![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-godellob | Structured version Visualization version GIF version |
Description: Proof of GΓΆdel's theorem from LΓΆb's theorem (see comments at bj-babygodel 35971 and bj-babylob 35972 for details). (Contributed by BJ, 20-Apr-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bj-godellob.s | β’ (π β Β¬ Prv π) |
bj-godellob.1 | β’ Β¬ Prv β₯ |
Ref | Expression |
---|---|
bj-godellob | β’ β₯ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-godellob.s | . . 3 β’ (π β Β¬ Prv π) | |
2 | dfnot 1552 | . . 3 β’ (Β¬ Prv π β (Prv π β β₯)) | |
3 | 1, 2 | bitri 275 | . 2 β’ (π β (Prv π β β₯)) |
4 | bj-godellob.1 | . . 3 β’ Β¬ Prv β₯ | |
5 | 4 | pm2.21i 119 | . 2 β’ (Prv β₯ β β₯) |
6 | 3, 5 | bj-babylob 35972 | 1 β’ β₯ |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β wb 205 β₯wfal 1545 Prv cprvb 35965 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-prv1 35966 ax-prv2 35967 ax-prv3 35968 |
This theorem depends on definitions: df-bi 206 df-tru 1536 df-fal 1546 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |