| Metamath
Proof Explorer Theorem List (p. 356 of 494) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30937) |
(30938-32460) |
(32461-49324) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Definition | df-mfs 35501* | Define the set of all formal systems. (Contributed by Mario Carneiro, 14-Jul-2016.) |
| ⊢ mFS = {𝑡 ∣ ((((mCN‘𝑡) ∩ (mVR‘𝑡)) = ∅ ∧ (mType‘𝑡):(mVR‘𝑡)⟶(mTC‘𝑡)) ∧ ((mAx‘𝑡) ⊆ (mStat‘𝑡) ∧ ∀𝑣 ∈ (mVT‘𝑡) ¬ (◡(mType‘𝑡) “ {𝑣}) ∈ Fin))} | ||
| Definition | df-mcls 35502* | Define the closure of a set of statements relative to a set of disjointness constraints. (Contributed by Mario Carneiro, 14-Jul-2016.) |
| ⊢ mCls = (𝑡 ∈ V ↦ (𝑑 ∈ 𝒫 (mDV‘𝑡), ℎ ∈ 𝒫 (mEx‘𝑡) ↦ ∩ {𝑐 ∣ ((ℎ ∪ ran (mVH‘𝑡)) ⊆ 𝑐 ∧ ∀𝑚∀𝑜∀𝑝(〈𝑚, 𝑜, 𝑝〉 ∈ (mAx‘𝑡) → ∀𝑠 ∈ ran (mSubst‘𝑡)(((𝑠 “ (𝑜 ∪ ran (mVH‘𝑡))) ⊆ 𝑐 ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑)) → (𝑠‘𝑝) ∈ 𝑐)))})) | ||
| Definition | df-mpps 35503* | Define the set of provable pre-statements. (Contributed by Mario Carneiro, 14-Jul-2016.) |
| ⊢ mPPSt = (𝑡 ∈ V ↦ {〈〈𝑑, ℎ〉, 𝑎〉 ∣ (〈𝑑, ℎ, 𝑎〉 ∈ (mPreSt‘𝑡) ∧ 𝑎 ∈ (𝑑(mCls‘𝑡)ℎ))}) | ||
| Definition | df-mthm 35504 | Define the set of theorems. (Contributed by Mario Carneiro, 14-Jul-2016.) |
| ⊢ mThm = (𝑡 ∈ V ↦ (◡(mStRed‘𝑡) “ ((mStRed‘𝑡) “ (mPPSt‘𝑡)))) | ||
| Theorem | mvtval 35505 | The set of variable typecodes. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑉 = (mVT‘𝑇) & ⊢ 𝑌 = (mType‘𝑇) ⇒ ⊢ 𝑉 = ran 𝑌 | ||
| Theorem | mrexval 35506 | The set of "raw expressions", which are expressions without a typecode, that is, just sequences of constants and variables. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝐶 = (mCN‘𝑇) & ⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝑅 = (mREx‘𝑇) ⇒ ⊢ (𝑇 ∈ 𝑊 → 𝑅 = Word (𝐶 ∪ 𝑉)) | ||
| Theorem | mexval 35507 | The set of expressions, which are pairs whose first element is a typecode, and whose second element is a raw expression. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝐾 = (mTC‘𝑇) & ⊢ 𝐸 = (mEx‘𝑇) & ⊢ 𝑅 = (mREx‘𝑇) ⇒ ⊢ 𝐸 = (𝐾 × 𝑅) | ||
| Theorem | mexval2 35508 | The set of expressions, which are pairs whose first element is a typecode, and whose second element is a list of constants and variables. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝐾 = (mTC‘𝑇) & ⊢ 𝐸 = (mEx‘𝑇) & ⊢ 𝐶 = (mCN‘𝑇) & ⊢ 𝑉 = (mVR‘𝑇) ⇒ ⊢ 𝐸 = (𝐾 × Word (𝐶 ∪ 𝑉)) | ||
| Theorem | mdvval 35509 | The set of disjoint variable conditions, which are pairs of distinct variables. (This definition differs from appendix C, which uses unordered pairs instead. We use ordered pairs, but all sets of disjoint variable conditions of interest will be symmetric, so it does not matter.) (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝐷 = (mDV‘𝑇) ⇒ ⊢ 𝐷 = ((𝑉 × 𝑉) ∖ I ) | ||
| Theorem | mvrsval 35510 | The set of variables in an expression. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝐸 = (mEx‘𝑇) & ⊢ 𝑊 = (mVars‘𝑇) ⇒ ⊢ (𝑋 ∈ 𝐸 → (𝑊‘𝑋) = (ran (2nd ‘𝑋) ∩ 𝑉)) | ||
| Theorem | mvrsfpw 35511 | The set of variables in an expression is a finite subset of 𝑉. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝐸 = (mEx‘𝑇) & ⊢ 𝑊 = (mVars‘𝑇) ⇒ ⊢ (𝑋 ∈ 𝐸 → (𝑊‘𝑋) ∈ (𝒫 𝑉 ∩ Fin)) | ||
| Theorem | mrsubffval 35512* | The substitution of some variables for expressions in a raw expression. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝐶 = (mCN‘𝑇) & ⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝑅 = (mREx‘𝑇) & ⊢ 𝑆 = (mRSubst‘𝑇) & ⊢ 𝐺 = (freeMnd‘(𝐶 ∪ 𝑉)) ⇒ ⊢ (𝑇 ∈ 𝑊 → 𝑆 = (𝑓 ∈ (𝑅 ↑pm 𝑉) ↦ (𝑒 ∈ 𝑅 ↦ (𝐺 Σg ((𝑣 ∈ (𝐶 ∪ 𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓‘𝑣), 〈“𝑣”〉)) ∘ 𝑒))))) | ||
| Theorem | mrsubfval 35513* | The substitution of some variables for expressions in a raw expression. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝐶 = (mCN‘𝑇) & ⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝑅 = (mREx‘𝑇) & ⊢ 𝑆 = (mRSubst‘𝑇) & ⊢ 𝐺 = (freeMnd‘(𝐶 ∪ 𝑉)) ⇒ ⊢ ((𝐹:𝐴⟶𝑅 ∧ 𝐴 ⊆ 𝑉) → (𝑆‘𝐹) = (𝑒 ∈ 𝑅 ↦ (𝐺 Σg ((𝑣 ∈ (𝐶 ∪ 𝑉) ↦ if(𝑣 ∈ 𝐴, (𝐹‘𝑣), 〈“𝑣”〉)) ∘ 𝑒)))) | ||
| Theorem | mrsubval 35514* | The substitution of some variables for expressions in a raw expression. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝐶 = (mCN‘𝑇) & ⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝑅 = (mREx‘𝑇) & ⊢ 𝑆 = (mRSubst‘𝑇) & ⊢ 𝐺 = (freeMnd‘(𝐶 ∪ 𝑉)) ⇒ ⊢ ((𝐹:𝐴⟶𝑅 ∧ 𝐴 ⊆ 𝑉 ∧ 𝑋 ∈ 𝑅) → ((𝑆‘𝐹)‘𝑋) = (𝐺 Σg ((𝑣 ∈ (𝐶 ∪ 𝑉) ↦ if(𝑣 ∈ 𝐴, (𝐹‘𝑣), 〈“𝑣”〉)) ∘ 𝑋))) | ||
| Theorem | mrsubcv 35515 | The value of a substituted singleton. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝐶 = (mCN‘𝑇) & ⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝑅 = (mREx‘𝑇) & ⊢ 𝑆 = (mRSubst‘𝑇) ⇒ ⊢ ((𝐹:𝐴⟶𝑅 ∧ 𝐴 ⊆ 𝑉 ∧ 𝑋 ∈ (𝐶 ∪ 𝑉)) → ((𝑆‘𝐹)‘〈“𝑋”〉) = if(𝑋 ∈ 𝐴, (𝐹‘𝑋), 〈“𝑋”〉)) | ||
| Theorem | mrsubvr 35516 | The value of a substituted variable. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝑅 = (mREx‘𝑇) & ⊢ 𝑆 = (mRSubst‘𝑇) ⇒ ⊢ ((𝐹:𝐴⟶𝑅 ∧ 𝐴 ⊆ 𝑉 ∧ 𝑋 ∈ 𝐴) → ((𝑆‘𝐹)‘〈“𝑋”〉) = (𝐹‘𝑋)) | ||
| Theorem | mrsubff 35517 | A substitution is a function from 𝑅 to 𝑅. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝑅 = (mREx‘𝑇) & ⊢ 𝑆 = (mRSubst‘𝑇) ⇒ ⊢ (𝑇 ∈ 𝑊 → 𝑆:(𝑅 ↑pm 𝑉)⟶(𝑅 ↑m 𝑅)) | ||
| Theorem | mrsubrn 35518 | Although it is defined for partial mappings of variables, every partial substitution is a substitution on some complete mapping of the variables. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝑅 = (mREx‘𝑇) & ⊢ 𝑆 = (mRSubst‘𝑇) ⇒ ⊢ ran 𝑆 = (𝑆 “ (𝑅 ↑m 𝑉)) | ||
| Theorem | mrsubff1 35519 | When restricted to complete mappings, the substitution-producing function is one-to-one. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝑅 = (mREx‘𝑇) & ⊢ 𝑆 = (mRSubst‘𝑇) ⇒ ⊢ (𝑇 ∈ 𝑊 → (𝑆 ↾ (𝑅 ↑m 𝑉)):(𝑅 ↑m 𝑉)–1-1→(𝑅 ↑m 𝑅)) | ||
| Theorem | mrsubff1o 35520 | When restricted to complete mappings, the substitution-producing function is bijective to the set of all substitutions. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝑅 = (mREx‘𝑇) & ⊢ 𝑆 = (mRSubst‘𝑇) ⇒ ⊢ (𝑇 ∈ 𝑊 → (𝑆 ↾ (𝑅 ↑m 𝑉)):(𝑅 ↑m 𝑉)–1-1-onto→ran 𝑆) | ||
| Theorem | mrsub0 35521 | The value of the substituted empty string. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑆 = (mRSubst‘𝑇) ⇒ ⊢ (𝐹 ∈ ran 𝑆 → (𝐹‘∅) = ∅) | ||
| Theorem | mrsubf 35522 | A substitution is a function. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑆 = (mRSubst‘𝑇) & ⊢ 𝑅 = (mREx‘𝑇) ⇒ ⊢ (𝐹 ∈ ran 𝑆 → 𝐹:𝑅⟶𝑅) | ||
| Theorem | mrsubccat 35523 | Substitution distributes over concatenation. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑆 = (mRSubst‘𝑇) & ⊢ 𝑅 = (mREx‘𝑇) ⇒ ⊢ ((𝐹 ∈ ran 𝑆 ∧ 𝑋 ∈ 𝑅 ∧ 𝑌 ∈ 𝑅) → (𝐹‘(𝑋 ++ 𝑌)) = ((𝐹‘𝑋) ++ (𝐹‘𝑌))) | ||
| Theorem | mrsubcn 35524 | A substitution does not change the value of constant substrings. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑆 = (mRSubst‘𝑇) & ⊢ 𝑅 = (mREx‘𝑇) & ⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝐶 = (mCN‘𝑇) ⇒ ⊢ ((𝐹 ∈ ran 𝑆 ∧ 𝑋 ∈ (𝐶 ∖ 𝑉)) → (𝐹‘〈“𝑋”〉) = 〈“𝑋”〉) | ||
| Theorem | elmrsubrn 35525* | Characterization of the substitutions as functions from expressions to expressions that distribute under concatenation and map constants to themselves. (The constant part uses (𝐶 ∖ 𝑉) because we don't know that 𝐶 and 𝑉 are disjoint until we get to ismfs 35554.) (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑆 = (mRSubst‘𝑇) & ⊢ 𝑅 = (mREx‘𝑇) & ⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝐶 = (mCN‘𝑇) ⇒ ⊢ (𝑇 ∈ 𝑊 → (𝐹 ∈ ran 𝑆 ↔ (𝐹:𝑅⟶𝑅 ∧ ∀𝑐 ∈ (𝐶 ∖ 𝑉)(𝐹‘〈“𝑐”〉) = 〈“𝑐”〉 ∧ ∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 (𝐹‘(𝑥 ++ 𝑦)) = ((𝐹‘𝑥) ++ (𝐹‘𝑦))))) | ||
| Theorem | mrsubco 35526 | The composition of two substitutions is a substitution. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑆 = (mRSubst‘𝑇) ⇒ ⊢ ((𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆) → (𝐹 ∘ 𝐺) ∈ ran 𝑆) | ||
| Theorem | mrsubvrs 35527* | The set of variables in a substitution is the union, indexed by the variables in the original expression, of the variables in the substitution to that variable. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑆 = (mRSubst‘𝑇) & ⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝑅 = (mREx‘𝑇) ⇒ ⊢ ((𝐹 ∈ ran 𝑆 ∧ 𝑋 ∈ 𝑅) → (ran (𝐹‘𝑋) ∩ 𝑉) = ∪ 𝑥 ∈ (ran 𝑋 ∩ 𝑉)(ran (𝐹‘〈“𝑥”〉) ∩ 𝑉)) | ||
| Theorem | msubffval 35528* | A substitution applied to an expression. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝑅 = (mREx‘𝑇) & ⊢ 𝑆 = (mSubst‘𝑇) & ⊢ 𝐸 = (mEx‘𝑇) & ⊢ 𝑂 = (mRSubst‘𝑇) ⇒ ⊢ (𝑇 ∈ 𝑊 → 𝑆 = (𝑓 ∈ (𝑅 ↑pm 𝑉) ↦ (𝑒 ∈ 𝐸 ↦ 〈(1st ‘𝑒), ((𝑂‘𝑓)‘(2nd ‘𝑒))〉))) | ||
| Theorem | msubfval 35529* | A substitution applied to an expression. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝑅 = (mREx‘𝑇) & ⊢ 𝑆 = (mSubst‘𝑇) & ⊢ 𝐸 = (mEx‘𝑇) & ⊢ 𝑂 = (mRSubst‘𝑇) ⇒ ⊢ ((𝐹:𝐴⟶𝑅 ∧ 𝐴 ⊆ 𝑉) → (𝑆‘𝐹) = (𝑒 ∈ 𝐸 ↦ 〈(1st ‘𝑒), ((𝑂‘𝐹)‘(2nd ‘𝑒))〉)) | ||
| Theorem | msubval 35530 | A substitution applied to an expression. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝑅 = (mREx‘𝑇) & ⊢ 𝑆 = (mSubst‘𝑇) & ⊢ 𝐸 = (mEx‘𝑇) & ⊢ 𝑂 = (mRSubst‘𝑇) ⇒ ⊢ ((𝐹:𝐴⟶𝑅 ∧ 𝐴 ⊆ 𝑉 ∧ 𝑋 ∈ 𝐸) → ((𝑆‘𝐹)‘𝑋) = 〈(1st ‘𝑋), ((𝑂‘𝐹)‘(2nd ‘𝑋))〉) | ||
| Theorem | msubrsub 35531 | A substitution applied to an expression. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝑅 = (mREx‘𝑇) & ⊢ 𝑆 = (mSubst‘𝑇) & ⊢ 𝐸 = (mEx‘𝑇) & ⊢ 𝑂 = (mRSubst‘𝑇) ⇒ ⊢ ((𝐹:𝐴⟶𝑅 ∧ 𝐴 ⊆ 𝑉 ∧ 𝑋 ∈ 𝐸) → (2nd ‘((𝑆‘𝐹)‘𝑋)) = ((𝑂‘𝐹)‘(2nd ‘𝑋))) | ||
| Theorem | msubty 35532 | The type of a substituted expression is the same as the original type. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝑅 = (mREx‘𝑇) & ⊢ 𝑆 = (mSubst‘𝑇) & ⊢ 𝐸 = (mEx‘𝑇) ⇒ ⊢ ((𝐹:𝐴⟶𝑅 ∧ 𝐴 ⊆ 𝑉 ∧ 𝑋 ∈ 𝐸) → (1st ‘((𝑆‘𝐹)‘𝑋)) = (1st ‘𝑋)) | ||
| Theorem | elmsubrn 35533* | Characterization of substitution in terms of raw substitution, without reference to the generating functions. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝐸 = (mEx‘𝑇) & ⊢ 𝑂 = (mRSubst‘𝑇) & ⊢ 𝑆 = (mSubst‘𝑇) ⇒ ⊢ ran 𝑆 = ran (𝑓 ∈ ran 𝑂 ↦ (𝑒 ∈ 𝐸 ↦ 〈(1st ‘𝑒), (𝑓‘(2nd ‘𝑒))〉)) | ||
| Theorem | msubrn 35534 | Although it is defined for partial mappings of variables, every partial substitution is a substitution on some complete mapping of the variables. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝑅 = (mREx‘𝑇) & ⊢ 𝑆 = (mSubst‘𝑇) ⇒ ⊢ ran 𝑆 = (𝑆 “ (𝑅 ↑m 𝑉)) | ||
| Theorem | msubff 35535 | A substitution is a function from 𝐸 to 𝐸. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝑅 = (mREx‘𝑇) & ⊢ 𝑆 = (mSubst‘𝑇) & ⊢ 𝐸 = (mEx‘𝑇) ⇒ ⊢ (𝑇 ∈ 𝑊 → 𝑆:(𝑅 ↑pm 𝑉)⟶(𝐸 ↑m 𝐸)) | ||
| Theorem | msubco 35536 | The composition of two substitutions is a substitution. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑆 = (mSubst‘𝑇) ⇒ ⊢ ((𝐹 ∈ ran 𝑆 ∧ 𝐺 ∈ ran 𝑆) → (𝐹 ∘ 𝐺) ∈ ran 𝑆) | ||
| Theorem | msubf 35537 | A substitution is a function. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑆 = (mSubst‘𝑇) & ⊢ 𝐸 = (mEx‘𝑇) ⇒ ⊢ (𝐹 ∈ ran 𝑆 → 𝐹:𝐸⟶𝐸) | ||
| Theorem | mvhfval 35538* | Value of the function mapping variables to their corresponding variable expressions. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝑌 = (mType‘𝑇) & ⊢ 𝐻 = (mVH‘𝑇) ⇒ ⊢ 𝐻 = (𝑣 ∈ 𝑉 ↦ 〈(𝑌‘𝑣), 〈“𝑣”〉〉) | ||
| Theorem | mvhval 35539 | Value of the function mapping variables to their corresponding variable expressions. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝑌 = (mType‘𝑇) & ⊢ 𝐻 = (mVH‘𝑇) ⇒ ⊢ (𝑋 ∈ 𝑉 → (𝐻‘𝑋) = 〈(𝑌‘𝑋), 〈“𝑋”〉〉) | ||
| Theorem | mpstval 35540* | A pre-statement is an ordered triple, whose first member is a symmetric set of disjoint variable conditions, whose second member is a finite set of expressions, and whose third member is an expression. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑉 = (mDV‘𝑇) & ⊢ 𝐸 = (mEx‘𝑇) & ⊢ 𝑃 = (mPreSt‘𝑇) ⇒ ⊢ 𝑃 = (({𝑑 ∈ 𝒫 𝑉 ∣ ◡𝑑 = 𝑑} × (𝒫 𝐸 ∩ Fin)) × 𝐸) | ||
| Theorem | elmpst 35541 | Property of being a pre-statement. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑉 = (mDV‘𝑇) & ⊢ 𝐸 = (mEx‘𝑇) & ⊢ 𝑃 = (mPreSt‘𝑇) ⇒ ⊢ (〈𝐷, 𝐻, 𝐴〉 ∈ 𝑃 ↔ ((𝐷 ⊆ 𝑉 ∧ ◡𝐷 = 𝐷) ∧ (𝐻 ⊆ 𝐸 ∧ 𝐻 ∈ Fin) ∧ 𝐴 ∈ 𝐸)) | ||
| Theorem | msrfval 35542* | Value of the reduct of a pre-statement. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑉 = (mVars‘𝑇) & ⊢ 𝑃 = (mPreSt‘𝑇) & ⊢ 𝑅 = (mStRed‘𝑇) ⇒ ⊢ 𝑅 = (𝑠 ∈ 𝑃 ↦ ⦋(2nd ‘(1st ‘𝑠)) / ℎ⦌⦋(2nd ‘𝑠) / 𝑎⦌〈((1st ‘(1st ‘𝑠)) ∩ ⦋∪ (𝑉 “ (ℎ ∪ {𝑎})) / 𝑧⦌(𝑧 × 𝑧)), ℎ, 𝑎〉) | ||
| Theorem | msrval 35543 | Value of the reduct of a pre-statement. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑉 = (mVars‘𝑇) & ⊢ 𝑃 = (mPreSt‘𝑇) & ⊢ 𝑅 = (mStRed‘𝑇) & ⊢ 𝑍 = ∪ (𝑉 “ (𝐻 ∪ {𝐴})) ⇒ ⊢ (〈𝐷, 𝐻, 𝐴〉 ∈ 𝑃 → (𝑅‘〈𝐷, 𝐻, 𝐴〉) = 〈(𝐷 ∩ (𝑍 × 𝑍)), 𝐻, 𝐴〉) | ||
| Theorem | mpstssv 35544 | A pre-statement is an ordered triple. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑃 = (mPreSt‘𝑇) ⇒ ⊢ 𝑃 ⊆ ((V × V) × V) | ||
| Theorem | mpst123 35545 | Decompose a pre-statement into a triple of values. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑃 = (mPreSt‘𝑇) ⇒ ⊢ (𝑋 ∈ 𝑃 → 𝑋 = 〈(1st ‘(1st ‘𝑋)), (2nd ‘(1st ‘𝑋)), (2nd ‘𝑋)〉) | ||
| Theorem | mpstrcl 35546 | The elements of a pre-statement are sets. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑃 = (mPreSt‘𝑇) ⇒ ⊢ (〈𝐷, 𝐻, 𝐴〉 ∈ 𝑃 → (𝐷 ∈ V ∧ 𝐻 ∈ V ∧ 𝐴 ∈ V)) | ||
| Theorem | msrf 35547 | The reduct of a pre-statement is a pre-statement. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑃 = (mPreSt‘𝑇) & ⊢ 𝑅 = (mStRed‘𝑇) ⇒ ⊢ 𝑅:𝑃⟶𝑃 | ||
| Theorem | msrrcl 35548 | If 𝑋 and 𝑌 have the same reduct, then one is a pre-statement iff the other is. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑃 = (mPreSt‘𝑇) & ⊢ 𝑅 = (mStRed‘𝑇) ⇒ ⊢ ((𝑅‘𝑋) = (𝑅‘𝑌) → (𝑋 ∈ 𝑃 ↔ 𝑌 ∈ 𝑃)) | ||
| Theorem | mstaval 35549 | Value of the set of statements. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑅 = (mStRed‘𝑇) & ⊢ 𝑆 = (mStat‘𝑇) ⇒ ⊢ 𝑆 = ran 𝑅 | ||
| Theorem | msrid 35550 | The reduct of a statement is itself. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑅 = (mStRed‘𝑇) & ⊢ 𝑆 = (mStat‘𝑇) ⇒ ⊢ (𝑋 ∈ 𝑆 → (𝑅‘𝑋) = 𝑋) | ||
| Theorem | msrfo 35551 | The reduct of a pre-statement is a statement. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑅 = (mStRed‘𝑇) & ⊢ 𝑆 = (mStat‘𝑇) & ⊢ 𝑃 = (mPreSt‘𝑇) ⇒ ⊢ 𝑅:𝑃–onto→𝑆 | ||
| Theorem | mstapst 35552 | A statement is a pre-statement. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑃 = (mPreSt‘𝑇) & ⊢ 𝑆 = (mStat‘𝑇) ⇒ ⊢ 𝑆 ⊆ 𝑃 | ||
| Theorem | elmsta 35553 | Property of being a statement. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑃 = (mPreSt‘𝑇) & ⊢ 𝑆 = (mStat‘𝑇) & ⊢ 𝑉 = (mVars‘𝑇) & ⊢ 𝑍 = ∪ (𝑉 “ (𝐻 ∪ {𝐴})) ⇒ ⊢ (〈𝐷, 𝐻, 𝐴〉 ∈ 𝑆 ↔ (〈𝐷, 𝐻, 𝐴〉 ∈ 𝑃 ∧ 𝐷 ⊆ (𝑍 × 𝑍))) | ||
| Theorem | ismfs 35554* | A formal system is a tuple 〈mCN, mVR, mType, mVT, mTC, mAx〉 such that: mCN and mVR are disjoint; mType is a function from mVR to mVT; mVT is a subset of mTC; mAx is a set of statements; and for each variable typecode, there are infinitely many variables of that type. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝐶 = (mCN‘𝑇) & ⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝑌 = (mType‘𝑇) & ⊢ 𝐹 = (mVT‘𝑇) & ⊢ 𝐾 = (mTC‘𝑇) & ⊢ 𝐴 = (mAx‘𝑇) & ⊢ 𝑆 = (mStat‘𝑇) ⇒ ⊢ (𝑇 ∈ 𝑊 → (𝑇 ∈ mFS ↔ (((𝐶 ∩ 𝑉) = ∅ ∧ 𝑌:𝑉⟶𝐾) ∧ (𝐴 ⊆ 𝑆 ∧ ∀𝑣 ∈ 𝐹 ¬ (◡𝑌 “ {𝑣}) ∈ Fin)))) | ||
| Theorem | mfsdisj 35555 | The constants and variables of a formal system are disjoint. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝐶 = (mCN‘𝑇) & ⊢ 𝑉 = (mVR‘𝑇) ⇒ ⊢ (𝑇 ∈ mFS → (𝐶 ∩ 𝑉) = ∅) | ||
| Theorem | mtyf2 35556 | The type function maps variables to typecodes. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝐾 = (mTC‘𝑇) & ⊢ 𝑌 = (mType‘𝑇) ⇒ ⊢ (𝑇 ∈ mFS → 𝑌:𝑉⟶𝐾) | ||
| Theorem | mtyf 35557 | The type function maps variables to variable typecodes. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝐹 = (mVT‘𝑇) & ⊢ 𝑌 = (mType‘𝑇) ⇒ ⊢ (𝑇 ∈ mFS → 𝑌:𝑉⟶𝐹) | ||
| Theorem | mvtss 35558 | The set of variable typecodes is a subset of all typecodes. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝐹 = (mVT‘𝑇) & ⊢ 𝐾 = (mTC‘𝑇) ⇒ ⊢ (𝑇 ∈ mFS → 𝐹 ⊆ 𝐾) | ||
| Theorem | maxsta 35559 | An axiom is a statement. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝐴 = (mAx‘𝑇) & ⊢ 𝑆 = (mStat‘𝑇) ⇒ ⊢ (𝑇 ∈ mFS → 𝐴 ⊆ 𝑆) | ||
| Theorem | mvtinf 35560 | Each variable typecode has infinitely many variables. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝐹 = (mVT‘𝑇) & ⊢ 𝑌 = (mType‘𝑇) ⇒ ⊢ ((𝑇 ∈ mFS ∧ 𝑋 ∈ 𝐹) → ¬ (◡𝑌 “ {𝑋}) ∈ Fin) | ||
| Theorem | msubff1 35561 | When restricted to complete mappings, the substitution-producing function is one-to-one. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝑅 = (mREx‘𝑇) & ⊢ 𝑆 = (mSubst‘𝑇) & ⊢ 𝐸 = (mEx‘𝑇) ⇒ ⊢ (𝑇 ∈ mFS → (𝑆 ↾ (𝑅 ↑m 𝑉)):(𝑅 ↑m 𝑉)–1-1→(𝐸 ↑m 𝐸)) | ||
| Theorem | msubff1o 35562 | When restricted to complete mappings, the substitution-producing function is bijective to the set of all substitutions. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝑅 = (mREx‘𝑇) & ⊢ 𝑆 = (mSubst‘𝑇) ⇒ ⊢ (𝑇 ∈ mFS → (𝑆 ↾ (𝑅 ↑m 𝑉)):(𝑅 ↑m 𝑉)–1-1-onto→ran 𝑆) | ||
| Theorem | mvhf 35563 | The function mapping variables to variable expressions is a function. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝐸 = (mEx‘𝑇) & ⊢ 𝐻 = (mVH‘𝑇) ⇒ ⊢ (𝑇 ∈ mFS → 𝐻:𝑉⟶𝐸) | ||
| Theorem | mvhf1 35564 | The function mapping variables to variable expressions is one-to-one. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝐸 = (mEx‘𝑇) & ⊢ 𝐻 = (mVH‘𝑇) ⇒ ⊢ (𝑇 ∈ mFS → 𝐻:𝑉–1-1→𝐸) | ||
| Theorem | msubvrs 35565* | The set of variables in a substitution is the union, indexed by the variables in the original expression, of the variables in the substitution to that variable. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑆 = (mSubst‘𝑇) & ⊢ 𝐸 = (mEx‘𝑇) & ⊢ 𝑉 = (mVars‘𝑇) & ⊢ 𝐻 = (mVH‘𝑇) ⇒ ⊢ ((𝑇 ∈ mFS ∧ 𝐹 ∈ ran 𝑆 ∧ 𝑋 ∈ 𝐸) → (𝑉‘(𝐹‘𝑋)) = ∪ 𝑥 ∈ (𝑉‘𝑋)(𝑉‘(𝐹‘(𝐻‘𝑥)))) | ||
| Theorem | mclsrcl 35566 | Reverse closure for the closure function. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝐷 = (mDV‘𝑇) & ⊢ 𝐸 = (mEx‘𝑇) & ⊢ 𝐶 = (mCls‘𝑇) ⇒ ⊢ (𝐴 ∈ (𝐾𝐶𝐵) → (𝑇 ∈ V ∧ 𝐾 ⊆ 𝐷 ∧ 𝐵 ⊆ 𝐸)) | ||
| Theorem | mclsssvlem 35567* | Lemma for mclsssv 35569. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝐷 = (mDV‘𝑇) & ⊢ 𝐸 = (mEx‘𝑇) & ⊢ 𝐶 = (mCls‘𝑇) & ⊢ (𝜑 → 𝑇 ∈ mFS) & ⊢ (𝜑 → 𝐾 ⊆ 𝐷) & ⊢ (𝜑 → 𝐵 ⊆ 𝐸) & ⊢ 𝐻 = (mVH‘𝑇) & ⊢ 𝐴 = (mAx‘𝑇) & ⊢ 𝑆 = (mSubst‘𝑇) & ⊢ 𝑉 = (mVars‘𝑇) ⇒ ⊢ (𝜑 → ∩ {𝑐 ∣ ((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚∀𝑜∀𝑝(〈𝑚, 𝑜, 𝑝〉 ∈ 𝐴 → ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻‘𝑥))) × (𝑉‘(𝑠‘(𝐻‘𝑦)))) ⊆ 𝐾)) → (𝑠‘𝑝) ∈ 𝑐)))} ⊆ 𝐸) | ||
| Theorem | mclsval 35568* | The function mapping variables to variable expressions is one-to-one. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝐷 = (mDV‘𝑇) & ⊢ 𝐸 = (mEx‘𝑇) & ⊢ 𝐶 = (mCls‘𝑇) & ⊢ (𝜑 → 𝑇 ∈ mFS) & ⊢ (𝜑 → 𝐾 ⊆ 𝐷) & ⊢ (𝜑 → 𝐵 ⊆ 𝐸) & ⊢ 𝐻 = (mVH‘𝑇) & ⊢ 𝐴 = (mAx‘𝑇) & ⊢ 𝑆 = (mSubst‘𝑇) & ⊢ 𝑉 = (mVars‘𝑇) ⇒ ⊢ (𝜑 → (𝐾𝐶𝐵) = ∩ {𝑐 ∣ ((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚∀𝑜∀𝑝(〈𝑚, 𝑜, 𝑝〉 ∈ 𝐴 → ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻‘𝑥))) × (𝑉‘(𝑠‘(𝐻‘𝑦)))) ⊆ 𝐾)) → (𝑠‘𝑝) ∈ 𝑐)))}) | ||
| Theorem | mclsssv 35569 | The closure of a set of expressions is a set of expressions. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝐷 = (mDV‘𝑇) & ⊢ 𝐸 = (mEx‘𝑇) & ⊢ 𝐶 = (mCls‘𝑇) & ⊢ (𝜑 → 𝑇 ∈ mFS) & ⊢ (𝜑 → 𝐾 ⊆ 𝐷) & ⊢ (𝜑 → 𝐵 ⊆ 𝐸) ⇒ ⊢ (𝜑 → (𝐾𝐶𝐵) ⊆ 𝐸) | ||
| Theorem | ssmclslem 35570 | Lemma for ssmcls 35572. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝐷 = (mDV‘𝑇) & ⊢ 𝐸 = (mEx‘𝑇) & ⊢ 𝐶 = (mCls‘𝑇) & ⊢ (𝜑 → 𝑇 ∈ mFS) & ⊢ (𝜑 → 𝐾 ⊆ 𝐷) & ⊢ (𝜑 → 𝐵 ⊆ 𝐸) & ⊢ 𝐻 = (mVH‘𝑇) ⇒ ⊢ (𝜑 → (𝐵 ∪ ran 𝐻) ⊆ (𝐾𝐶𝐵)) | ||
| Theorem | vhmcls 35571 | All variable hypotheses are in the closure. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝐷 = (mDV‘𝑇) & ⊢ 𝐸 = (mEx‘𝑇) & ⊢ 𝐶 = (mCls‘𝑇) & ⊢ (𝜑 → 𝑇 ∈ mFS) & ⊢ (𝜑 → 𝐾 ⊆ 𝐷) & ⊢ (𝜑 → 𝐵 ⊆ 𝐸) & ⊢ 𝐻 = (mVH‘𝑇) & ⊢ 𝑉 = (mVR‘𝑇) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝐻‘𝑋) ∈ (𝐾𝐶𝐵)) | ||
| Theorem | ssmcls 35572 | The original expressions are also in the closure. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝐷 = (mDV‘𝑇) & ⊢ 𝐸 = (mEx‘𝑇) & ⊢ 𝐶 = (mCls‘𝑇) & ⊢ (𝜑 → 𝑇 ∈ mFS) & ⊢ (𝜑 → 𝐾 ⊆ 𝐷) & ⊢ (𝜑 → 𝐵 ⊆ 𝐸) ⇒ ⊢ (𝜑 → 𝐵 ⊆ (𝐾𝐶𝐵)) | ||
| Theorem | ss2mcls 35573 | The closure is monotonic under subsets of the original set of expressions and the set of disjoint variable conditions. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝐷 = (mDV‘𝑇) & ⊢ 𝐸 = (mEx‘𝑇) & ⊢ 𝐶 = (mCls‘𝑇) & ⊢ (𝜑 → 𝑇 ∈ mFS) & ⊢ (𝜑 → 𝐾 ⊆ 𝐷) & ⊢ (𝜑 → 𝐵 ⊆ 𝐸) & ⊢ (𝜑 → 𝑋 ⊆ 𝐾) & ⊢ (𝜑 → 𝑌 ⊆ 𝐵) ⇒ ⊢ (𝜑 → (𝑋𝐶𝑌) ⊆ (𝐾𝐶𝐵)) | ||
| Theorem | mclsax 35574* | The closure is closed under axiom application. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝐷 = (mDV‘𝑇) & ⊢ 𝐸 = (mEx‘𝑇) & ⊢ 𝐶 = (mCls‘𝑇) & ⊢ (𝜑 → 𝑇 ∈ mFS) & ⊢ (𝜑 → 𝐾 ⊆ 𝐷) & ⊢ (𝜑 → 𝐵 ⊆ 𝐸) & ⊢ 𝐴 = (mAx‘𝑇) & ⊢ 𝐿 = (mSubst‘𝑇) & ⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝐻 = (mVH‘𝑇) & ⊢ 𝑊 = (mVars‘𝑇) & ⊢ (𝜑 → 〈𝑀, 𝑂, 𝑃〉 ∈ 𝐴) & ⊢ (𝜑 → 𝑆 ∈ ran 𝐿) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑂) → (𝑆‘𝑥) ∈ (𝐾𝐶𝐵)) & ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉) → (𝑆‘(𝐻‘𝑣)) ∈ (𝐾𝐶𝐵)) & ⊢ ((𝜑 ∧ (𝑥𝑀𝑦 ∧ 𝑎 ∈ (𝑊‘(𝑆‘(𝐻‘𝑥))) ∧ 𝑏 ∈ (𝑊‘(𝑆‘(𝐻‘𝑦))))) → 𝑎𝐾𝑏) ⇒ ⊢ (𝜑 → (𝑆‘𝑃) ∈ (𝐾𝐶𝐵)) | ||
| Theorem | mclsind 35575* | Induction theorem for closure: any other set 𝑄 closed under the axioms and the hypotheses contains all the elements of the closure. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝐷 = (mDV‘𝑇) & ⊢ 𝐸 = (mEx‘𝑇) & ⊢ 𝐶 = (mCls‘𝑇) & ⊢ (𝜑 → 𝑇 ∈ mFS) & ⊢ (𝜑 → 𝐾 ⊆ 𝐷) & ⊢ (𝜑 → 𝐵 ⊆ 𝐸) & ⊢ 𝐴 = (mAx‘𝑇) & ⊢ 𝐿 = (mSubst‘𝑇) & ⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝐻 = (mVH‘𝑇) & ⊢ 𝑊 = (mVars‘𝑇) & ⊢ (𝜑 → 𝐵 ⊆ 𝑄) & ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉) → (𝐻‘𝑣) ∈ 𝑄) & ⊢ ((𝜑 ∧ (〈𝑚, 𝑜, 𝑝〉 ∈ 𝐴 ∧ 𝑠 ∈ ran 𝐿 ∧ (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑄) ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻‘𝑥))) × (𝑊‘(𝑠‘(𝐻‘𝑦)))) ⊆ 𝐾)) → (𝑠‘𝑝) ∈ 𝑄) ⇒ ⊢ (𝜑 → (𝐾𝐶𝐵) ⊆ 𝑄) | ||
| Theorem | mppspstlem 35576* | Lemma for mppspst 35579. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑃 = (mPreSt‘𝑇) & ⊢ 𝐽 = (mPPSt‘𝑇) & ⊢ 𝐶 = (mCls‘𝑇) ⇒ ⊢ {〈〈𝑑, ℎ〉, 𝑎〉 ∣ (〈𝑑, ℎ, 𝑎〉 ∈ 𝑃 ∧ 𝑎 ∈ (𝑑𝐶ℎ))} ⊆ 𝑃 | ||
| Theorem | mppsval 35577* | Definition of a provable pre-statement, essentially just a reorganization of the arguments of df-mcls . (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑃 = (mPreSt‘𝑇) & ⊢ 𝐽 = (mPPSt‘𝑇) & ⊢ 𝐶 = (mCls‘𝑇) ⇒ ⊢ 𝐽 = {〈〈𝑑, ℎ〉, 𝑎〉 ∣ (〈𝑑, ℎ, 𝑎〉 ∈ 𝑃 ∧ 𝑎 ∈ (𝑑𝐶ℎ))} | ||
| Theorem | elmpps 35578 | Definition of a provable pre-statement, essentially just a reorganization of the arguments of df-mcls . (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑃 = (mPreSt‘𝑇) & ⊢ 𝐽 = (mPPSt‘𝑇) & ⊢ 𝐶 = (mCls‘𝑇) ⇒ ⊢ (〈𝐷, 𝐻, 𝐴〉 ∈ 𝐽 ↔ (〈𝐷, 𝐻, 𝐴〉 ∈ 𝑃 ∧ 𝐴 ∈ (𝐷𝐶𝐻))) | ||
| Theorem | mppspst 35579 | A provable pre-statement is a pre-statement. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑃 = (mPreSt‘𝑇) & ⊢ 𝐽 = (mPPSt‘𝑇) ⇒ ⊢ 𝐽 ⊆ 𝑃 | ||
| Theorem | mthmval 35580 | A theorem is a pre-statement, whose reduct is also the reduct of a provable pre-statement. Unlike the difference between pre-statement and statement, this application of the reduct is not necessarily trivial: there are theorems that are not themselves provable but are provable once enough "dummy variables" are introduced. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑅 = (mStRed‘𝑇) & ⊢ 𝐽 = (mPPSt‘𝑇) & ⊢ 𝑈 = (mThm‘𝑇) ⇒ ⊢ 𝑈 = (◡𝑅 “ (𝑅 “ 𝐽)) | ||
| Theorem | elmthm 35581* | A theorem is a pre-statement, whose reduct is also the reduct of a provable pre-statement. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑅 = (mStRed‘𝑇) & ⊢ 𝐽 = (mPPSt‘𝑇) & ⊢ 𝑈 = (mThm‘𝑇) ⇒ ⊢ (𝑋 ∈ 𝑈 ↔ ∃𝑥 ∈ 𝐽 (𝑅‘𝑥) = (𝑅‘𝑋)) | ||
| Theorem | mthmi 35582 | A statement whose reduct is the reduct of a provable pre-statement is a theorem. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑅 = (mStRed‘𝑇) & ⊢ 𝐽 = (mPPSt‘𝑇) & ⊢ 𝑈 = (mThm‘𝑇) ⇒ ⊢ ((𝑋 ∈ 𝐽 ∧ (𝑅‘𝑋) = (𝑅‘𝑌)) → 𝑌 ∈ 𝑈) | ||
| Theorem | mthmsta 35583 | A theorem is a pre-statement. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑈 = (mThm‘𝑇) & ⊢ 𝑆 = (mPreSt‘𝑇) ⇒ ⊢ 𝑈 ⊆ 𝑆 | ||
| Theorem | mppsthm 35584 | A provable pre-statement is a theorem. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝐽 = (mPPSt‘𝑇) & ⊢ 𝑈 = (mThm‘𝑇) ⇒ ⊢ 𝐽 ⊆ 𝑈 | ||
| Theorem | mthmblem 35585 | Lemma for mthmb 35586. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑅 = (mStRed‘𝑇) & ⊢ 𝑈 = (mThm‘𝑇) ⇒ ⊢ ((𝑅‘𝑋) = (𝑅‘𝑌) → (𝑋 ∈ 𝑈 → 𝑌 ∈ 𝑈)) | ||
| Theorem | mthmb 35586 | If two statements have the same reduct then one is a theorem iff the other is. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑅 = (mStRed‘𝑇) & ⊢ 𝑈 = (mThm‘𝑇) ⇒ ⊢ ((𝑅‘𝑋) = (𝑅‘𝑌) → (𝑋 ∈ 𝑈 ↔ 𝑌 ∈ 𝑈)) | ||
| Theorem | mthmpps 35587 | Given a theorem, there is an explicitly definable witnessing provable pre-statement for the provability of the theorem. (However, this pre-statement requires infinitely many disjoint variable conditions, which is sometimes inconvenient.) (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑅 = (mStRed‘𝑇) & ⊢ 𝐽 = (mPPSt‘𝑇) & ⊢ 𝑈 = (mThm‘𝑇) & ⊢ 𝐷 = (mDV‘𝑇) & ⊢ 𝑉 = (mVars‘𝑇) & ⊢ 𝑍 = ∪ (𝑉 “ (𝐻 ∪ {𝐴})) & ⊢ 𝑀 = (𝐶 ∪ (𝐷 ∖ (𝑍 × 𝑍))) ⇒ ⊢ (𝑇 ∈ mFS → (〈𝐶, 𝐻, 𝐴〉 ∈ 𝑈 ↔ (〈𝑀, 𝐻, 𝐴〉 ∈ 𝐽 ∧ (𝑅‘〈𝑀, 𝐻, 𝐴〉) = (𝑅‘〈𝐶, 𝐻, 𝐴〉)))) | ||
| Theorem | mclsppslem 35588* | The closure is closed under application of provable pre-statements. (Compare mclsax 35574.) This theorem is what justifies the treatment of theorems as "equivalent" to axioms once they have been proven: the composition of one theorem in the proof of another yields a theorem. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝐷 = (mDV‘𝑇) & ⊢ 𝐸 = (mEx‘𝑇) & ⊢ 𝐶 = (mCls‘𝑇) & ⊢ (𝜑 → 𝑇 ∈ mFS) & ⊢ (𝜑 → 𝐾 ⊆ 𝐷) & ⊢ (𝜑 → 𝐵 ⊆ 𝐸) & ⊢ 𝐽 = (mPPSt‘𝑇) & ⊢ 𝐿 = (mSubst‘𝑇) & ⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝐻 = (mVH‘𝑇) & ⊢ 𝑊 = (mVars‘𝑇) & ⊢ (𝜑 → 〈𝑀, 𝑂, 𝑃〉 ∈ 𝐽) & ⊢ (𝜑 → 𝑆 ∈ ran 𝐿) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑂) → (𝑆‘𝑥) ∈ (𝐾𝐶𝐵)) & ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉) → (𝑆‘(𝐻‘𝑣)) ∈ (𝐾𝐶𝐵)) & ⊢ ((𝜑 ∧ (𝑥𝑀𝑦 ∧ 𝑎 ∈ (𝑊‘(𝑆‘(𝐻‘𝑥))) ∧ 𝑏 ∈ (𝑊‘(𝑆‘(𝐻‘𝑦))))) → 𝑎𝐾𝑏) & ⊢ (𝜑 → 〈𝑚, 𝑜, 𝑝〉 ∈ (mAx‘𝑇)) & ⊢ (𝜑 → 𝑠 ∈ ran 𝐿) & ⊢ (𝜑 → (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (◡𝑆 “ (𝐾𝐶𝐵))) & ⊢ (𝜑 → ∀𝑧∀𝑤(𝑧𝑚𝑤 → ((𝑊‘(𝑠‘(𝐻‘𝑧))) × (𝑊‘(𝑠‘(𝐻‘𝑤)))) ⊆ 𝑀)) ⇒ ⊢ (𝜑 → (𝑠‘𝑝) ∈ (◡𝑆 “ (𝐾𝐶𝐵))) | ||
| Theorem | mclspps 35589* | The closure is closed under application of provable pre-statements. (Compare mclsax 35574.) This theorem is what justifies the treatment of theorems as "equivalent" to axioms once they have been proven: the composition of one theorem in the proof of another yields a theorem. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝐷 = (mDV‘𝑇) & ⊢ 𝐸 = (mEx‘𝑇) & ⊢ 𝐶 = (mCls‘𝑇) & ⊢ (𝜑 → 𝑇 ∈ mFS) & ⊢ (𝜑 → 𝐾 ⊆ 𝐷) & ⊢ (𝜑 → 𝐵 ⊆ 𝐸) & ⊢ 𝐽 = (mPPSt‘𝑇) & ⊢ 𝐿 = (mSubst‘𝑇) & ⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝐻 = (mVH‘𝑇) & ⊢ 𝑊 = (mVars‘𝑇) & ⊢ (𝜑 → 〈𝑀, 𝑂, 𝑃〉 ∈ 𝐽) & ⊢ (𝜑 → 𝑆 ∈ ran 𝐿) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑂) → (𝑆‘𝑥) ∈ (𝐾𝐶𝐵)) & ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉) → (𝑆‘(𝐻‘𝑣)) ∈ (𝐾𝐶𝐵)) & ⊢ ((𝜑 ∧ (𝑥𝑀𝑦 ∧ 𝑎 ∈ (𝑊‘(𝑆‘(𝐻‘𝑥))) ∧ 𝑏 ∈ (𝑊‘(𝑆‘(𝐻‘𝑦))))) → 𝑎𝐾𝑏) ⇒ ⊢ (𝜑 → (𝑆‘𝑃) ∈ (𝐾𝐶𝐵)) | ||
| Syntax | cm0s 35590 | Mapping expressions to statements. |
| class m0St | ||
| Syntax | cmsa 35591 | The set of syntax axioms. |
| class mSA | ||
| Syntax | cmwgfs 35592 | The set of weakly grammatical formal systems. |
| class mWGFS | ||
| Syntax | cmsy 35593 | The syntax typecode function. |
| class mSyn | ||
| Syntax | cmesy 35594 | The syntax typecode function for expressions. |
| class mESyn | ||
| Syntax | cmgfs 35595 | The set of grammatical formal systems. |
| class mGFS | ||
| Syntax | cmtree 35596 | The set of proof trees. |
| class mTree | ||
| Syntax | cmst 35597 | The set of syntax trees. |
| class mST | ||
| Syntax | cmsax 35598 | The indexing set for a syntax axiom. |
| class mSAX | ||
| Syntax | cmufs 35599 | The set of unambiguous formal systems. |
| class mUFS | ||
| Definition | df-m0s 35600 | Define a function mapping expressions to statements. (Contributed by Mario Carneiro, 14-Jul-2016.) |
| ⊢ m0St = (𝑎 ∈ V ↦ 〈∅, ∅, 𝑎〉) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |