Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-godellob Structured version   Visualization version   GIF version

Theorem bj-godellob 35973
Description: Proof of GΓΆdel's theorem from LΓΆb's theorem (see comments at bj-babygodel 35971 and bj-babylob 35972 for details). (Contributed by BJ, 20-Apr-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
bj-godellob.s (πœ‘ ↔ Β¬ Prv πœ‘)
bj-godellob.1 Β¬ Prv βŠ₯
Assertion
Ref Expression
bj-godellob βŠ₯

Proof of Theorem bj-godellob
StepHypRef Expression
1 bj-godellob.s . . 3 (πœ‘ ↔ Β¬ Prv πœ‘)
2 dfnot 1552 . . 3 (Β¬ Prv πœ‘ ↔ (Prv πœ‘ β†’ βŠ₯))
31, 2bitri 275 . 2 (πœ‘ ↔ (Prv πœ‘ β†’ βŠ₯))
4 bj-godellob.1 . . 3 Β¬ Prv βŠ₯
54pm2.21i 119 . 2 (Prv βŠ₯ β†’ βŠ₯)
63, 5bj-babylob 35972 1 βŠ₯
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205  βŠ₯wfal 1545  Prv cprvb 35965
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-prv1 35966  ax-prv2 35967  ax-prv3 35968
This theorem depends on definitions:  df-bi 206  df-tru 1536  df-fal 1546
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator