop  22919  ulmdm  26327  upgr0eopALT  29092  bnj1023  34787  bnj1109  34793  bnj907  34974  funen1cnv  35095  axnulg  35110  tz9.1regs  35118  loop1cycl  35169  umgr2cycl  35173  hbimg  35842  fnsingle  35952  funimage  35961  funpartfun  35976  hftr  36215  itgeq12i  36239  filnetlem3  36413  bj-genr  36639  bj-genl  36640  bj-genan  36641  bj-mpgs  36642  bj-cbvalim  36678  bj-cbvexim  36679  bj-ax12v  36689  bj-ceqsalg0  36921  bj-ceqsalgALT  36923  bj-ceqsalgvALT  36925  bj-vtoclgfALT  37092  vtoclefex  37367  rdgeqoa  37403  exrecfnpw  37414  riscer  38027  trressn  38481  disjALTV0  38791  ax12eq  38979  cdleme32fva  40475  sbalexi  42245  unielss  43250  tfsconcatlem  43368  eu0  43552  dfrcl2  43706  rr-grothprim  44332  rr-grothshort  44336  pm11.11  44406  sbc3orgVD  44882  ordelordALTVD  44898  trsbcVD  44908  undif3VD  44913  sbcssgVD  44914  csbingVD  44915  onfrALTlem1VD  44921  onfrALTVD  44922  csbsngVD  44924  csbxpgVD  44925  csbresgVD  44926  csbrngVD  44927  csbima12gALTVD  44928  csbunigVD  44929  csbfv12gALTVD  44930  19.41rgVD  44933  unisnALT  44957  wfaxrep  45026  permaxsep  45039  permaxnul  45040  permaxpow  45041  permaxpr  45042  permaxun  45043  permaxinf2lem  45044  refsum2cnlem1  45073  dvnprodlem3  45985  sge00  46413  sinnpoly  46921  eusnsn  47056  aiota0def  47126  sprssspr  47511  spcdvw  49710  setrec2lem2  49725  onsetrec  49739
  Copyright terms: Public domain W3C validator