| Metamath
Proof Explorer Theorem List (p. 356 of 499) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30893) |
(30894-32416) |
(32417-49836) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Syntax | cmvrs 35501 | The variables in an expression. |
| class mVars | ||
| Syntax | cmrsub 35502 | The set of raw substitutions. |
| class mRSubst | ||
| Syntax | cmsub 35503 | The set of substitutions. |
| class mSubst | ||
| Syntax | cmvh 35504 | The set of variable hypotheses. |
| class mVH | ||
| Syntax | cmpst 35505 | The set of pre-statements. |
| class mPreSt | ||
| Syntax | cmsr 35506 | The reduct of a pre-statement. |
| class mStRed | ||
| Syntax | cmsta 35507 | The set of statements. |
| class mStat | ||
| Syntax | cmfs 35508 | The set of formal systems. |
| class mFS | ||
| Syntax | cmcls 35509 | The closure of a set of statements. |
| class mCls | ||
| Syntax | cmpps 35510 | The set of provable pre-statements. |
| class mPPSt | ||
| Syntax | cmthm 35511 | The set of theorems. |
| class mThm | ||
| Definition | df-mcn 35512 | Define the set of constants in a Metamath formal system. (Contributed by Mario Carneiro, 14-Jul-2016.) |
| ⊢ mCN = Slot 1 | ||
| Definition | df-mvar 35513 | Define the set of variables in a Metamath formal system. (Contributed by Mario Carneiro, 14-Jul-2016.) |
| ⊢ mVR = Slot 2 | ||
| Definition | df-mty 35514 | Define the type function in a Metamath formal system. (Contributed by Mario Carneiro, 14-Jul-2016.) |
| ⊢ mType = Slot 3 | ||
| Definition | df-mtc 35515 | Define the set of typecodes in a Metamath formal system. (Contributed by Mario Carneiro, 14-Jul-2016.) |
| ⊢ mTC = Slot 4 | ||
| Definition | df-mmax 35516 | Define the set of axioms in a Metamath formal system. (Contributed by Mario Carneiro, 14-Jul-2016.) |
| ⊢ mAx = Slot 5 | ||
| Definition | df-mvt 35517 | Define the set of variable typecodes in a Metamath formal system. (Contributed by Mario Carneiro, 14-Jul-2016.) |
| ⊢ mVT = (𝑡 ∈ V ↦ ran (mType‘𝑡)) | ||
| Definition | df-mrex 35518 | Define the set of "raw expressions", which are expressions without a typecode attached. (Contributed by Mario Carneiro, 14-Jul-2016.) |
| ⊢ mREx = (𝑡 ∈ V ↦ Word ((mCN‘𝑡) ∪ (mVR‘𝑡))) | ||
| Definition | df-mex 35519 | Define the set of expressions, which are strings of constants and variables headed by a typecode constant. (Contributed by Mario Carneiro, 14-Jul-2016.) |
| ⊢ mEx = (𝑡 ∈ V ↦ ((mTC‘𝑡) × (mREx‘𝑡))) | ||
| Definition | df-mdv 35520 | Define the set of distinct variable conditions, which are pairs of distinct variables. (Contributed by Mario Carneiro, 14-Jul-2016.) |
| ⊢ mDV = (𝑡 ∈ V ↦ (((mVR‘𝑡) × (mVR‘𝑡)) ∖ I )) | ||
| Definition | df-mvrs 35521* | Define the set of variables in an expression. (Contributed by Mario Carneiro, 14-Jul-2016.) |
| ⊢ mVars = (𝑡 ∈ V ↦ (𝑒 ∈ (mEx‘𝑡) ↦ (ran (2nd ‘𝑒) ∩ (mVR‘𝑡)))) | ||
| Definition | df-mrsub 35522* | Define a substitution of raw expressions given a mapping from variables to expressions. (Contributed by Mario Carneiro, 14-Jul-2016.) |
| ⊢ mRSubst = (𝑡 ∈ V ↦ (𝑓 ∈ ((mREx‘𝑡) ↑pm (mVR‘𝑡)) ↦ (𝑒 ∈ (mREx‘𝑡) ↦ ((freeMnd‘((mCN‘𝑡) ∪ (mVR‘𝑡))) Σg ((𝑣 ∈ ((mCN‘𝑡) ∪ (mVR‘𝑡)) ↦ if(𝑣 ∈ dom 𝑓, (𝑓‘𝑣), 〈“𝑣”〉)) ∘ 𝑒))))) | ||
| Definition | df-msub 35523* | Define a substitution of expressions given a mapping from variables to expressions. (Contributed by Mario Carneiro, 14-Jul-2016.) |
| ⊢ mSubst = (𝑡 ∈ V ↦ (𝑓 ∈ ((mREx‘𝑡) ↑pm (mVR‘𝑡)) ↦ (𝑒 ∈ (mEx‘𝑡) ↦ 〈(1st ‘𝑒), (((mRSubst‘𝑡)‘𝑓)‘(2nd ‘𝑒))〉))) | ||
| Definition | df-mvh 35524* | Define the mapping from variables to their variable hypothesis. (Contributed by Mario Carneiro, 14-Jul-2016.) |
| ⊢ mVH = (𝑡 ∈ V ↦ (𝑣 ∈ (mVR‘𝑡) ↦ 〈((mType‘𝑡)‘𝑣), 〈“𝑣”〉〉)) | ||
| Definition | df-mpst 35525* | Define the set of all pre-statements. (Contributed by Mario Carneiro, 14-Jul-2016.) |
| ⊢ mPreSt = (𝑡 ∈ V ↦ (({𝑑 ∈ 𝒫 (mDV‘𝑡) ∣ ◡𝑑 = 𝑑} × (𝒫 (mEx‘𝑡) ∩ Fin)) × (mEx‘𝑡))) | ||
| Definition | df-msr 35526* | Define the reduct of a pre-statement. (Contributed by Mario Carneiro, 14-Jul-2016.) |
| ⊢ mStRed = (𝑡 ∈ V ↦ (𝑠 ∈ (mPreSt‘𝑡) ↦ ⦋(2nd ‘(1st ‘𝑠)) / ℎ⦌⦋(2nd ‘𝑠) / 𝑎⦌〈((1st ‘(1st ‘𝑠)) ∩ ⦋∪ ((mVars‘𝑡) “ (ℎ ∪ {𝑎})) / 𝑧⦌(𝑧 × 𝑧)), ℎ, 𝑎〉)) | ||
| Definition | df-msta 35527 | Define the set of all statements. (Contributed by Mario Carneiro, 14-Jul-2016.) |
| ⊢ mStat = (𝑡 ∈ V ↦ ran (mStRed‘𝑡)) | ||
| Definition | df-mfs 35528* | Define the set of all formal systems. (Contributed by Mario Carneiro, 14-Jul-2016.) |
| ⊢ mFS = {𝑡 ∣ ((((mCN‘𝑡) ∩ (mVR‘𝑡)) = ∅ ∧ (mType‘𝑡):(mVR‘𝑡)⟶(mTC‘𝑡)) ∧ ((mAx‘𝑡) ⊆ (mStat‘𝑡) ∧ ∀𝑣 ∈ (mVT‘𝑡) ¬ (◡(mType‘𝑡) “ {𝑣}) ∈ Fin))} | ||
| Definition | df-mcls 35529* | Define the closure of a set of statements relative to a set of disjointness constraints. (Contributed by Mario Carneiro, 14-Jul-2016.) |
| ⊢ mCls = (𝑡 ∈ V ↦ (𝑑 ∈ 𝒫 (mDV‘𝑡), ℎ ∈ 𝒫 (mEx‘𝑡) ↦ ∩ {𝑐 ∣ ((ℎ ∪ ran (mVH‘𝑡)) ⊆ 𝑐 ∧ ∀𝑚∀𝑜∀𝑝(〈𝑚, 𝑜, 𝑝〉 ∈ (mAx‘𝑡) → ∀𝑠 ∈ ran (mSubst‘𝑡)(((𝑠 “ (𝑜 ∪ ran (mVH‘𝑡))) ⊆ 𝑐 ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑)) → (𝑠‘𝑝) ∈ 𝑐)))})) | ||
| Definition | df-mpps 35530* | Define the set of provable pre-statements. (Contributed by Mario Carneiro, 14-Jul-2016.) |
| ⊢ mPPSt = (𝑡 ∈ V ↦ {〈〈𝑑, ℎ〉, 𝑎〉 ∣ (〈𝑑, ℎ, 𝑎〉 ∈ (mPreSt‘𝑡) ∧ 𝑎 ∈ (𝑑(mCls‘𝑡)ℎ))}) | ||
| Definition | df-mthm 35531 | Define the set of theorems. (Contributed by Mario Carneiro, 14-Jul-2016.) |
| ⊢ mThm = (𝑡 ∈ V ↦ (◡(mStRed‘𝑡) “ ((mStRed‘𝑡) “ (mPPSt‘𝑡)))) | ||
| Theorem | mvtval 35532 | The set of variable typecodes. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑉 = (mVT‘𝑇) & ⊢ 𝑌 = (mType‘𝑇) ⇒ ⊢ 𝑉 = ran 𝑌 | ||
| Theorem | mrexval 35533 | The set of "raw expressions", which are expressions without a typecode, that is, just sequences of constants and variables. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝐶 = (mCN‘𝑇) & ⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝑅 = (mREx‘𝑇) ⇒ ⊢ (𝑇 ∈ 𝑊 → 𝑅 = Word (𝐶 ∪ 𝑉)) | ||
| Theorem | mexval 35534 | The set of expressions, which are pairs whose first element is a typecode, and whose second element is a raw expression. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝐾 = (mTC‘𝑇) & ⊢ 𝐸 = (mEx‘𝑇) & ⊢ 𝑅 = (mREx‘𝑇) ⇒ ⊢ 𝐸 = (𝐾 × 𝑅) | ||
| Theorem | mexval2 35535 | The set of expressions, which are pairs whose first element is a typecode, and whose second element is a list of constants and variables. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝐾 = (mTC‘𝑇) & ⊢ 𝐸 = (mEx‘𝑇) & ⊢ 𝐶 = (mCN‘𝑇) & ⊢ 𝑉 = (mVR‘𝑇) ⇒ ⊢ 𝐸 = (𝐾 × Word (𝐶 ∪ 𝑉)) | ||
| Theorem | mdvval 35536 | The set of disjoint variable conditions, which are pairs of distinct variables. (This definition differs from appendix C, which uses unordered pairs instead. We use ordered pairs, but all sets of disjoint variable conditions of interest will be symmetric, so it does not matter.) (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝐷 = (mDV‘𝑇) ⇒ ⊢ 𝐷 = ((𝑉 × 𝑉) ∖ I ) | ||
| Theorem | mvrsval 35537 | The set of variables in an expression. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝐸 = (mEx‘𝑇) & ⊢ 𝑊 = (mVars‘𝑇) ⇒ ⊢ (𝑋 ∈ 𝐸 → (𝑊‘𝑋) = (ran (2nd ‘𝑋) ∩ 𝑉)) | ||
| Theorem | mvrsfpw 35538 | The set of variables in an expression is a finite subset of 𝑉. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝐸 = (mEx‘𝑇) & ⊢ 𝑊 = (mVars‘𝑇) ⇒ ⊢ (𝑋 ∈ 𝐸 → (𝑊‘𝑋) ∈ (𝒫 𝑉 ∩ Fin)) | ||
| Theorem | mrsubffval 35539* | The substitution of some variables for expressions in a raw expression. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝐶 = (mCN‘𝑇) & ⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝑅 = (mREx‘𝑇) & ⊢ 𝑆 = (mRSubst‘𝑇) & ⊢ 𝐺 = (freeMnd‘(𝐶 ∪ 𝑉)) ⇒ ⊢ (𝑇 ∈ 𝑊 → 𝑆 = (𝑓 ∈ (𝑅 ↑pm 𝑉) ↦ (𝑒 ∈ 𝑅 ↦ (𝐺 Σg ((𝑣 ∈ (𝐶 ∪ 𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓‘𝑣), 〈“𝑣”〉)) ∘ 𝑒))))) | ||
| Theorem | mrsubfval 35540* | The substitution of some variables for expressions in a raw expression. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝐶 = (mCN‘𝑇) & ⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝑅 = (mREx‘𝑇) & ⊢ 𝑆 = (mRSubst‘𝑇) & ⊢ 𝐺 = (freeMnd‘(𝐶 ∪ 𝑉)) ⇒ ⊢ ((𝐹:𝐴⟶𝑅 ∧ 𝐴 ⊆ 𝑉) → (𝑆‘𝐹) = (𝑒 ∈ 𝑅 ↦ (𝐺 Σg ((𝑣 ∈ (𝐶 ∪ 𝑉) ↦ if(𝑣 ∈ 𝐴, (𝐹‘𝑣), 〈“𝑣”〉)) ∘ 𝑒)))) | ||
| Theorem | mrsubval 35541* | The substitution of some variables for expressions in a raw expression. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝐶 = (mCN‘𝑇) & ⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝑅 = (mREx‘𝑇) & ⊢ 𝑆 = (mRSubst‘𝑇) & ⊢ 𝐺 = (freeMnd‘(𝐶 ∪ 𝑉)) ⇒ ⊢ ((𝐹:𝐴⟶𝑅 ∧ 𝐴 ⊆ 𝑉 ∧ 𝑋 ∈ 𝑅) → ((𝑆‘𝐹)‘𝑋) = (𝐺 Σg ((𝑣 ∈ (𝐶 ∪ 𝑉) ↦ if(𝑣 ∈ 𝐴, (𝐹‘𝑣), 〈“𝑣”〉)) ∘ 𝑋))) | ||
| Theorem | mrsubcv 35542 | The value of a substituted singleton. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝐶 = (mCN‘𝑇) & ⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝑅 = (mREx‘𝑇) & ⊢ 𝑆 = (mRSubst‘𝑇) ⇒ ⊢ ((𝐹:𝐴⟶𝑅 ∧ 𝐴 ⊆ 𝑉 ∧ 𝑋 ∈ (𝐶 ∪ 𝑉)) → ((𝑆‘𝐹)‘〈“𝑋”〉) = if(𝑋 ∈ 𝐴, (𝐹‘𝑋), 〈“𝑋”〉)) | ||
| Theorem | mrsubvr 35543 | The value of a substituted variable. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝑅 = (mREx‘𝑇) & ⊢ 𝑆 = (mRSubst‘𝑇) ⇒ ⊢ ((𝐹:𝐴⟶𝑅 ∧ 𝐴 ⊆ 𝑉 ∧ 𝑋 ∈ 𝐴) → ((𝑆‘𝐹)‘〈“𝑋”〉) = (𝐹‘𝑋)) | ||
| Theorem | mrsubff 35544 | A substitution is a function from 𝑅 to 𝑅. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝑅 = (mREx‘𝑇) & ⊢ 𝑆 = (mRSubst‘𝑇) ⇒ ⊢ (𝑇 ∈ 𝑊 → 𝑆:(𝑅 ↑pm 𝑉)⟶(𝑅 ↑m 𝑅)) | ||
| Theorem | mrsubrn 35545 | Although it is defined for partial mappings of variables, every partial substitution is a substitution on some complete mapping of the variables. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝑅 = (mREx‘𝑇) & ⊢ 𝑆 = (mRSubst‘𝑇) ⇒ ⊢ ran 𝑆 = (𝑆 “ (𝑅 ↑m 𝑉)) | ||
| Theorem | mrsubff1 35546 | When restricted to complete mappings, the substitution-producing function is one-to-one. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝑅 = (mREx‘𝑇) & ⊢ 𝑆 = (mRSubst‘𝑇) ⇒ ⊢ (𝑇 ∈ 𝑊 → (𝑆 ↾ (𝑅 ↑m 𝑉)):(𝑅 ↑m 𝑉)–1-1→(𝑅 ↑m 𝑅)) | ||
| Theorem | mrsubff1o 35547 | When restricted to complete mappings, the substitution-producing function is bijective to the set of all substitutions. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝑅 = (mREx‘𝑇) & ⊢ 𝑆 = (mRSubst‘𝑇) ⇒ ⊢ (𝑇 ∈ 𝑊 → (𝑆 ↾ (𝑅 ↑m 𝑉)):(𝑅 ↑m 𝑉)–1-1-onto→ran 𝑆) | ||
| Theorem | mrsub0 35548 | The value of the substituted empty string. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑆 = (mRSubst‘𝑇) ⇒ ⊢ (𝐹 ∈ ran 𝑆 → (𝐹‘∅) = ∅) | ||
| Theorem | mrsubf 35549 | A substitution is a function. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑆 = (mRSubst‘𝑇) & ⊢ 𝑅 = (mREx‘𝑇) ⇒ ⊢ (𝐹 ∈ ran 𝑆 → 𝐹:𝑅⟶𝑅) | ||
| Theorem | mrsubccat 35550 | Substitution distributes over concatenation. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑆 = (mRSubst‘𝑇) & ⊢ 𝑅 = (mREx‘𝑇) ⇒ ⊢ ((𝐹 ∈ ran 𝑆 ∧ 𝑋 ∈ 𝑅 ∧ 𝑌 ∈ 𝑅) → (𝐹‘(𝑋 ++ 𝑌)) = ((𝐹‘𝑋) ++ (𝐹‘𝑌))) | ||
| Theorem | mrsubcn 35551 | A substitution does not change the value of constant substrings. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑆 = (mRSubst‘𝑇) & ⊢ 𝑅 = (mREx‘𝑇) & ⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝐶 = (mCN‘𝑇) ⇒ ⊢ ((𝐹 ∈ ran 𝑆 ∧ 𝑋 ∈ (𝐶 ∖ 𝑉)) → (𝐹‘〈“𝑋”〉) = 〈“𝑋”〉) | ||
| Theorem | elmrsubrn 35552* | Characterization of the substitutions as functions from expressions to expressions that distribute under concatenation and map constants to themselves. (The constant part uses (𝐶 ∖ 𝑉) because we don't know that 𝐶 and 𝑉 are disjoint until we get to ismfs 35581.) (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑆 = (mRSubst‘𝑇) & ⊢ 𝑅 = (mREx‘𝑇) & ⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝐶 = (mCN‘𝑇) ⇒ ⊢ (𝑇 ∈ 𝑊 → (𝐹 ∈ ran 𝑆 ↔ (𝐹:𝑅⟶𝑅 ∧ ∀𝑐 ∈ (𝐶 ∖ 𝑉)(𝐹‘〈“𝑐”〉) = 〈“𝑐”〉 ∧ ∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹‘𝑥) ++ (𝐹‘𝑦))))) | ||
| Theorem | mrsubco 35553 | The composition of two substitutions is a substitution. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑆 = (mRSubst‘𝑇) ⇒ ⊢ ((𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆) → (𝐹 ∘ 𝐺) ∈ ran 𝑆) | ||
| Theorem | mrsubvrs 35554* | The set of variables in a substitution is the union, indexed by the variables in the original expression, of the variables in the substitution to that variable. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑆 = (mRSubst‘𝑇) & ⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝑅 = (mREx‘𝑇) ⇒ ⊢ ((𝐹 ∈ ran 𝑆 ∧ 𝑋 ∈ 𝑅) → (ran (𝐹‘𝑋) ∩ 𝑉) = ∪ 𝑥 ∈ (ran 𝑋 ∩ 𝑉)(ran (𝐹‘〈“𝑥”〉) ∩ 𝑉)) | ||
| Theorem | msubffval 35555* | A substitution applied to an expression. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝑅 = (mREx‘𝑇) & ⊢ 𝑆 = (mSubst‘𝑇) & ⊢ 𝐸 = (mEx‘𝑇) & ⊢ 𝑂 = (mRSubst‘𝑇) ⇒ ⊢ (𝑇 ∈ 𝑊 → 𝑆 = (𝑓 ∈ (𝑅 ↑pm 𝑉) ↦ (𝑒 ∈ 𝐸 ↦ 〈(1st ‘𝑒), ((𝑂‘𝑓)‘(2nd ‘𝑒))〉))) | ||
| Theorem | msubfval 35556* | A substitution applied to an expression. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝑅 = (mREx‘𝑇) & ⊢ 𝑆 = (mSubst‘𝑇) & ⊢ 𝐸 = (mEx‘𝑇) & ⊢ 𝑂 = (mRSubst‘𝑇) ⇒ ⊢ ((𝐹:𝐴⟶𝑅 ∧ 𝐴 ⊆ 𝑉) → (𝑆‘𝐹) = (𝑒 ∈ 𝐸 ↦ 〈(1st ‘𝑒), ((𝑂‘𝐹)‘(2nd ‘𝑒))〉)) | ||
| Theorem | msubval 35557 | A substitution applied to an expression. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝑅 = (mREx‘𝑇) & ⊢ 𝑆 = (mSubst‘𝑇) & ⊢ 𝐸 = (mEx‘𝑇) & ⊢ 𝑂 = (mRSubst‘𝑇) ⇒ ⊢ ((𝐹:𝐴⟶𝑅 ∧ 𝐴 ⊆ 𝑉 ∧ 𝑋 ∈ 𝐸) → ((𝑆‘𝐹)‘𝑋) = 〈(1st ‘𝑋), ((𝑂‘𝐹)‘(2nd ‘𝑋))〉) | ||
| Theorem | msubrsub 35558 | A substitution applied to an expression. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝑅 = (mREx‘𝑇) & ⊢ 𝑆 = (mSubst‘𝑇) & ⊢ 𝐸 = (mEx‘𝑇) & ⊢ 𝑂 = (mRSubst‘𝑇) ⇒ ⊢ ((𝐹:𝐴⟶𝑅 ∧ 𝐴 ⊆ 𝑉 ∧ 𝑋 ∈ 𝐸) → (2nd ‘((𝑆‘𝐹)‘𝑋)) = ((𝑂‘𝐹)‘(2nd ‘𝑋))) | ||
| Theorem | msubty 35559 | The type of a substituted expression is the same as the original type. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝑅 = (mREx‘𝑇) & ⊢ 𝑆 = (mSubst‘𝑇) & ⊢ 𝐸 = (mEx‘𝑇) ⇒ ⊢ ((𝐹:𝐴⟶𝑅 ∧ 𝐴 ⊆ 𝑉 ∧ 𝑋 ∈ 𝐸) → (1st ‘((𝑆‘𝐹)‘𝑋)) = (1st ‘𝑋)) | ||
| Theorem | elmsubrn 35560* | Characterization of substitution in terms of raw substitution, without reference to the generating functions. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝐸 = (mEx‘𝑇) & ⊢ 𝑂 = (mRSubst‘𝑇) & ⊢ 𝑆 = (mSubst‘𝑇) ⇒ ⊢ ran 𝑆 = ran (𝑓 ∈ ran 𝑂 ↦ (𝑒 ∈ 𝐸 ↦ 〈(1st ‘𝑒), (𝑓‘(2nd ‘𝑒))〉)) | ||
| Theorem | msubrn 35561 | Although it is defined for partial mappings of variables, every partial substitution is a substitution on some complete mapping of the variables. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝑅 = (mREx‘𝑇) & ⊢ 𝑆 = (mSubst‘𝑇) ⇒ ⊢ ran 𝑆 = (𝑆 “ (𝑅 ↑m 𝑉)) | ||
| Theorem | msubff 35562 | A substitution is a function from 𝐸 to 𝐸. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝑅 = (mREx‘𝑇) & ⊢ 𝑆 = (mSubst‘𝑇) & ⊢ 𝐸 = (mEx‘𝑇) ⇒ ⊢ (𝑇 ∈ 𝑊 → 𝑆:(𝑅 ↑pm 𝑉)⟶(𝐸 ↑m 𝐸)) | ||
| Theorem | msubco 35563 | The composition of two substitutions is a substitution. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑆 = (mSubst‘𝑇) ⇒ ⊢ ((𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆) → (𝐹 ∘ 𝐺) ∈ ran 𝑆) | ||
| Theorem | msubf 35564 | A substitution is a function. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑆 = (mSubst‘𝑇) & ⊢ 𝐸 = (mEx‘𝑇) ⇒ ⊢ (𝐹 ∈ ran 𝑆 → 𝐹:𝐸⟶𝐸) | ||
| Theorem | mvhfval 35565* | Value of the function mapping variables to their corresponding variable expressions. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝑌 = (mType‘𝑇) & ⊢ 𝐻 = (mVH‘𝑇) ⇒ ⊢ 𝐻 = (𝑣 ∈ 𝑉 ↦ 〈(𝑌‘𝑣), 〈“𝑣”〉〉) | ||
| Theorem | mvhval 35566 | Value of the function mapping variables to their corresponding variable expressions. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝑌 = (mType‘𝑇) & ⊢ 𝐻 = (mVH‘𝑇) ⇒ ⊢ (𝑋 ∈ 𝑉 → (𝐻‘𝑋) = 〈(𝑌‘𝑋), 〈“𝑋”〉〉) | ||
| Theorem | mpstval 35567* | A pre-statement is an ordered triple, whose first member is a symmetric set of disjoint variable conditions, whose second member is a finite set of expressions, and whose third member is an expression. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑉 = (mDV‘𝑇) & ⊢ 𝐸 = (mEx‘𝑇) & ⊢ 𝑃 = (mPreSt‘𝑇) ⇒ ⊢ 𝑃 = (({𝑑 ∈ 𝒫 𝑉 ∣ ◡𝑑 = 𝑑} × (𝒫 𝐸 ∩ Fin)) × 𝐸) | ||
| Theorem | elmpst 35568 | Property of being a pre-statement. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑉 = (mDV‘𝑇) & ⊢ 𝐸 = (mEx‘𝑇) & ⊢ 𝑃 = (mPreSt‘𝑇) ⇒ ⊢ (〈𝐷, 𝐻, 𝐴〉 ∈ 𝑃 ↔ ((𝐷 ⊆ 𝑉 ∧ ◡𝐷 = 𝐷) ∧ (𝐻 ⊆ 𝐸 ∧ 𝐻 ∈ Fin) ∧ 𝐴 ∈ 𝐸)) | ||
| Theorem | msrfval 35569* | Value of the reduct of a pre-statement. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑉 = (mVars‘𝑇) & ⊢ 𝑃 = (mPreSt‘𝑇) & ⊢ 𝑅 = (mStRed‘𝑇) ⇒ ⊢ 𝑅 = (𝑠 ∈ 𝑃 ↦ ⦋(2nd ‘(1st ‘𝑠)) / ℎ⦌⦋(2nd ‘𝑠) / 𝑎⦌〈((1st ‘(1st ‘𝑠)) ∩ ⦋∪ (𝑉 “ (ℎ ∪ {𝑎})) / 𝑧⦌(𝑧 × 𝑧)), ℎ, 𝑎〉) | ||
| Theorem | msrval 35570 | Value of the reduct of a pre-statement. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑉 = (mVars‘𝑇) & ⊢ 𝑃 = (mPreSt‘𝑇) & ⊢ 𝑅 = (mStRed‘𝑇) & ⊢ 𝑍 = ∪ (𝑉 “ (𝐻 ∪ {𝐴})) ⇒ ⊢ (〈𝐷, 𝐻, 𝐴〉 ∈ 𝑃 → (𝑅‘〈𝐷, 𝐻, 𝐴〉) = 〈(𝐷 ∩ (𝑍 × 𝑍)), 𝐻, 𝐴〉) | ||
| Theorem | mpstssv 35571 | A pre-statement is an ordered triple. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑃 = (mPreSt‘𝑇) ⇒ ⊢ 𝑃 ⊆ ((V × V) × V) | ||
| Theorem | mpst123 35572 | Decompose a pre-statement into a triple of values. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑃 = (mPreSt‘𝑇) ⇒ ⊢ (𝑋 ∈ 𝑃 → 𝑋 = 〈(1st ‘(1st ‘𝑋)), (2nd ‘(1st ‘𝑋)), (2nd ‘𝑋)〉) | ||
| Theorem | mpstrcl 35573 | The elements of a pre-statement are sets. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑃 = (mPreSt‘𝑇) ⇒ ⊢ (〈𝐷, 𝐻, 𝐴〉 ∈ 𝑃 → (𝐷 ∈ V ∧ 𝐻 ∈ V ∧ 𝐴 ∈ V)) | ||
| Theorem | msrf 35574 | The reduct of a pre-statement is a pre-statement. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑃 = (mPreSt‘𝑇) & ⊢ 𝑅 = (mStRed‘𝑇) ⇒ ⊢ 𝑅:𝑃⟶𝑃 | ||
| Theorem | msrrcl 35575 | If 𝑋 and 𝑌 have the same reduct, then one is a pre-statement iff the other is. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑃 = (mPreSt‘𝑇) & ⊢ 𝑅 = (mStRed‘𝑇) ⇒ ⊢ ((𝑅‘𝑋) = (𝑅‘𝑌) → (𝑋 ∈ 𝑃 ↔ 𝑌 ∈ 𝑃)) | ||
| Theorem | mstaval 35576 | Value of the set of statements. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑅 = (mStRed‘𝑇) & ⊢ 𝑆 = (mStat‘𝑇) ⇒ ⊢ 𝑆 = ran 𝑅 | ||
| Theorem | msrid 35577 | The reduct of a statement is itself. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑅 = (mStRed‘𝑇) & ⊢ 𝑆 = (mStat‘𝑇) ⇒ ⊢ (𝑋 ∈ 𝑆 → (𝑅‘𝑋) = 𝑋) | ||
| Theorem | msrfo 35578 | The reduct of a pre-statement is a statement. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑅 = (mStRed‘𝑇) & ⊢ 𝑆 = (mStat‘𝑇) & ⊢ 𝑃 = (mPreSt‘𝑇) ⇒ ⊢ 𝑅:𝑃–onto→𝑆 | ||
| Theorem | mstapst 35579 | A statement is a pre-statement. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑃 = (mPreSt‘𝑇) & ⊢ 𝑆 = (mStat‘𝑇) ⇒ ⊢ 𝑆 ⊆ 𝑃 | ||
| Theorem | elmsta 35580 | Property of being a statement. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑃 = (mPreSt‘𝑇) & ⊢ 𝑆 = (mStat‘𝑇) & ⊢ 𝑉 = (mVars‘𝑇) & ⊢ 𝑍 = ∪ (𝑉 “ (𝐻 ∪ {𝐴})) ⇒ ⊢ (〈𝐷, 𝐻, 𝐴〉 ∈ 𝑆 ↔ (〈𝐷, 𝐻, 𝐴〉 ∈ 𝑃 ∧ 𝐷 ⊆ (𝑍 × 𝑍))) | ||
| Theorem | ismfs 35581* | A formal system is a tuple 〈mCN, mVR, mType, mVT, mTC, mAx〉 such that: mCN and mVR are disjoint; mType is a function from mVR to mVT; mVT is a subset of mTC; mAx is a set of statements; and for each variable typecode, there are infinitely many variables of that type. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝐶 = (mCN‘𝑇) & ⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝑌 = (mType‘𝑇) & ⊢ 𝐹 = (mVT‘𝑇) & ⊢ 𝐾 = (mTC‘𝑇) & ⊢ 𝐴 = (mAx‘𝑇) & ⊢ 𝑆 = (mStat‘𝑇) ⇒ ⊢ (𝑇 ∈ 𝑊 → (𝑇 ∈ mFS ↔ (((𝐶 ∩ 𝑉) = ∅ ∧ 𝑌:𝑉⟶𝐾) ∧ (𝐴 ⊆ 𝑆 ∧ ∀𝑣 ∈ 𝐹 ¬ (◡𝑌 “ {𝑣}) ∈ Fin)))) | ||
| Theorem | mfsdisj 35582 | The constants and variables of a formal system are disjoint. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝐶 = (mCN‘𝑇) & ⊢ 𝑉 = (mVR‘𝑇) ⇒ ⊢ (𝑇 ∈ mFS → (𝐶 ∩ 𝑉) = ∅) | ||
| Theorem | mtyf2 35583 | The type function maps variables to typecodes. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝐾 = (mTC‘𝑇) & ⊢ 𝑌 = (mType‘𝑇) ⇒ ⊢ (𝑇 ∈ mFS → 𝑌:𝑉⟶𝐾) | ||
| Theorem | mtyf 35584 | The type function maps variables to variable typecodes. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝐹 = (mVT‘𝑇) & ⊢ 𝑌 = (mType‘𝑇) ⇒ ⊢ (𝑇 ∈ mFS → 𝑌:𝑉⟶𝐹) | ||
| Theorem | mvtss 35585 | The set of variable typecodes is a subset of all typecodes. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝐹 = (mVT‘𝑇) & ⊢ 𝐾 = (mTC‘𝑇) ⇒ ⊢ (𝑇 ∈ mFS → 𝐹 ⊆ 𝐾) | ||
| Theorem | maxsta 35586 | An axiom is a statement. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝐴 = (mAx‘𝑇) & ⊢ 𝑆 = (mStat‘𝑇) ⇒ ⊢ (𝑇 ∈ mFS → 𝐴 ⊆ 𝑆) | ||
| Theorem | mvtinf 35587 | Each variable typecode has infinitely many variables. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝐹 = (mVT‘𝑇) & ⊢ 𝑌 = (mType‘𝑇) ⇒ ⊢ ((𝑇 ∈ mFS ∧ 𝑋 ∈ 𝐹) → ¬ (◡𝑌 “ {𝑋}) ∈ Fin) | ||
| Theorem | msubff1 35588 | When restricted to complete mappings, the substitution-producing function is one-to-one. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝑅 = (mREx‘𝑇) & ⊢ 𝑆 = (mSubst‘𝑇) & ⊢ 𝐸 = (mEx‘𝑇) ⇒ ⊢ (𝑇 ∈ mFS → (𝑆 ↾ (𝑅 ↑m 𝑉)):(𝑅 ↑m 𝑉)–1-1→(𝐸 ↑m 𝐸)) | ||
| Theorem | msubff1o 35589 | When restricted to complete mappings, the substitution-producing function is bijective to the set of all substitutions. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝑅 = (mREx‘𝑇) & ⊢ 𝑆 = (mSubst‘𝑇) ⇒ ⊢ (𝑇 ∈ mFS → (𝑆 ↾ (𝑅 ↑m 𝑉)):(𝑅 ↑m 𝑉)–1-1-onto→ran 𝑆) | ||
| Theorem | mvhf 35590 | The function mapping variables to variable expressions is a function. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝐸 = (mEx‘𝑇) & ⊢ 𝐻 = (mVH‘𝑇) ⇒ ⊢ (𝑇 ∈ mFS → 𝐻:𝑉⟶𝐸) | ||
| Theorem | mvhf1 35591 | The function mapping variables to variable expressions is one-to-one. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝐸 = (mEx‘𝑇) & ⊢ 𝐻 = (mVH‘𝑇) ⇒ ⊢ (𝑇 ∈ mFS → 𝐻:𝑉–1-1→𝐸) | ||
| Theorem | msubvrs 35592* | The set of variables in a substitution is the union, indexed by the variables in the original expression, of the variables in the substitution to that variable. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑆 = (mSubst‘𝑇) & ⊢ 𝐸 = (mEx‘𝑇) & ⊢ 𝑉 = (mVars‘𝑇) & ⊢ 𝐻 = (mVH‘𝑇) ⇒ ⊢ ((𝑇 ∈ mFS ∧ 𝐹 ∈ ran 𝑆 ∧ 𝑋 ∈ 𝐸) → (𝑉‘(𝐹‘𝑋)) = ∪ 𝑥 ∈ (𝑉‘𝑋)(𝑉‘(𝐹‘(𝐻‘𝑥)))) | ||
| Theorem | mclsrcl 35593 | Reverse closure for the closure function. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝐷 = (mDV‘𝑇) & ⊢ 𝐸 = (mEx‘𝑇) & ⊢ 𝐶 = (mCls‘𝑇) ⇒ ⊢ (𝐴 ∈ (𝐾𝐶𝐵) → (𝑇 ∈ V ∧ 𝐾 ⊆ 𝐷 ∧ 𝐵 ⊆ 𝐸)) | ||
| Theorem | mclsssvlem 35594* | Lemma for mclsssv 35596. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝐷 = (mDV‘𝑇) & ⊢ 𝐸 = (mEx‘𝑇) & ⊢ 𝐶 = (mCls‘𝑇) & ⊢ (𝜑 → 𝑇 ∈ mFS) & ⊢ (𝜑 → 𝐾 ⊆ 𝐷) & ⊢ (𝜑 → 𝐵 ⊆ 𝐸) & ⊢ 𝐻 = (mVH‘𝑇) & ⊢ 𝐴 = (mAx‘𝑇) & ⊢ 𝑆 = (mSubst‘𝑇) & ⊢ 𝑉 = (mVars‘𝑇) ⇒ ⊢ (𝜑 → ∩ {𝑐 ∣ ((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚∀𝑜∀𝑝(〈𝑚, 𝑜, 𝑝〉 ∈ 𝐴 → ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻‘𝑥))) × (𝑉‘(𝑠‘(𝐻‘𝑦)))) ⊆ 𝐾)) → (𝑠‘𝑝) ∈ 𝑐)))} ⊆ 𝐸) | ||
| Theorem | mclsval 35595* | The function mapping variables to variable expressions is one-to-one. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝐷 = (mDV‘𝑇) & ⊢ 𝐸 = (mEx‘𝑇) & ⊢ 𝐶 = (mCls‘𝑇) & ⊢ (𝜑 → 𝑇 ∈ mFS) & ⊢ (𝜑 → 𝐾 ⊆ 𝐷) & ⊢ (𝜑 → 𝐵 ⊆ 𝐸) & ⊢ 𝐻 = (mVH‘𝑇) & ⊢ 𝐴 = (mAx‘𝑇) & ⊢ 𝑆 = (mSubst‘𝑇) & ⊢ 𝑉 = (mVars‘𝑇) ⇒ ⊢ (𝜑 → (𝐾𝐶𝐵) = ∩ {𝑐 ∣ ((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚∀𝑜∀𝑝(〈𝑚, 𝑜, 𝑝〉 ∈ 𝐴 → ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻‘𝑥))) × (𝑉‘(𝑠‘(𝐻‘𝑦)))) ⊆ 𝐾)) → (𝑠‘𝑝) ∈ 𝑐)))}) | ||
| Theorem | mclsssv 35596 | The closure of a set of expressions is a set of expressions. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝐷 = (mDV‘𝑇) & ⊢ 𝐸 = (mEx‘𝑇) & ⊢ 𝐶 = (mCls‘𝑇) & ⊢ (𝜑 → 𝑇 ∈ mFS) & ⊢ (𝜑 → 𝐾 ⊆ 𝐷) & ⊢ (𝜑 → 𝐵 ⊆ 𝐸) ⇒ ⊢ (𝜑 → (𝐾𝐶𝐵) ⊆ 𝐸) | ||
| Theorem | ssmclslem 35597 | Lemma for ssmcls 35599. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝐷 = (mDV‘𝑇) & ⊢ 𝐸 = (mEx‘𝑇) & ⊢ 𝐶 = (mCls‘𝑇) & ⊢ (𝜑 → 𝑇 ∈ mFS) & ⊢ (𝜑 → 𝐾 ⊆ 𝐷) & ⊢ (𝜑 → 𝐵 ⊆ 𝐸) & ⊢ 𝐻 = (mVH‘𝑇) ⇒ ⊢ (𝜑 → (𝐵 ∪ ran 𝐻) ⊆ (𝐾𝐶𝐵)) | ||
| Theorem | vhmcls 35598 | All variable hypotheses are in the closure. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝐷 = (mDV‘𝑇) & ⊢ 𝐸 = (mEx‘𝑇) & ⊢ 𝐶 = (mCls‘𝑇) & ⊢ (𝜑 → 𝑇 ∈ mFS) & ⊢ (𝜑 → 𝐾 ⊆ 𝐷) & ⊢ (𝜑 → 𝐵 ⊆ 𝐸) & ⊢ 𝐻 = (mVH‘𝑇) & ⊢ 𝑉 = (mVR‘𝑇) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝐻‘𝑋) ∈ (𝐾𝐶𝐵)) | ||
| Theorem | ssmcls 35599 | The original expressions are also in the closure. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝐷 = (mDV‘𝑇) & ⊢ 𝐸 = (mEx‘𝑇) & ⊢ 𝐶 = (mCls‘𝑇) & ⊢ (𝜑 → 𝑇 ∈ mFS) & ⊢ (𝜑 → 𝐾 ⊆ 𝐷) & ⊢ (𝜑 → 𝐵 ⊆ 𝐸) ⇒ ⊢ (𝜑 → 𝐵 ⊆ (𝐾𝐶𝐵)) | ||
| Theorem | ss2mcls 35600 | The closure is monotonic under subsets of the original set of expressions and the set of disjoint variable conditions. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝐷 = (mDV‘𝑇) & ⊢ 𝐸 = (mEx‘𝑇) & ⊢ 𝐶 = (mCls‘𝑇) & ⊢ (𝜑 → 𝑇 ∈ mFS) & ⊢ (𝜑 → 𝐾 ⊆ 𝐷) & ⊢ (𝜑 → 𝐵 ⊆ 𝐸) & ⊢ (𝜑 → 𝑋 ⊆ 𝐾) & ⊢ (𝜑 → 𝑌 ⊆ 𝐵) ⇒ ⊢ (𝜑 → (𝑋𝐶𝑌) ⊆ (𝐾𝐶𝐵)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |