| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-godellob | Structured version Visualization version GIF version | ||
| Description: Proof of Gödel's theorem from Löb's theorem (see comments at bj-babygodel 36604 and bj-babylob 36605 for details). (Contributed by BJ, 20-Apr-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bj-godellob.s | ⊢ (𝜑 ↔ ¬ Prv 𝜑) |
| bj-godellob.1 | ⊢ ¬ Prv ⊥ |
| Ref | Expression |
|---|---|
| bj-godellob | ⊢ ⊥ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-godellob.s | . . 3 ⊢ (𝜑 ↔ ¬ Prv 𝜑) | |
| 2 | dfnot 1559 | . . 3 ⊢ (¬ Prv 𝜑 ↔ (Prv 𝜑 → ⊥)) | |
| 3 | 1, 2 | bitri 275 | . 2 ⊢ (𝜑 ↔ (Prv 𝜑 → ⊥)) |
| 4 | bj-godellob.1 | . . 3 ⊢ ¬ Prv ⊥ | |
| 5 | 4 | pm2.21i 119 | . 2 ⊢ (Prv ⊥ → ⊥) |
| 6 | 3, 5 | bj-babylob 36605 | 1 ⊢ ⊥ |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ⊥wfal 1552 Prv cprvb 36598 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-prv1 36599 ax-prv2 36600 ax-prv3 36601 |
| This theorem depends on definitions: df-bi 207 df-tru 1543 df-fal 1553 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |