MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax-gen Structured version   Visualization version   GIF version

Axiom ax-gen 1795
Description: Rule of (universal) generalization. In our axiomatization, this is the only postulated (that is, axiomatic) rule of inference of predicate calculus (together with the rule of modus ponens ax-mp 5 of propositional calculus). See, e.g., Rule 2 of [Hamilton] p. 74. This rule says that if something is unconditionally true, then it is true for all values of a variable. For example, if we have proved 𝑥 = 𝑥, then we can conclude 𝑥𝑥 = 𝑥 or even 𝑦𝑥 = 𝑥. Theorem altru 1807 shows the special case 𝑥. The converse rule of inference spi 2185 (universal instantiation, or universal specialization) shows that we can also go the other way: in other words, we can add or remove universal quantifiers from the beginning of any theorem as required. Note that the closed form (𝜑 → ∀𝑥𝜑) need not hold (but may hold in special cases, see ax-5 1910). (Contributed by NM, 3-Jan-1993.)
Hypothesis
Ref Expression
ax-gen.1 𝜑
Assertion
Ref Expression
ax-gen 𝑥𝜑

Detailed syntax breakdown of Axiom ax-gen
StepHypRef Expression
1 wph . 2 wff 𝜑
2 vx . 2 setvar 𝑥
31, 2wal 1538 1 wff 𝑥𝜑
Colors of variables: wff setvar class
This axiom is referenced by:  gen2  1796  mpg  1797  mpgbi  1798  mpgbir  1799  hbth  1803  altru  1807  alfal  1808  stdpc6  2028  sbt  2067  ax13dgen3  2140  ceqsalg  3486  vtoclegft  3557  mosub  3686  sbcth  3770  sbciegf  3794  sbcg  3828  csbiegf  3897  sbcnestgw  4388  csbnestgw  4389  sbcnestg  4393  csbnestg  4394  csbnest1g  4397  al0ssb  5265  intidg  5419  ssopab2i  5512  relssi  5752  xpidtr  6097  funcnvsn  6568  caovmo  7628  trom  7853  peano1  7867  abrexexg  7941  tfrlem7  8353  1onn  8606  2onn  8608  findcard  9132  findcard2  9133  pssnn  9137  ssfi  9142  fiint  9283  fiintOLD  9284  inf0  9580  axinf2  9599  trcl  9687  axac3  10423  brdom3  10487  axpowndlem4  10559  axregndlem2  10562  axinfnd  10565  wfgru  10775  nqerf  10889  uzrdgfni  13929  ltweuz  13932  trclfvcotr  14981  fclim  15525  letsr  18558  cnsubrglem  21339  distop  22888  fctop  22897  cctop  22899  ulmdm  26308  upgr0eopALT  29049  bnj1023  34776  bnj1109  34782  bnj907  34963  funen1cnv  35084  axnulg  35088  loop1cycl  35124  umgr2cycl  35128  hbimg  35792  fnsingle  35902  funimage  35911  funpartfun  35926  hftr  36165  itgeq12i  36189  filnetlem3  36363  bj-genr  36589  bj-genl  36590  bj-genan  36591  bj-mpgs  36592  bj-cbvalim  36628  bj-cbvexim  36629  bj-ax12v  36639  bj-ceqsalg0  36871  bj-ceqsalgALT  36873  bj-ceqsalgvALT  36875  bj-vtoclgfALT  37042  vtoclefex  37317  rdgeqoa  37353  exrecfnpw  37364  riscer  37977  trressn  38431  disjALTV0  38741  ax12eq  38929  cdleme32fva  40426  sbalexi  42196  unielss  43200  tfsconcatlem  43318  eu0  43502  dfrcl2  43656  rr-grothprim  44282  rr-grothshort  44286  pm11.11  44356  sbc3orgVD  44833  ordelordALTVD  44849  trsbcVD  44859  undif3VD  44864  sbcssgVD  44865  csbingVD  44866  onfrALTlem1VD  44872  onfrALTVD  44873  csbsngVD  44875  csbxpgVD  44876  csbresgVD  44877  csbrngVD  44878  csbima12gALTVD  44879  csbunigVD  44880  csbfv12gALTVD  44881  19.41rgVD  44884  unisnALT  44908  wfaxrep  44977  permaxsep  44990  permaxnul  44991  permaxpow  44992  permaxpr  44993  permaxun  44994  permaxinf2lem  44995  refsum2cnlem1  45024  dvnprodlem3  45939  sge00  46367  eusnsn  47017  aiota0def  47087  sprssspr  47472  spcdvw  49658  setrec2lem2  49673  onsetrec  49687
  Copyright terms: Public domain W3C validator