| Metamath
Proof Explorer Theorem List (p. 360 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30880) |
(30881-32403) |
(32404-49791) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | funimage 35901 | Image𝐴 is a function. (Contributed by Scott Fenton, 27-Mar-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ Fun Image𝐴 | ||
| Theorem | fnimage 35902* | Image𝑅 is a function over the set-like portion of 𝑅. (Contributed by Scott Fenton, 4-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ Image𝑅 Fn {𝑥 ∣ (𝑅 “ 𝑥) ∈ V} | ||
| Theorem | imageval 35903* | The image functor in maps-to notation. (Contributed by Scott Fenton, 4-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ Image𝑅 = (𝑥 ∈ V ↦ (𝑅 “ 𝑥)) | ||
| Theorem | fvimage 35904 | Value of the image functor. (Contributed by Scott Fenton, 4-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ (𝑅 “ 𝐴) ∈ 𝑊) → (Image𝑅‘𝐴) = (𝑅 “ 𝐴)) | ||
| Theorem | brcart 35905 | Binary relation form of the cartesian product operator. (Contributed by Scott Fenton, 11-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V ⇒ ⊢ (〈𝐴, 𝐵〉Cart𝐶 ↔ 𝐶 = (𝐴 × 𝐵)) | ||
| Theorem | brdomain 35906 | Binary relation form of the domain function. (Contributed by Scott Fenton, 11-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴Domain𝐵 ↔ 𝐵 = dom 𝐴) | ||
| Theorem | brrange 35907 | Binary relation form of the range function. (Contributed by Scott Fenton, 11-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴Range𝐵 ↔ 𝐵 = ran 𝐴) | ||
| Theorem | brdomaing 35908 | Closed form of brdomain 35906. (Contributed by Scott Fenton, 2-May-2014.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴Domain𝐵 ↔ 𝐵 = dom 𝐴)) | ||
| Theorem | brrangeg 35909 | Closed form of brrange 35907. (Contributed by Scott Fenton, 3-May-2014.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴Range𝐵 ↔ 𝐵 = ran 𝐴)) | ||
| Theorem | brimg 35910 | Binary relation form of the Img function. (Contributed by Scott Fenton, 12-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) (Proof shortened by Peter Mazsa, 2-Oct-2022.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V ⇒ ⊢ (〈𝐴, 𝐵〉Img𝐶 ↔ 𝐶 = (𝐴 “ 𝐵)) | ||
| Theorem | brapply 35911 | Binary relation form of the Apply function. (Contributed by Scott Fenton, 12-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) (Proof shortened by Peter Mazsa, 2-Oct-2022.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V ⇒ ⊢ (〈𝐴, 𝐵〉Apply𝐶 ↔ 𝐶 = (𝐴‘𝐵)) | ||
| Theorem | brcup 35912 | Binary relation form of the Cup function. (Contributed by Scott Fenton, 14-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V ⇒ ⊢ (〈𝐴, 𝐵〉Cup𝐶 ↔ 𝐶 = (𝐴 ∪ 𝐵)) | ||
| Theorem | brcap 35913 | Binary relation form of the Cap function. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V ⇒ ⊢ (〈𝐴, 𝐵〉Cap𝐶 ↔ 𝐶 = (𝐴 ∩ 𝐵)) | ||
| Theorem | brsuccf 35914 | Binary relation form of the Succ function. (Contributed by Scott Fenton, 14-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴Succ𝐵 ↔ 𝐵 = suc 𝐴) | ||
| Theorem | funpartlem 35915* | Lemma for funpartfun 35916. Show membership in the restriction. (Contributed by Scott Fenton, 4-Dec-2017.) |
| ⊢ (𝐴 ∈ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )) ↔ ∃𝑥(𝐹 “ {𝐴}) = {𝑥}) | ||
| Theorem | funpartfun 35916 | The functional part of 𝐹 is a function. (Contributed by Scott Fenton, 16-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) (Proof shortened by Peter Mazsa, 2-Oct-2022.) |
| ⊢ Fun Funpart𝐹 | ||
| Theorem | funpartss 35917 | The functional part of 𝐹 is a subset of 𝐹. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ Funpart𝐹 ⊆ 𝐹 | ||
| Theorem | funpartfv 35918 | The function value of the functional part is identical to the original functional value. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ (Funpart𝐹‘𝐴) = (𝐹‘𝐴) | ||
| Theorem | fullfunfnv 35919 | The full functional part of 𝐹 is a function over V. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ FullFun𝐹 Fn V | ||
| Theorem | fullfunfv 35920 | The function value of the full function of 𝐹 agrees with 𝐹. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ (FullFun𝐹‘𝐴) = (𝐹‘𝐴) | ||
| Theorem | brfullfun 35921 | A binary relation form condition for the full function. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴FullFun𝐹𝐵 ↔ 𝐵 = (𝐹‘𝐴)) | ||
| Theorem | brrestrict 35922 | Binary relation form of the Restrict function. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V ⇒ ⊢ (〈𝐴, 𝐵〉Restrict𝐶 ↔ 𝐶 = (𝐴 ↾ 𝐵)) | ||
| Theorem | dfrecs2 35923 | A quantifier-free definition of recs. (Contributed by Scott Fenton, 17-Jul-2020.) |
| ⊢ recs(𝐹) = ∪ (( Funs ∩ (◡Domain “ On)) ∖ dom ((◡ E ∘ Domain) ∖ Fix (◡Apply ∘ (FullFun𝐹 ∘ Restrict)))) | ||
| Theorem | dfrdg4 35924 | A quantifier-free definition of the recursive definition generator. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) (Proof shortened by Peter Mazsa, 2-Oct-2022.) |
| ⊢ rec(𝐹, 𝐴) = ∪ (( Funs ∩ (◡Domain “ On)) ∖ dom ((◡ E ∘ Domain) ∖ Fix (◡Apply ∘ (((V × {∅}) × {∪ {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ))))))) | ||
| Theorem | dfint3 35925 | Quantifier-free definition of class intersection. (Contributed by Scott Fenton, 13-Apr-2018.) |
| ⊢ ∩ 𝐴 = (V ∖ (◡(V ∖ E ) “ 𝐴)) | ||
| Theorem | imagesset 35926 | The Image functor applied to the converse of the subset relationship yields a subset of the subset relationship. (Contributed by Scott Fenton, 14-Apr-2018.) |
| ⊢ Image◡ SSet ⊆ SSet | ||
| Theorem | brub 35927* | Binary relation form of the upper bound functor. (Contributed by Scott Fenton, 3-May-2018.) |
| ⊢ 𝑆 ∈ V & ⊢ 𝐴 ∈ V ⇒ ⊢ (𝑆UB𝑅𝐴 ↔ ∀𝑥 ∈ 𝑆 𝑥𝑅𝐴) | ||
| Theorem | brlb 35928* | Binary relation form of the lower bound functor. (Contributed by Scott Fenton, 3-May-2018.) |
| ⊢ 𝑆 ∈ V & ⊢ 𝐴 ∈ V ⇒ ⊢ (𝑆LB𝑅𝐴 ↔ ∀𝑥 ∈ 𝑆 𝐴𝑅𝑥) | ||
| Syntax | caltop 35929 | Declare the syntax for an alternate ordered pair. |
| class ⟪𝐴, 𝐵⟫ | ||
| Syntax | caltxp 35930 | Declare the syntax for an alternate Cartesian product. |
| class (𝐴 ×× 𝐵) | ||
| Definition | df-altop 35931 | An alternative definition of ordered pairs. This definition removes a hypothesis from its defining theorem (see altopth 35942), making it more convenient in some circumstances. (Contributed by Scott Fenton, 22-Mar-2012.) |
| ⊢ ⟪𝐴, 𝐵⟫ = {{𝐴}, {𝐴, {𝐵}}} | ||
| Definition | df-altxp 35932* | Define Cartesian products of alternative ordered pairs. (Contributed by Scott Fenton, 23-Mar-2012.) |
| ⊢ (𝐴 ×× 𝐵) = {𝑧 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = ⟪𝑥, 𝑦⟫} | ||
| Theorem | altopex 35933 | Alternative ordered pairs always exist. (Contributed by Scott Fenton, 22-Mar-2012.) |
| ⊢ ⟪𝐴, 𝐵⟫ ∈ V | ||
| Theorem | altopthsn 35934 | Two alternate ordered pairs are equal iff the singletons of their respective elements are equal. Note that this holds regardless of sethood of any of the elements. (Contributed by Scott Fenton, 16-Apr-2012.) |
| ⊢ (⟪𝐴, 𝐵⟫ = ⟪𝐶, 𝐷⟫ ↔ ({𝐴} = {𝐶} ∧ {𝐵} = {𝐷})) | ||
| Theorem | altopeq12 35935 | Equality for alternate ordered pairs. (Contributed by Scott Fenton, 22-Mar-2012.) |
| ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → ⟪𝐴, 𝐶⟫ = ⟪𝐵, 𝐷⟫) | ||
| Theorem | altopeq1 35936 | Equality for alternate ordered pairs. (Contributed by Scott Fenton, 22-Mar-2012.) |
| ⊢ (𝐴 = 𝐵 → ⟪𝐴, 𝐶⟫ = ⟪𝐵, 𝐶⟫) | ||
| Theorem | altopeq2 35937 | Equality for alternate ordered pairs. (Contributed by Scott Fenton, 22-Mar-2012.) |
| ⊢ (𝐴 = 𝐵 → ⟪𝐶, 𝐴⟫ = ⟪𝐶, 𝐵⟫) | ||
| Theorem | altopth1 35938 | Equality of the first members of equal alternate ordered pairs, which holds regardless of the second members' sethood. (Contributed by Scott Fenton, 22-Mar-2012.) |
| ⊢ (𝐴 ∈ 𝑉 → (⟪𝐴, 𝐵⟫ = ⟪𝐶, 𝐷⟫ → 𝐴 = 𝐶)) | ||
| Theorem | altopth2 35939 | Equality of the second members of equal alternate ordered pairs, which holds regardless of the first members' sethood. (Contributed by Scott Fenton, 22-Mar-2012.) |
| ⊢ (𝐵 ∈ 𝑉 → (⟪𝐴, 𝐵⟫ = ⟪𝐶, 𝐷⟫ → 𝐵 = 𝐷)) | ||
| Theorem | altopthg 35940 | Alternate ordered pair theorem. (Contributed by Scott Fenton, 22-Mar-2012.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (⟪𝐴, 𝐵⟫ = ⟪𝐶, 𝐷⟫ ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) | ||
| Theorem | altopthbg 35941 | Alternate ordered pair theorem. (Contributed by Scott Fenton, 14-Apr-2012.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊) → (⟪𝐴, 𝐵⟫ = ⟪𝐶, 𝐷⟫ ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) | ||
| Theorem | altopth 35942 | The alternate ordered pair theorem. If two alternate ordered pairs are equal, their first elements are equal and their second elements are equal. Note that 𝐶 and 𝐷 are not required to be a set due to a peculiarity of our specific ordered pair definition, as opposed to the regular ordered pairs used here, which (as in opth 5423), requires 𝐷 to be a set. (Contributed by Scott Fenton, 23-Mar-2012.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (⟪𝐴, 𝐵⟫ = ⟪𝐶, 𝐷⟫ ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) | ||
| Theorem | altopthb 35943 | Alternate ordered pair theorem with different sethood requirements. See altopth 35942 for more comments. (Contributed by Scott Fenton, 14-Apr-2012.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐷 ∈ V ⇒ ⊢ (⟪𝐴, 𝐵⟫ = ⟪𝐶, 𝐷⟫ ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) | ||
| Theorem | altopthc 35944 | Alternate ordered pair theorem with different sethood requirements. See altopth 35942 for more comments. (Contributed by Scott Fenton, 14-Apr-2012.) |
| ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V ⇒ ⊢ (⟪𝐴, 𝐵⟫ = ⟪𝐶, 𝐷⟫ ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) | ||
| Theorem | altopthd 35945 | Alternate ordered pair theorem with different sethood requirements. See altopth 35942 for more comments. (Contributed by Scott Fenton, 14-Apr-2012.) |
| ⊢ 𝐶 ∈ V & ⊢ 𝐷 ∈ V ⇒ ⊢ (⟪𝐴, 𝐵⟫ = ⟪𝐶, 𝐷⟫ ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) | ||
| Theorem | altxpeq1 35946 | Equality for alternate Cartesian products. (Contributed by Scott Fenton, 24-Mar-2012.) |
| ⊢ (𝐴 = 𝐵 → (𝐴 ×× 𝐶) = (𝐵 ×× 𝐶)) | ||
| Theorem | altxpeq2 35947 | Equality for alternate Cartesian products. (Contributed by Scott Fenton, 24-Mar-2012.) |
| ⊢ (𝐴 = 𝐵 → (𝐶 ×× 𝐴) = (𝐶 ×× 𝐵)) | ||
| Theorem | elaltxp 35948* | Membership in alternate Cartesian products. (Contributed by Scott Fenton, 23-Mar-2012.) |
| ⊢ (𝑋 ∈ (𝐴 ×× 𝐵) ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑋 = ⟪𝑥, 𝑦⟫) | ||
| Theorem | altopelaltxp 35949 | Alternate ordered pair membership in a Cartesian product. Note that, unlike opelxp 5659, there is no sethood requirement here. (Contributed by Scott Fenton, 22-Mar-2012.) |
| ⊢ (⟪𝑋, 𝑌⟫ ∈ (𝐴 ×× 𝐵) ↔ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵)) | ||
| Theorem | altxpsspw 35950 | An inclusion rule for alternate Cartesian products. (Contributed by Scott Fenton, 24-Mar-2012.) |
| ⊢ (𝐴 ×× 𝐵) ⊆ 𝒫 𝒫 (𝐴 ∪ 𝒫 𝐵) | ||
| Theorem | altxpexg 35951 | The alternate Cartesian product of two sets is a set. (Contributed by Scott Fenton, 24-Mar-2012.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ×× 𝐵) ∈ V) | ||
| Theorem | rankaltopb 35952 | Compute the rank of an alternate ordered pair. (Contributed by Scott Fenton, 18-Dec-2013.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ ∪ (𝑅1 “ On)) → (rank‘⟪𝐴, 𝐵⟫) = suc suc ((rank‘𝐴) ∪ suc (rank‘𝐵))) | ||
| Theorem | nfaltop 35953 | Bound-variable hypothesis builder for alternate ordered pairs. (Contributed by Scott Fenton, 25-Sep-2015.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ Ⅎ𝑥⟪𝐴, 𝐵⟫ | ||
| Theorem | sbcaltop 35954* | Distribution of class substitution over alternate ordered pairs. (Contributed by Scott Fenton, 25-Sep-2015.) |
| ⊢ (𝐴 ∈ V → ⦋𝐴 / 𝑥⦌⟪𝐶, 𝐷⟫ = ⟪⦋𝐴 / 𝑥⦌𝐶, ⦋𝐴 / 𝑥⦌𝐷⟫) | ||
| Syntax | cofs 35955 | Declare the syntax for the outer five segment configuration. |
| class OuterFiveSeg | ||
| Definition | df-ofs 35956* | The outer five segment configuration is an abbreviation for the conditions of the Five Segment Axiom (ax5seg 28901). See brofs 35978 and 5segofs 35979 for how it is used. Definition 2.10 of [Schwabhauser] p. 28. (Contributed by Scott Fenton, 21-Sep-2013.) |
| ⊢ OuterFiveSeg = {〈𝑝, 𝑞〉 ∣ ∃𝑛 ∈ ℕ ∃𝑎 ∈ (𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)∃𝑥 ∈ (𝔼‘𝑛)∃𝑦 ∈ (𝔼‘𝑛)∃𝑧 ∈ (𝔼‘𝑛)∃𝑤 ∈ (𝔼‘𝑛)(𝑝 = 〈〈𝑎, 𝑏〉, 〈𝑐, 𝑑〉〉 ∧ 𝑞 = 〈〈𝑥, 𝑦〉, 〈𝑧, 𝑤〉〉 ∧ ((𝑏 Btwn 〈𝑎, 𝑐〉 ∧ 𝑦 Btwn 〈𝑥, 𝑧〉) ∧ (〈𝑎, 𝑏〉Cgr〈𝑥, 𝑦〉 ∧ 〈𝑏, 𝑐〉Cgr〈𝑦, 𝑧〉) ∧ (〈𝑎, 𝑑〉Cgr〈𝑥, 𝑤〉 ∧ 〈𝑏, 𝑑〉Cgr〈𝑦, 𝑤〉)))} | ||
| Theorem | cgrrflx2d 35957 | Deduction form of axcgrrflx 28877. (Contributed by Scott Fenton, 13-Oct-2013.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐴 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐵 ∈ (𝔼‘𝑁)) ⇒ ⊢ (𝜑 → 〈𝐴, 𝐵〉Cgr〈𝐵, 𝐴〉) | ||
| Theorem | cgrtr4d 35958 | Deduction form of axcgrtr 28878. (Contributed by Scott Fenton, 13-Oct-2013.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐴 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐵 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐶 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐷 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐸 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐹 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 〈𝐴, 𝐵〉Cgr〈𝐶, 𝐷〉) & ⊢ (𝜑 → 〈𝐴, 𝐵〉Cgr〈𝐸, 𝐹〉) ⇒ ⊢ (𝜑 → 〈𝐶, 𝐷〉Cgr〈𝐸, 𝐹〉) | ||
| Theorem | cgrtr4and 35959 | Deduction form of axcgrtr 28878. (Contributed by Scott Fenton, 13-Oct-2013.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐴 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐵 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐶 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐷 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐸 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐹 ∈ (𝔼‘𝑁)) & ⊢ ((𝜑 ∧ 𝜓) → 〈𝐴, 𝐵〉Cgr〈𝐶, 𝐷〉) & ⊢ ((𝜑 ∧ 𝜓) → 〈𝐴, 𝐵〉Cgr〈𝐸, 𝐹〉) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 〈𝐶, 𝐷〉Cgr〈𝐸, 𝐹〉) | ||
| Theorem | cgrrflx 35960 | Reflexivity law for congruence. Theorem 2.1 of [Schwabhauser] p. 27. (Contributed by Scott Fenton, 12-Jun-2013.) |
| ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → 〈𝐴, 𝐵〉Cgr〈𝐴, 𝐵〉) | ||
| Theorem | cgrrflxd 35961 | Deduction form of cgrrflx 35960. (Contributed by Scott Fenton, 13-Oct-2013.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐴 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐵 ∈ (𝔼‘𝑁)) ⇒ ⊢ (𝜑 → 〈𝐴, 𝐵〉Cgr〈𝐴, 𝐵〉) | ||
| Theorem | cgrcomim 35962 | Congruence commutes on the two sides. Implication version. Theorem 2.2 of [Schwabhauser] p. 27. (Contributed by Scott Fenton, 12-Jun-2013.) |
| ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (〈𝐴, 𝐵〉Cgr〈𝐶, 𝐷〉 → 〈𝐶, 𝐷〉Cgr〈𝐴, 𝐵〉)) | ||
| Theorem | cgrcom 35963 | Congruence commutes between the two sides. (Contributed by Scott Fenton, 12-Jun-2013.) |
| ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (〈𝐴, 𝐵〉Cgr〈𝐶, 𝐷〉 ↔ 〈𝐶, 𝐷〉Cgr〈𝐴, 𝐵〉)) | ||
| Theorem | cgrcomand 35964 | Deduction form of cgrcom 35963. (Contributed by Scott Fenton, 13-Oct-2013.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐴 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐵 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐶 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐷 ∈ (𝔼‘𝑁)) & ⊢ ((𝜑 ∧ 𝜓) → 〈𝐴, 𝐵〉Cgr〈𝐶, 𝐷〉) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 〈𝐶, 𝐷〉Cgr〈𝐴, 𝐵〉) | ||
| Theorem | cgrtr 35965 | Transitivity law for congruence. Theorem 2.3 of [Schwabhauser] p. 27. (Contributed by Scott Fenton, 24-Sep-2013.) |
| ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → ((〈𝐴, 𝐵〉Cgr〈𝐶, 𝐷〉 ∧ 〈𝐶, 𝐷〉Cgr〈𝐸, 𝐹〉) → 〈𝐴, 𝐵〉Cgr〈𝐸, 𝐹〉)) | ||
| Theorem | cgrtrand 35966 | Deduction form of cgrtr 35965. (Contributed by Scott Fenton, 13-Oct-2013.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐴 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐵 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐶 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐷 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐸 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐹 ∈ (𝔼‘𝑁)) & ⊢ ((𝜑 ∧ 𝜓) → 〈𝐴, 𝐵〉Cgr〈𝐶, 𝐷〉) & ⊢ ((𝜑 ∧ 𝜓) → 〈𝐶, 𝐷〉Cgr〈𝐸, 𝐹〉) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 〈𝐴, 𝐵〉Cgr〈𝐸, 𝐹〉) | ||
| Theorem | cgrtr3 35967 | Transitivity law for congruence. (Contributed by Scott Fenton, 7-Oct-2013.) |
| ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → ((〈𝐴, 𝐵〉Cgr〈𝐸, 𝐹〉 ∧ 〈𝐶, 𝐷〉Cgr〈𝐸, 𝐹〉) → 〈𝐴, 𝐵〉Cgr〈𝐶, 𝐷〉)) | ||
| Theorem | cgrtr3and 35968 | Deduction form of cgrtr3 35967. (Contributed by Scott Fenton, 13-Oct-2013.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐴 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐵 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐶 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐷 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐸 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐹 ∈ (𝔼‘𝑁)) & ⊢ ((𝜑 ∧ 𝜓) → 〈𝐴, 𝐵〉Cgr〈𝐸, 𝐹〉) & ⊢ ((𝜑 ∧ 𝜓) → 〈𝐶, 𝐷〉Cgr〈𝐸, 𝐹〉) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 〈𝐴, 𝐵〉Cgr〈𝐶, 𝐷〉) | ||
| Theorem | cgrcoml 35969 | Congruence commutes on the left. Biconditional version of Theorem 2.4 of [Schwabhauser] p. 27. (Contributed by Scott Fenton, 12-Jun-2013.) |
| ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (〈𝐴, 𝐵〉Cgr〈𝐶, 𝐷〉 ↔ 〈𝐵, 𝐴〉Cgr〈𝐶, 𝐷〉)) | ||
| Theorem | cgrcomr 35970 | Congruence commutes on the right. Biconditional version of Theorem 2.5 of [Schwabhauser] p. 27. (Contributed by Scott Fenton, 12-Jun-2013.) |
| ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (〈𝐴, 𝐵〉Cgr〈𝐶, 𝐷〉 ↔ 〈𝐴, 𝐵〉Cgr〈𝐷, 𝐶〉)) | ||
| Theorem | cgrcomlr 35971 | Congruence commutes on both sides. (Contributed by Scott Fenton, 12-Jun-2013.) |
| ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (〈𝐴, 𝐵〉Cgr〈𝐶, 𝐷〉 ↔ 〈𝐵, 𝐴〉Cgr〈𝐷, 𝐶〉)) | ||
| Theorem | cgrcomland 35972 | Deduction form of cgrcoml 35969. (Contributed by Scott Fenton, 14-Oct-2013.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐴 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐵 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐶 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐷 ∈ (𝔼‘𝑁)) & ⊢ ((𝜑 ∧ 𝜓) → 〈𝐴, 𝐵〉Cgr〈𝐶, 𝐷〉) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 〈𝐵, 𝐴〉Cgr〈𝐶, 𝐷〉) | ||
| Theorem | cgrcomrand 35973 | Deduction form of cgrcoml 35969. (Contributed by Scott Fenton, 14-Oct-2013.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐴 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐵 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐶 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐷 ∈ (𝔼‘𝑁)) & ⊢ ((𝜑 ∧ 𝜓) → 〈𝐴, 𝐵〉Cgr〈𝐶, 𝐷〉) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 〈𝐴, 𝐵〉Cgr〈𝐷, 𝐶〉) | ||
| Theorem | cgrcomlrand 35974 | Deduction form of cgrcomlr 35971. (Contributed by Scott Fenton, 14-Oct-2013.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐴 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐵 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐶 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐷 ∈ (𝔼‘𝑁)) & ⊢ ((𝜑 ∧ 𝜓) → 〈𝐴, 𝐵〉Cgr〈𝐶, 𝐷〉) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 〈𝐵, 𝐴〉Cgr〈𝐷, 𝐶〉) | ||
| Theorem | cgrtriv 35975 | Degenerate segments are congruent. Theorem 2.8 of [Schwabhauser] p. 28. (Contributed by Scott Fenton, 12-Jun-2013.) |
| ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → 〈𝐴, 𝐴〉Cgr〈𝐵, 𝐵〉) | ||
| Theorem | cgrid2 35976 | Identity law for congruence. (Contributed by Scott Fenton, 12-Jun-2013.) |
| ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (〈𝐴, 𝐴〉Cgr〈𝐵, 𝐶〉 → 𝐵 = 𝐶)) | ||
| Theorem | cgrdegen 35977 | Two congruent segments are either both degenerate or both nondegenerate. (Contributed by Scott Fenton, 12-Jun-2013.) |
| ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (〈𝐴, 𝐵〉Cgr〈𝐶, 𝐷〉 → (𝐴 = 𝐵 ↔ 𝐶 = 𝐷))) | ||
| Theorem | brofs 35978 | Binary relation form of the outer five segment predicate. (Contributed by Scott Fenton, 21-Sep-2013.) |
| ⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → (〈〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉〉 OuterFiveSeg 〈〈𝐸, 𝐹〉, 〈𝐺, 𝐻〉〉 ↔ ((𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐹 Btwn 〈𝐸, 𝐺〉) ∧ (〈𝐴, 𝐵〉Cgr〈𝐸, 𝐹〉 ∧ 〈𝐵, 𝐶〉Cgr〈𝐹, 𝐺〉) ∧ (〈𝐴, 𝐷〉Cgr〈𝐸, 𝐻〉 ∧ 〈𝐵, 𝐷〉Cgr〈𝐹, 𝐻〉)))) | ||
| Theorem | 5segofs 35979 | Rephrase ax5seg 28901 using the outer five segment predicate. Theorem 2.10 of [Schwabhauser] p. 28. (Contributed by Scott Fenton, 21-Sep-2013.) |
| ⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → ((〈〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉〉 OuterFiveSeg 〈〈𝐸, 𝐹〉, 〈𝐺, 𝐻〉〉 ∧ 𝐴 ≠ 𝐵) → 〈𝐶, 𝐷〉Cgr〈𝐺, 𝐻〉)) | ||
| Theorem | ofscom 35980 | The outer five segment predicate commutes. (Contributed by Scott Fenton, 26-Sep-2013.) |
| ⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → (〈〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉〉 OuterFiveSeg 〈〈𝐸, 𝐹〉, 〈𝐺, 𝐻〉〉 ↔ 〈〈𝐸, 𝐹〉, 〈𝐺, 𝐻〉〉 OuterFiveSeg 〈〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉〉)) | ||
| Theorem | cgrextend 35981 | Link congruence over a pair of line segments. Theorem 2.11 of [Schwabhauser] p. 29. (Contributed by Scott Fenton, 12-Jun-2013.) |
| ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → (((𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐸 Btwn 〈𝐷, 𝐹〉) ∧ (〈𝐴, 𝐵〉Cgr〈𝐷, 𝐸〉 ∧ 〈𝐵, 𝐶〉Cgr〈𝐸, 𝐹〉)) → 〈𝐴, 𝐶〉Cgr〈𝐷, 𝐹〉)) | ||
| Theorem | cgrextendand 35982 | Deduction form of cgrextend 35981. (Contributed by Scott Fenton, 14-Oct-2013.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐴 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐵 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐶 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐷 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐸 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐹 ∈ (𝔼‘𝑁)) & ⊢ ((𝜑 ∧ 𝜓) → 𝐵 Btwn 〈𝐴, 𝐶〉) & ⊢ ((𝜑 ∧ 𝜓) → 𝐸 Btwn 〈𝐷, 𝐹〉) & ⊢ ((𝜑 ∧ 𝜓) → 〈𝐴, 𝐵〉Cgr〈𝐷, 𝐸〉) & ⊢ ((𝜑 ∧ 𝜓) → 〈𝐵, 𝐶〉Cgr〈𝐸, 𝐹〉) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 〈𝐴, 𝐶〉Cgr〈𝐷, 𝐹〉) | ||
| Theorem | segconeq 35983 | Two points that satisfy the conclusion of axsegcon 28890 are identical. Uniqueness portion of Theorem 2.12 of [Schwabhauser] p. 29. (Contributed by Scott Fenton, 12-Jun-2013.) |
| ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) → ((𝑄 ≠ 𝐴 ∧ (𝐴 Btwn 〈𝑄, 𝑋〉 ∧ 〈𝐴, 𝑋〉Cgr〈𝐵, 𝐶〉) ∧ (𝐴 Btwn 〈𝑄, 𝑌〉 ∧ 〈𝐴, 𝑌〉Cgr〈𝐵, 𝐶〉)) → 𝑋 = 𝑌)) | ||
| Theorem | segconeu 35984* | Existential uniqueness version of segconeq 35983. (Contributed by Scott Fenton, 19-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ ((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶 ≠ 𝐷)) → ∃!𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn 〈𝐶, 𝑟〉 ∧ 〈𝐷, 𝑟〉Cgr〈𝐴, 𝐵〉)) | ||
| Theorem | btwntriv2 35985 | Betweenness always holds for the second endpoint. Theorem 3.1 of [Schwabhauser] p. 30. (Contributed by Scott Fenton, 12-Jun-2013.) |
| ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → 𝐵 Btwn 〈𝐴, 𝐵〉) | ||
| Theorem | btwncomim 35986 | Betweenness commutes. Implication version. Theorem 3.2 of [Schwabhauser] p. 30. (Contributed by Scott Fenton, 12-Jun-2013.) |
| ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐴 Btwn 〈𝐵, 𝐶〉 → 𝐴 Btwn 〈𝐶, 𝐵〉)) | ||
| Theorem | btwncom 35987 | Betweenness commutes. (Contributed by Scott Fenton, 12-Jun-2013.) |
| ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐴 Btwn 〈𝐵, 𝐶〉 ↔ 𝐴 Btwn 〈𝐶, 𝐵〉)) | ||
| Theorem | btwncomand 35988 | Deduction form of btwncom 35987. (Contributed by Scott Fenton, 14-Oct-2013.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐴 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐵 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐶 ∈ (𝔼‘𝑁)) & ⊢ ((𝜑 ∧ 𝜓) → 𝐴 Btwn 〈𝐵, 𝐶〉) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 𝐴 Btwn 〈𝐶, 𝐵〉) | ||
| Theorem | btwntriv1 35989 | Betweenness always holds for the first endpoint. Theorem 3.3 of [Schwabhauser] p. 30. (Contributed by Scott Fenton, 12-Jun-2013.) |
| ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → 𝐴 Btwn 〈𝐴, 𝐵〉) | ||
| Theorem | btwnswapid 35990 | If you can swap the first two arguments of a betweenness statement, then those arguments are identical. Theorem 3.4 of [Schwabhauser] p. 30. (Contributed by Scott Fenton, 12-Jun-2013.) |
| ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → ((𝐴 Btwn 〈𝐵, 𝐶〉 ∧ 𝐵 Btwn 〈𝐴, 𝐶〉) → 𝐴 = 𝐵)) | ||
| Theorem | btwnswapid2 35991 | If you can swap arguments one and three of a betweenness statement, then those arguments are identical. (Contributed by Scott Fenton, 7-Oct-2013.) |
| ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → ((𝐴 Btwn 〈𝐵, 𝐶〉 ∧ 𝐶 Btwn 〈𝐵, 𝐴〉) → 𝐴 = 𝐶)) | ||
| Theorem | btwnintr 35992 | Inner transitivity law for betweenness. Left-hand side of Theorem 3.5 of [Schwabhauser] p. 30. (Contributed by Scott Fenton, 12-Jun-2013.) |
| ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → ((𝐵 Btwn 〈𝐴, 𝐷〉 ∧ 𝐶 Btwn 〈𝐵, 𝐷〉) → 𝐵 Btwn 〈𝐴, 𝐶〉)) | ||
| Theorem | btwnexch3 35993 | Exchange the first endpoint in betweenness. Left-hand side of Theorem 3.6 of [Schwabhauser] p. 30. (Contributed by Scott Fenton, 12-Jun-2013.) |
| ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → ((𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐶 Btwn 〈𝐴, 𝐷〉) → 𝐶 Btwn 〈𝐵, 𝐷〉)) | ||
| Theorem | btwnexch3and 35994 | Deduction form of btwnexch3 35993. (Contributed by Scott Fenton, 13-Oct-2013.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐴 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐵 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐶 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐷 ∈ (𝔼‘𝑁)) & ⊢ ((𝜑 ∧ 𝜓) → 𝐵 Btwn 〈𝐴, 𝐶〉) & ⊢ ((𝜑 ∧ 𝜓) → 𝐶 Btwn 〈𝐴, 𝐷〉) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 𝐶 Btwn 〈𝐵, 𝐷〉) | ||
| Theorem | btwnouttr2 35995 | Outer transitivity law for betweenness. Left-hand side of Theorem 3.1 of [Schwabhauser] p. 30. (Contributed by Scott Fenton, 12-Jun-2013.) |
| ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → ((𝐵 ≠ 𝐶 ∧ 𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐶 Btwn 〈𝐵, 𝐷〉) → 𝐶 Btwn 〈𝐴, 𝐷〉)) | ||
| Theorem | btwnexch2 35996 | Exchange the outer point of two betweenness statements. Right-hand side of Theorem 3.5 of [Schwabhauser] p. 30. (Contributed by Scott Fenton, 14-Jun-2013.) |
| ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → ((𝐵 Btwn 〈𝐴, 𝐷〉 ∧ 𝐶 Btwn 〈𝐵, 𝐷〉) → 𝐶 Btwn 〈𝐴, 𝐷〉)) | ||
| Theorem | btwnouttr 35997 | Outer transitivity law for betweenness. Right-hand side of Theorem 3.7 of [Schwabhauser] p. 30. (Contributed by Scott Fenton, 14-Jun-2013.) |
| ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → ((𝐵 ≠ 𝐶 ∧ 𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐶 Btwn 〈𝐵, 𝐷〉) → 𝐵 Btwn 〈𝐴, 𝐷〉)) | ||
| Theorem | btwnexch 35998 | Outer transitivity law for betweenness. Right-hand side of Theorem 3.6 of [Schwabhauser] p. 30. (Contributed by Scott Fenton, 24-Sep-2013.) |
| ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → ((𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐶 Btwn 〈𝐴, 𝐷〉) → 𝐵 Btwn 〈𝐴, 𝐷〉)) | ||
| Theorem | btwnexchand 35999 | Deduction form of btwnexch 35998. (Contributed by Scott Fenton, 13-Oct-2013.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐴 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐵 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐶 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐷 ∈ (𝔼‘𝑁)) & ⊢ ((𝜑 ∧ 𝜓) → 𝐵 Btwn 〈𝐴, 𝐶〉) & ⊢ ((𝜑 ∧ 𝜓) → 𝐶 Btwn 〈𝐴, 𝐷〉) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 𝐵 Btwn 〈𝐴, 𝐷〉) | ||
| Theorem | btwndiff 36000* | There is always a 𝑐 distinct from 𝐵 such that 𝐵 lies between 𝐴 and 𝑐. Theorem 3.14 of [Schwabhauser] p. 32. (Contributed by Scott Fenton, 24-Sep-2013.) |
| ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → ∃𝑐 ∈ (𝔼‘𝑁)(𝐵 Btwn 〈𝐴, 𝑐〉 ∧ 𝐵 ≠ 𝑐)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |