Home | Metamath
Proof Explorer Theorem List (p. 360 of 464) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29181) |
Hilbert Space Explorer
(29182-30704) |
Users' Mathboxes
(30705-46395) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | heiborlem6 35901* | Lemma for heibor 35906. Since the sequence of balls connected by the function 𝑇 ensures that each ball nontrivially intersects with the next (since the empty set has a finite subcover, the intersection of any two successive balls in the sequence is nonempty), and each ball is half the size of the previous one, the distance between the centers is at most 3 / 2 times the size of the larger, and so if we expand each ball by a factor of 3 we get a nested sequence of balls. (Contributed by Jeff Madsen, 23-Jan-2014.) |
⊢ 𝐽 = (MetOpen‘𝐷) & ⊢ 𝐾 = {𝑢 ∣ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 ⊆ ∪ 𝑣} & ⊢ 𝐺 = {〈𝑦, 𝑛〉 ∣ (𝑛 ∈ ℕ0 ∧ 𝑦 ∈ (𝐹‘𝑛) ∧ (𝑦𝐵𝑛) ∈ 𝐾)} & ⊢ 𝐵 = (𝑧 ∈ 𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚)))) & ⊢ (𝜑 → 𝐷 ∈ (CMet‘𝑋)) & ⊢ (𝜑 → 𝐹:ℕ0⟶(𝒫 𝑋 ∩ Fin)) & ⊢ (𝜑 → ∀𝑛 ∈ ℕ0 𝑋 = ∪ 𝑦 ∈ (𝐹‘𝑛)(𝑦𝐵𝑛)) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐺 ((𝑇‘𝑥)𝐺((2nd ‘𝑥) + 1) ∧ ((𝐵‘𝑥) ∩ ((𝑇‘𝑥)𝐵((2nd ‘𝑥) + 1))) ∈ 𝐾)) & ⊢ (𝜑 → 𝐶𝐺0) & ⊢ 𝑆 = seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1)))) & ⊢ 𝑀 = (𝑛 ∈ ℕ ↦ 〈(𝑆‘𝑛), (3 / (2↑𝑛))〉) ⇒ ⊢ (𝜑 → ∀𝑘 ∈ ℕ ((ball‘𝐷)‘(𝑀‘(𝑘 + 1))) ⊆ ((ball‘𝐷)‘(𝑀‘𝑘))) | ||
Theorem | heiborlem7 35902* | Lemma for heibor 35906. Since the sizes of the balls decrease exponentially, the sequence converges to zero. (Contributed by Jeff Madsen, 23-Jan-2014.) |
⊢ 𝐽 = (MetOpen‘𝐷) & ⊢ 𝐾 = {𝑢 ∣ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 ⊆ ∪ 𝑣} & ⊢ 𝐺 = {〈𝑦, 𝑛〉 ∣ (𝑛 ∈ ℕ0 ∧ 𝑦 ∈ (𝐹‘𝑛) ∧ (𝑦𝐵𝑛) ∈ 𝐾)} & ⊢ 𝐵 = (𝑧 ∈ 𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚)))) & ⊢ (𝜑 → 𝐷 ∈ (CMet‘𝑋)) & ⊢ (𝜑 → 𝐹:ℕ0⟶(𝒫 𝑋 ∩ Fin)) & ⊢ (𝜑 → ∀𝑛 ∈ ℕ0 𝑋 = ∪ 𝑦 ∈ (𝐹‘𝑛)(𝑦𝐵𝑛)) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐺 ((𝑇‘𝑥)𝐺((2nd ‘𝑥) + 1) ∧ ((𝐵‘𝑥) ∩ ((𝑇‘𝑥)𝐵((2nd ‘𝑥) + 1))) ∈ 𝐾)) & ⊢ (𝜑 → 𝐶𝐺0) & ⊢ 𝑆 = seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1)))) & ⊢ 𝑀 = (𝑛 ∈ ℕ ↦ 〈(𝑆‘𝑛), (3 / (2↑𝑛))〉) ⇒ ⊢ ∀𝑟 ∈ ℝ+ ∃𝑘 ∈ ℕ (2nd ‘(𝑀‘𝑘)) < 𝑟 | ||
Theorem | heiborlem8 35903* | Lemma for heibor 35906. The previous lemmas establish that the sequence 𝑀 is Cauchy, so using completeness we now consider the convergent point 𝑌. By assumption, 𝑈 is an open cover, so 𝑌 is an element of some 𝑍 ∈ 𝑈, and some ball centered at 𝑌 is contained in 𝑍. But the sequence contains arbitrarily small balls close to 𝑌, so some element ball(𝑀‘𝑛) of the sequence is contained in 𝑍. And finally we arrive at a contradiction, because {𝑍} is a finite subcover of 𝑈 that covers ball(𝑀‘𝑛), yet ball(𝑀‘𝑛) ∈ 𝐾. For convenience, we write this contradiction as 𝜑 → 𝜓 where 𝜑 is all the accumulated hypotheses and 𝜓 is anything at all. (Contributed by Jeff Madsen, 22-Jan-2014.) |
⊢ 𝐽 = (MetOpen‘𝐷) & ⊢ 𝐾 = {𝑢 ∣ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 ⊆ ∪ 𝑣} & ⊢ 𝐺 = {〈𝑦, 𝑛〉 ∣ (𝑛 ∈ ℕ0 ∧ 𝑦 ∈ (𝐹‘𝑛) ∧ (𝑦𝐵𝑛) ∈ 𝐾)} & ⊢ 𝐵 = (𝑧 ∈ 𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚)))) & ⊢ (𝜑 → 𝐷 ∈ (CMet‘𝑋)) & ⊢ (𝜑 → 𝐹:ℕ0⟶(𝒫 𝑋 ∩ Fin)) & ⊢ (𝜑 → ∀𝑛 ∈ ℕ0 𝑋 = ∪ 𝑦 ∈ (𝐹‘𝑛)(𝑦𝐵𝑛)) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐺 ((𝑇‘𝑥)𝐺((2nd ‘𝑥) + 1) ∧ ((𝐵‘𝑥) ∩ ((𝑇‘𝑥)𝐵((2nd ‘𝑥) + 1))) ∈ 𝐾)) & ⊢ (𝜑 → 𝐶𝐺0) & ⊢ 𝑆 = seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1)))) & ⊢ 𝑀 = (𝑛 ∈ ℕ ↦ 〈(𝑆‘𝑛), (3 / (2↑𝑛))〉) & ⊢ (𝜑 → 𝑈 ⊆ 𝐽) & ⊢ 𝑌 ∈ V & ⊢ (𝜑 → 𝑌 ∈ 𝑍) & ⊢ (𝜑 → 𝑍 ∈ 𝑈) & ⊢ (𝜑 → (1st ∘ 𝑀)(⇝𝑡‘𝐽)𝑌) ⇒ ⊢ (𝜑 → 𝜓) | ||
Theorem | heiborlem9 35904* | Lemma for heibor 35906. Discharge the hypotheses of heiborlem8 35903 by applying caubl 24377 to get a convergent point and adding the open cover assumption. (Contributed by Jeff Madsen, 20-Jan-2014.) |
⊢ 𝐽 = (MetOpen‘𝐷) & ⊢ 𝐾 = {𝑢 ∣ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 ⊆ ∪ 𝑣} & ⊢ 𝐺 = {〈𝑦, 𝑛〉 ∣ (𝑛 ∈ ℕ0 ∧ 𝑦 ∈ (𝐹‘𝑛) ∧ (𝑦𝐵𝑛) ∈ 𝐾)} & ⊢ 𝐵 = (𝑧 ∈ 𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚)))) & ⊢ (𝜑 → 𝐷 ∈ (CMet‘𝑋)) & ⊢ (𝜑 → 𝐹:ℕ0⟶(𝒫 𝑋 ∩ Fin)) & ⊢ (𝜑 → ∀𝑛 ∈ ℕ0 𝑋 = ∪ 𝑦 ∈ (𝐹‘𝑛)(𝑦𝐵𝑛)) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐺 ((𝑇‘𝑥)𝐺((2nd ‘𝑥) + 1) ∧ ((𝐵‘𝑥) ∩ ((𝑇‘𝑥)𝐵((2nd ‘𝑥) + 1))) ∈ 𝐾)) & ⊢ (𝜑 → 𝐶𝐺0) & ⊢ 𝑆 = seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1)))) & ⊢ 𝑀 = (𝑛 ∈ ℕ ↦ 〈(𝑆‘𝑛), (3 / (2↑𝑛))〉) & ⊢ (𝜑 → 𝑈 ⊆ 𝐽) & ⊢ (𝜑 → ∪ 𝑈 = 𝑋) ⇒ ⊢ (𝜑 → 𝜓) | ||
Theorem | heiborlem10 35905* | Lemma for heibor 35906. The last remaining piece of the proof is to find an element 𝐶 such that 𝐶𝐺0, i.e. 𝐶 is an element of (𝐹‘0) that has no finite subcover, which is true by heiborlem1 35896, since (𝐹‘0) is a finite cover of 𝑋, which has no finite subcover. Thus, the rest of the proof follows to a contradiction, and thus there must be a finite subcover of 𝑈 that covers 𝑋, i.e. 𝑋 is compact. (Contributed by Jeff Madsen, 22-Jan-2014.) |
⊢ 𝐽 = (MetOpen‘𝐷) & ⊢ 𝐾 = {𝑢 ∣ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 ⊆ ∪ 𝑣} & ⊢ 𝐺 = {〈𝑦, 𝑛〉 ∣ (𝑛 ∈ ℕ0 ∧ 𝑦 ∈ (𝐹‘𝑛) ∧ (𝑦𝐵𝑛) ∈ 𝐾)} & ⊢ 𝐵 = (𝑧 ∈ 𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚)))) & ⊢ (𝜑 → 𝐷 ∈ (CMet‘𝑋)) & ⊢ (𝜑 → 𝐹:ℕ0⟶(𝒫 𝑋 ∩ Fin)) & ⊢ (𝜑 → ∀𝑛 ∈ ℕ0 𝑋 = ∪ 𝑦 ∈ (𝐹‘𝑛)(𝑦𝐵𝑛)) ⇒ ⊢ ((𝜑 ∧ (𝑈 ⊆ 𝐽 ∧ ∪ 𝐽 = ∪ 𝑈)) → ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)∪ 𝐽 = ∪ 𝑣) | ||
Theorem | heibor 35906 | Generalized Heine-Borel Theorem. A metric space is compact iff it is complete and totally bounded. See heibor1 35895 and heiborlem1 35896 for a description of the proof. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 28-Jan-2014.) |
⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ↔ (𝐷 ∈ (CMet‘𝑋) ∧ 𝐷 ∈ (TotBnd‘𝑋))) | ||
Theorem | bfplem1 35907* | Lemma for bfp 35909. The sequence 𝐺, which simply starts from any point in the space and iterates 𝐹, satisfies the property that the distance from 𝐺(𝑛) to 𝐺(𝑛 + 1) decreases by at least 𝐾 after each step. Thus, the total distance from any 𝐺(𝑖) to 𝐺(𝑗) is bounded by a geometric series, and the sequence is Cauchy. Therefore, it converges to a point ((⇝𝑡‘𝐽)‘𝐺) since the space is complete. (Contributed by Jeff Madsen, 17-Jun-2014.) |
⊢ (𝜑 → 𝐷 ∈ (CMet‘𝑋)) & ⊢ (𝜑 → 𝑋 ≠ ∅) & ⊢ (𝜑 → 𝐾 ∈ ℝ+) & ⊢ (𝜑 → 𝐾 < 1) & ⊢ (𝜑 → 𝐹:𝑋⟶𝑋) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → ((𝐹‘𝑥)𝐷(𝐹‘𝑦)) ≤ (𝐾 · (𝑥𝐷𝑦))) & ⊢ 𝐽 = (MetOpen‘𝐷) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ 𝐺 = seq1((𝐹 ∘ 1st ), (ℕ × {𝐴})) ⇒ ⊢ (𝜑 → 𝐺(⇝𝑡‘𝐽)((⇝𝑡‘𝐽)‘𝐺)) | ||
Theorem | bfplem2 35908* | Lemma for bfp 35909. Using the point found in bfplem1 35907, we show that this convergent point is a fixed point of 𝐹. Since for any positive 𝑥, the sequence 𝐺 is in 𝐵(𝑥 / 2, 𝑃) for all 𝑘 ∈ (ℤ≥‘𝑗) (where 𝑃 = ((⇝𝑡‘𝐽)‘𝐺)), we have 𝐷(𝐺(𝑗 + 1), 𝐹(𝑃)) ≤ 𝐷(𝐺(𝑗), 𝑃) < 𝑥 / 2 and 𝐷(𝐺(𝑗 + 1), 𝑃) < 𝑥 / 2, so 𝐹(𝑃) is in every neighborhood of 𝑃 and 𝑃 is a fixed point of 𝐹. (Contributed by Jeff Madsen, 5-Jun-2014.) |
⊢ (𝜑 → 𝐷 ∈ (CMet‘𝑋)) & ⊢ (𝜑 → 𝑋 ≠ ∅) & ⊢ (𝜑 → 𝐾 ∈ ℝ+) & ⊢ (𝜑 → 𝐾 < 1) & ⊢ (𝜑 → 𝐹:𝑋⟶𝑋) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → ((𝐹‘𝑥)𝐷(𝐹‘𝑦)) ≤ (𝐾 · (𝑥𝐷𝑦))) & ⊢ 𝐽 = (MetOpen‘𝐷) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ 𝐺 = seq1((𝐹 ∘ 1st ), (ℕ × {𝐴})) ⇒ ⊢ (𝜑 → ∃𝑧 ∈ 𝑋 (𝐹‘𝑧) = 𝑧) | ||
Theorem | bfp 35909* | Banach fixed point theorem, also known as contraction mapping theorem. A contraction on a complete metric space has a unique fixed point. We show existence in the lemmas, and uniqueness here - if 𝐹 has two fixed points, then the distance between them is less than 𝐾 times itself, a contradiction. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 5-Jun-2014.) |
⊢ (𝜑 → 𝐷 ∈ (CMet‘𝑋)) & ⊢ (𝜑 → 𝑋 ≠ ∅) & ⊢ (𝜑 → 𝐾 ∈ ℝ+) & ⊢ (𝜑 → 𝐾 < 1) & ⊢ (𝜑 → 𝐹:𝑋⟶𝑋) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → ((𝐹‘𝑥)𝐷(𝐹‘𝑦)) ≤ (𝐾 · (𝑥𝐷𝑦))) ⇒ ⊢ (𝜑 → ∃!𝑧 ∈ 𝑋 (𝐹‘𝑧) = 𝑧) | ||
Syntax | crrn 35910 | Extend class notation with the n-dimensional Euclidean space. |
class ℝn | ||
Definition | df-rrn 35911* | Define n-dimensional Euclidean space as a metric space with the standard Euclidean norm given by the quadratic mean. (Contributed by Jeff Madsen, 2-Sep-2009.) |
⊢ ℝn = (𝑖 ∈ Fin ↦ (𝑥 ∈ (ℝ ↑m 𝑖), 𝑦 ∈ (ℝ ↑m 𝑖) ↦ (√‘Σ𝑘 ∈ 𝑖 (((𝑥‘𝑘) − (𝑦‘𝑘))↑2)))) | ||
Theorem | rrnval 35912* | The n-dimensional Euclidean space. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 13-Sep-2015.) |
⊢ 𝑋 = (ℝ ↑m 𝐼) ⇒ ⊢ (𝐼 ∈ Fin → (ℝn‘𝐼) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (√‘Σ𝑘 ∈ 𝐼 (((𝑥‘𝑘) − (𝑦‘𝑘))↑2)))) | ||
Theorem | rrnmval 35913* | The value of the Euclidean metric. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 13-Sep-2015.) |
⊢ 𝑋 = (ℝ ↑m 𝐼) ⇒ ⊢ ((𝐼 ∈ Fin ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) → (𝐹(ℝn‘𝐼)𝐺) = (√‘Σ𝑘 ∈ 𝐼 (((𝐹‘𝑘) − (𝐺‘𝑘))↑2))) | ||
Theorem | rrnmet 35914 | Euclidean space is a metric space. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 5-Jun-2014.) |
⊢ 𝑋 = (ℝ ↑m 𝐼) ⇒ ⊢ (𝐼 ∈ Fin → (ℝn‘𝐼) ∈ (Met‘𝑋)) | ||
Theorem | rrndstprj1 35915 | The distance between two points in Euclidean space is greater than the distance between the projections onto one coordinate. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 13-Sep-2015.) |
⊢ 𝑋 = (ℝ ↑m 𝐼) & ⊢ 𝑀 = ((abs ∘ − ) ↾ (ℝ × ℝ)) ⇒ ⊢ (((𝐼 ∈ Fin ∧ 𝐴 ∈ 𝐼) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) → ((𝐹‘𝐴)𝑀(𝐺‘𝐴)) ≤ (𝐹(ℝn‘𝐼)𝐺)) | ||
Theorem | rrndstprj2 35916* | Bound on the distance between two points in Euclidean space given bounds on the distances in each coordinate. This theorem and rrndstprj1 35915 can be used to show that the supremum norm and Euclidean norm are equivalent. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 13-Sep-2015.) |
⊢ 𝑋 = (ℝ ↑m 𝐼) & ⊢ 𝑀 = ((abs ∘ − ) ↾ (ℝ × ℝ)) ⇒ ⊢ (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛 ∈ 𝐼 ((𝐹‘𝑛)𝑀(𝐺‘𝑛)) < 𝑅)) → (𝐹(ℝn‘𝐼)𝐺) < (𝑅 · (√‘(♯‘𝐼)))) | ||
Theorem | rrncmslem 35917* | Lemma for rrncms 35918. (Contributed by Jeff Madsen, 6-Jun-2014.) (Revised by Mario Carneiro, 13-Sep-2015.) |
⊢ 𝑋 = (ℝ ↑m 𝐼) & ⊢ 𝑀 = ((abs ∘ − ) ↾ (ℝ × ℝ)) & ⊢ 𝐽 = (MetOpen‘(ℝn‘𝐼)) & ⊢ (𝜑 → 𝐼 ∈ Fin) & ⊢ (𝜑 → 𝐹 ∈ (Cau‘(ℝn‘𝐼))) & ⊢ (𝜑 → 𝐹:ℕ⟶𝑋) & ⊢ 𝑃 = (𝑚 ∈ 𝐼 ↦ ( ⇝ ‘(𝑡 ∈ ℕ ↦ ((𝐹‘𝑡)‘𝑚)))) ⇒ ⊢ (𝜑 → 𝐹 ∈ dom (⇝𝑡‘𝐽)) | ||
Theorem | rrncms 35918 | Euclidean space is complete. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 13-Sep-2015.) |
⊢ 𝑋 = (ℝ ↑m 𝐼) ⇒ ⊢ (𝐼 ∈ Fin → (ℝn‘𝐼) ∈ (CMet‘𝑋)) | ||
Theorem | repwsmet 35919 | The supremum metric on ℝ↑𝐼 is a metric. (Contributed by Jeff Madsen, 15-Sep-2015.) |
⊢ 𝑌 = ((ℂfld ↾s ℝ) ↑s 𝐼) & ⊢ 𝐷 = (dist‘𝑌) & ⊢ 𝑋 = (ℝ ↑m 𝐼) ⇒ ⊢ (𝐼 ∈ Fin → 𝐷 ∈ (Met‘𝑋)) | ||
Theorem | rrnequiv 35920 | The supremum metric on ℝ↑𝐼 is equivalent to the ℝn metric. (Contributed by Jeff Madsen, 15-Sep-2015.) |
⊢ 𝑌 = ((ℂfld ↾s ℝ) ↑s 𝐼) & ⊢ 𝐷 = (dist‘𝑌) & ⊢ 𝑋 = (ℝ ↑m 𝐼) & ⊢ (𝜑 → 𝐼 ∈ Fin) ⇒ ⊢ ((𝜑 ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) → ((𝐹𝐷𝐺) ≤ (𝐹(ℝn‘𝐼)𝐺) ∧ (𝐹(ℝn‘𝐼)𝐺) ≤ ((√‘(♯‘𝐼)) · (𝐹𝐷𝐺)))) | ||
Theorem | rrntotbnd 35921 | A set in Euclidean space is totally bounded iff its is bounded. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 16-Sep-2015.) |
⊢ 𝑋 = (ℝ ↑m 𝐼) & ⊢ 𝑀 = ((ℝn‘𝐼) ↾ (𝑌 × 𝑌)) ⇒ ⊢ (𝐼 ∈ Fin → (𝑀 ∈ (TotBnd‘𝑌) ↔ 𝑀 ∈ (Bnd‘𝑌))) | ||
Theorem | rrnheibor 35922 | Heine-Borel theorem for Euclidean space. A subset of Euclidean space is compact iff it is closed and bounded. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 22-Sep-2015.) |
⊢ 𝑋 = (ℝ ↑m 𝐼) & ⊢ 𝑀 = ((ℝn‘𝐼) ↾ (𝑌 × 𝑌)) & ⊢ 𝑇 = (MetOpen‘𝑀) & ⊢ 𝑈 = (MetOpen‘(ℝn‘𝐼)) ⇒ ⊢ ((𝐼 ∈ Fin ∧ 𝑌 ⊆ 𝑋) → (𝑇 ∈ Comp ↔ (𝑌 ∈ (Clsd‘𝑈) ∧ 𝑀 ∈ (Bnd‘𝑌)))) | ||
Theorem | ismrer1 35923* | An isometry between ℝ and ℝ↑1. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 22-Sep-2015.) |
⊢ 𝑅 = ((abs ∘ − ) ↾ (ℝ × ℝ)) & ⊢ 𝐹 = (𝑥 ∈ ℝ ↦ ({𝐴} × {𝑥})) ⇒ ⊢ (𝐴 ∈ 𝑉 → 𝐹 ∈ (𝑅 Ismty (ℝn‘{𝐴}))) | ||
Theorem | reheibor 35924 | Heine-Borel theorem for real numbers. A subset of ℝ is compact iff it is closed and bounded. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 22-Sep-2015.) |
⊢ 𝑀 = ((abs ∘ − ) ↾ (𝑌 × 𝑌)) & ⊢ 𝑇 = (MetOpen‘𝑀) & ⊢ 𝑈 = (topGen‘ran (,)) ⇒ ⊢ (𝑌 ⊆ ℝ → (𝑇 ∈ Comp ↔ (𝑌 ∈ (Clsd‘𝑈) ∧ 𝑀 ∈ (Bnd‘𝑌)))) | ||
Theorem | iccbnd 35925 | A closed interval in ℝ is bounded. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 22-Sep-2015.) |
⊢ 𝐽 = (𝐴[,]𝐵) & ⊢ 𝑀 = ((abs ∘ − ) ↾ (𝐽 × 𝐽)) ⇒ ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝑀 ∈ (Bnd‘𝐽)) | ||
Theorem | icccmpALT 35926 | A closed interval in ℝ is compact. Alternate proof of icccmp 23894 using the Heine-Borel theorem heibor 35906. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 14-Aug-2014.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝐽 = (𝐴[,]𝐵) & ⊢ 𝑀 = ((abs ∘ − ) ↾ (𝐽 × 𝐽)) & ⊢ 𝑇 = (MetOpen‘𝑀) ⇒ ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝑇 ∈ Comp) | ||
Syntax | cass 35927 | Extend class notation with a device to add associativity to internal operations. |
class Ass | ||
Definition | df-ass 35928* | A device to add associativity to various sorts of internal operations. The definition is meaningful when 𝑔 is a magma at least. (Contributed by FL, 1-Nov-2009.) (New usage is discouraged.) |
⊢ Ass = {𝑔 ∣ ∀𝑥 ∈ dom dom 𝑔∀𝑦 ∈ dom dom 𝑔∀𝑧 ∈ dom dom 𝑔((𝑥𝑔𝑦)𝑔𝑧) = (𝑥𝑔(𝑦𝑔𝑧))} | ||
Syntax | cexid 35929 | Extend class notation with the class of all the internal operations with an identity element. |
class ExId | ||
Definition | df-exid 35930* | A device to add an identity element to various sorts of internal operations. (Contributed by FL, 2-Nov-2009.) (New usage is discouraged.) |
⊢ ExId = {𝑔 ∣ ∃𝑥 ∈ dom dom 𝑔∀𝑦 ∈ dom dom 𝑔((𝑥𝑔𝑦) = 𝑦 ∧ (𝑦𝑔𝑥) = 𝑦)} | ||
Theorem | isass 35931* | The predicate "is an associative operation". (Contributed by FL, 1-Nov-2009.) (New usage is discouraged.) |
⊢ 𝑋 = dom dom 𝐺 ⇒ ⊢ (𝐺 ∈ 𝐴 → (𝐺 ∈ Ass ↔ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)))) | ||
Theorem | isexid 35932* | The predicate 𝐺 has a left and right identity element. (Contributed by FL, 2-Nov-2009.) (Revised by Mario Carneiro, 22-Dec-2013.) (New usage is discouraged.) |
⊢ 𝑋 = dom dom 𝐺 ⇒ ⊢ (𝐺 ∈ 𝐴 → (𝐺 ∈ ExId ↔ ∃𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦))) | ||
Syntax | cmagm 35933 | Extend class notation with the class of all magmas. |
class Magma | ||
Definition | df-mgmOLD 35934* | Obsolete version of df-mgm 18241 as of 3-Feb-2020. A magma is a binary internal operation. (Contributed by FL, 2-Nov-2009.) (New usage is discouraged.) |
⊢ Magma = {𝑔 ∣ ∃𝑡 𝑔:(𝑡 × 𝑡)⟶𝑡} | ||
Theorem | ismgmOLD 35935 | Obsolete version of ismgm 18242 as of 3-Feb-2020. The predicate "is a magma". (Contributed by FL, 2-Nov-2009.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝑋 = dom dom 𝐺 ⇒ ⊢ (𝐺 ∈ 𝐴 → (𝐺 ∈ Magma ↔ 𝐺:(𝑋 × 𝑋)⟶𝑋)) | ||
Theorem | clmgmOLD 35936 | Obsolete version of mgmcl 18244 as of 3-Feb-2020. Closure of a magma. (Contributed by FL, 14-Sep-2010.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝑋 = dom dom 𝐺 ⇒ ⊢ ((𝐺 ∈ Magma ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐺𝐵) ∈ 𝑋) | ||
Theorem | opidonOLD 35937 | Obsolete version of mndpfo 18323 as of 23-Jan-2020. An operation with a left and right identity element is onto. (Contributed by FL, 2-Nov-2009.) (Revised by Mario Carneiro, 22-Dec-2013.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝑋 = dom dom 𝐺 ⇒ ⊢ (𝐺 ∈ (Magma ∩ ExId ) → 𝐺:(𝑋 × 𝑋)–onto→𝑋) | ||
Theorem | rngopidOLD 35938 | Obsolete version of mndpfo 18323 as of 23-Jan-2020. Range of an operation with a left and right identity element. (Contributed by FL, 2-Nov-2009.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ (𝐺 ∈ (Magma ∩ ExId ) → ran 𝐺 = dom dom 𝐺) | ||
Theorem | opidon2OLD 35939 | Obsolete version of mndpfo 18323 as of 23-Jan-2020. An operation with a left and right identity element is onto. (Contributed by FL, 2-Nov-2009.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝑋 = ran 𝐺 ⇒ ⊢ (𝐺 ∈ (Magma ∩ ExId ) → 𝐺:(𝑋 × 𝑋)–onto→𝑋) | ||
Theorem | isexid2 35940* | If 𝐺 ∈ (Magma ∩ ExId ), then it has a left and right identity element that belongs to the range of the operation. (Contributed by FL, 12-Dec-2009.) (Revised by Mario Carneiro, 22-Dec-2013.) (New usage is discouraged.) |
⊢ 𝑋 = ran 𝐺 ⇒ ⊢ (𝐺 ∈ (Magma ∩ ExId ) → ∃𝑢 ∈ 𝑋 ∀𝑥 ∈ 𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)) | ||
Theorem | exidu1 35941* | Uniqueness of the left and right identity element of a magma when it exists. (Contributed by FL, 12-Dec-2009.) (Revised by Mario Carneiro, 22-Dec-2013.) (New usage is discouraged.) |
⊢ 𝑋 = ran 𝐺 ⇒ ⊢ (𝐺 ∈ (Magma ∩ ExId ) → ∃!𝑢 ∈ 𝑋 ∀𝑥 ∈ 𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)) | ||
Theorem | idrval 35942* | The value of the identity element. (Contributed by FL, 12-Dec-2009.) (Revised by Mario Carneiro, 22-Dec-2013.) (New usage is discouraged.) |
⊢ 𝑋 = ran 𝐺 & ⊢ 𝑈 = (GId‘𝐺) ⇒ ⊢ (𝐺 ∈ 𝐴 → 𝑈 = (℩𝑢 ∈ 𝑋 ∀𝑥 ∈ 𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥))) | ||
Theorem | iorlid 35943 | A magma right and left identity belongs to the underlying set of the operation. (Contributed by FL, 12-Dec-2009.) (Revised by Mario Carneiro, 22-Dec-2013.) (New usage is discouraged.) |
⊢ 𝑋 = ran 𝐺 & ⊢ 𝑈 = (GId‘𝐺) ⇒ ⊢ (𝐺 ∈ (Magma ∩ ExId ) → 𝑈 ∈ 𝑋) | ||
Theorem | cmpidelt 35944 | A magma right and left identity element keeps the other elements unchanged. (Contributed by FL, 12-Dec-2009.) (Revised by Mario Carneiro, 22-Dec-2013.) (New usage is discouraged.) |
⊢ 𝑋 = ran 𝐺 & ⊢ 𝑈 = (GId‘𝐺) ⇒ ⊢ ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝐴 ∈ 𝑋) → ((𝑈𝐺𝐴) = 𝐴 ∧ (𝐴𝐺𝑈) = 𝐴)) | ||
Syntax | csem 35945 | Extend class notation with the class of all semigroups. |
class SemiGrp | ||
Definition | df-sgrOLD 35946 | Obsolete version of df-sgrp 18290 as of 3-Feb-2020. A semigroup is an associative magma. (Contributed by FL, 2-Nov-2009.) (New usage is discouraged.) |
⊢ SemiGrp = (Magma ∩ Ass) | ||
Theorem | smgrpismgmOLD 35947 | Obsolete version of sgrpmgm 18295 as of 3-Feb-2020. A semigroup is a magma. (Contributed by FL, 2-Nov-2009.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ (𝐺 ∈ SemiGrp → 𝐺 ∈ Magma) | ||
Theorem | issmgrpOLD 35948* | Obsolete version of issgrp 18291 as of 3-Feb-2020. The predicate "is a semigroup". (Contributed by FL, 2-Nov-2009.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝑋 = dom dom 𝐺 ⇒ ⊢ (𝐺 ∈ 𝐴 → (𝐺 ∈ SemiGrp ↔ (𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧))))) | ||
Theorem | smgrpmgm 35949 | A semigroup is a magma. (Contributed by FL, 2-Nov-2009.) (New usage is discouraged.) |
⊢ 𝑋 = dom dom 𝐺 ⇒ ⊢ (𝐺 ∈ SemiGrp → 𝐺:(𝑋 × 𝑋)⟶𝑋) | ||
Theorem | smgrpassOLD 35950* | Obsolete version of sgrpass 18296 as of 3-Feb-2020. A semigroup is associative. (Contributed by FL, 2-Nov-2009.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝑋 = dom dom 𝐺 ⇒ ⊢ (𝐺 ∈ SemiGrp → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧))) | ||
Syntax | cmndo 35951 | Extend class notation with the class of all monoids. |
class MndOp | ||
Definition | df-mndo 35952 | A monoid is a semigroup with an identity element. (Contributed by FL, 2-Nov-2009.) (New usage is discouraged.) |
⊢ MndOp = (SemiGrp ∩ ExId ) | ||
Theorem | mndoissmgrpOLD 35953 | Obsolete version of mndsgrp 18306 as of 3-Feb-2020. A monoid is a semigroup. (Contributed by FL, 2-Nov-2009.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ (𝐺 ∈ MndOp → 𝐺 ∈ SemiGrp) | ||
Theorem | mndoisexid 35954 | A monoid has an identity element. (Contributed by FL, 2-Nov-2009.) (New usage is discouraged.) |
⊢ (𝐺 ∈ MndOp → 𝐺 ∈ ExId ) | ||
Theorem | mndoismgmOLD 35955 | Obsolete version of mndmgm 18307 as of 3-Feb-2020. A monoid is a magma. (Contributed by FL, 2-Nov-2009.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ (𝐺 ∈ MndOp → 𝐺 ∈ Magma) | ||
Theorem | mndomgmid 35956 | A monoid is a magma with an identity element. (Contributed by FL, 18-Feb-2010.) (New usage is discouraged.) |
⊢ (𝐺 ∈ MndOp → 𝐺 ∈ (Magma ∩ ExId )) | ||
Theorem | ismndo 35957* | The predicate "is a monoid". (Contributed by FL, 2-Nov-2009.) (Revised by Mario Carneiro, 22-Dec-2013.) (New usage is discouraged.) |
⊢ 𝑋 = dom dom 𝐺 ⇒ ⊢ (𝐺 ∈ 𝐴 → (𝐺 ∈ MndOp ↔ (𝐺 ∈ SemiGrp ∧ ∃𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦)))) | ||
Theorem | ismndo1 35958* | The predicate "is a monoid". (Contributed by FL, 2-Nov-2009.) (Revised by Mario Carneiro, 22-Dec-2013.) (New usage is discouraged.) |
⊢ 𝑋 = dom dom 𝐺 ⇒ ⊢ (𝐺 ∈ 𝐴 → (𝐺 ∈ MndOp ↔ (𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ∧ ∃𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦)))) | ||
Theorem | ismndo2 35959* | The predicate "is a monoid". (Contributed by FL, 2-Nov-2009.) (Revised by Mario Carneiro, 22-Dec-2013.) (New usage is discouraged.) |
⊢ 𝑋 = ran 𝐺 ⇒ ⊢ (𝐺 ∈ 𝐴 → (𝐺 ∈ MndOp ↔ (𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ∧ ∃𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦)))) | ||
Theorem | grpomndo 35960 | A group is a monoid. (Contributed by FL, 2-Nov-2009.) (Revised by Mario Carneiro, 22-Dec-2013.) (New usage is discouraged.) |
⊢ (𝐺 ∈ GrpOp → 𝐺 ∈ MndOp) | ||
Theorem | exidcl 35961 | Closure of the binary operation of a magma with identity. (Contributed by Jeff Madsen, 16-Jun-2011.) |
⊢ 𝑋 = ran 𝐺 ⇒ ⊢ ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐺𝐵) ∈ 𝑋) | ||
Theorem | exidreslem 35962* | Lemma for exidres 35963 and exidresid 35964. (Contributed by Jeff Madsen, 8-Jun-2010.) (Revised by Mario Carneiro, 23-Dec-2013.) |
⊢ 𝑋 = ran 𝐺 & ⊢ 𝑈 = (GId‘𝐺) & ⊢ 𝐻 = (𝐺 ↾ (𝑌 × 𝑌)) ⇒ ⊢ ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌 ⊆ 𝑋 ∧ 𝑈 ∈ 𝑌) → (𝑈 ∈ dom dom 𝐻 ∧ ∀𝑥 ∈ dom dom 𝐻((𝑈𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑈) = 𝑥))) | ||
Theorem | exidres 35963 | The restriction of a binary operation with identity to a subset containing the identity has an identity element. (Contributed by Jeff Madsen, 8-Jun-2010.) (Revised by Mario Carneiro, 23-Dec-2013.) |
⊢ 𝑋 = ran 𝐺 & ⊢ 𝑈 = (GId‘𝐺) & ⊢ 𝐻 = (𝐺 ↾ (𝑌 × 𝑌)) ⇒ ⊢ ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌 ⊆ 𝑋 ∧ 𝑈 ∈ 𝑌) → 𝐻 ∈ ExId ) | ||
Theorem | exidresid 35964 | The restriction of a binary operation with identity to a subset containing the identity has the same identity element. (Contributed by Jeff Madsen, 8-Jun-2010.) (Revised by Mario Carneiro, 23-Dec-2013.) |
⊢ 𝑋 = ran 𝐺 & ⊢ 𝑈 = (GId‘𝐺) & ⊢ 𝐻 = (𝐺 ↾ (𝑌 × 𝑌)) ⇒ ⊢ (((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌 ⊆ 𝑋 ∧ 𝑈 ∈ 𝑌) ∧ 𝐻 ∈ Magma) → (GId‘𝐻) = 𝑈) | ||
Theorem | ablo4pnp 35965 | A commutative/associative law for Abelian groups. (Contributed by Jeff Madsen, 11-Jun-2010.) |
⊢ 𝑋 = ran 𝐺 & ⊢ 𝐷 = ( /𝑔 ‘𝐺) ⇒ ⊢ ((𝐺 ∈ AbelOp ∧ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐶 ∈ 𝑋 ∧ 𝐹 ∈ 𝑋))) → ((𝐴𝐺𝐵)𝐷(𝐶𝐺𝐹)) = ((𝐴𝐷𝐶)𝐺(𝐵𝐷𝐹))) | ||
Theorem | grpoeqdivid 35966 | Two group elements are equal iff their quotient is the identity. (Contributed by Jeff Madsen, 6-Jan-2011.) |
⊢ 𝑋 = ran 𝐺 & ⊢ 𝑈 = (GId‘𝐺) & ⊢ 𝐷 = ( /𝑔 ‘𝐺) ⇒ ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴 = 𝐵 ↔ (𝐴𝐷𝐵) = 𝑈)) | ||
Theorem | grposnOLD 35967 | The group operation for the singleton group. Obsolete, use grp1 18597. instead. (Contributed by NM, 4-Nov-2006.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝐴 ∈ V ⇒ ⊢ {〈〈𝐴, 𝐴〉, 𝐴〉} ∈ GrpOp | ||
Syntax | cghomOLD 35968 | Obsolete version of cghm 18746 as of 15-Mar-2020. Extend class notation to include the class of group homomorphisms. (New usage is discouraged.) |
class GrpOpHom | ||
Definition | df-ghomOLD 35969* | Obsolete version of df-ghm 18747 as of 15-Mar-2020. Define the set of group homomorphisms from 𝑔 to ℎ. (Contributed by Paul Chapman, 25-Feb-2008.) (New usage is discouraged.) |
⊢ GrpOpHom = (𝑔 ∈ GrpOp, ℎ ∈ GrpOp ↦ {𝑓 ∣ (𝑓:ran 𝑔⟶ran ℎ ∧ ∀𝑥 ∈ ran 𝑔∀𝑦 ∈ ran 𝑔((𝑓‘𝑥)ℎ(𝑓‘𝑦)) = (𝑓‘(𝑥𝑔𝑦)))}) | ||
Theorem | elghomlem1OLD 35970* | Obsolete as of 15-Mar-2020. Lemma for elghomOLD 35972. (Contributed by Paul Chapman, 25-Feb-2008.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝑆 = {𝑓 ∣ (𝑓:ran 𝐺⟶ran 𝐻 ∧ ∀𝑥 ∈ ran 𝐺∀𝑦 ∈ ran 𝐺((𝑓‘𝑥)𝐻(𝑓‘𝑦)) = (𝑓‘(𝑥𝐺𝑦)))} ⇒ ⊢ ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp) → (𝐺 GrpOpHom 𝐻) = 𝑆) | ||
Theorem | elghomlem2OLD 35971* | Obsolete as of 15-Mar-2020. Lemma for elghomOLD 35972. (Contributed by Paul Chapman, 25-Feb-2008.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝑆 = {𝑓 ∣ (𝑓:ran 𝐺⟶ran 𝐻 ∧ ∀𝑥 ∈ ran 𝐺∀𝑦 ∈ ran 𝐺((𝑓‘𝑥)𝐻(𝑓‘𝑦)) = (𝑓‘(𝑥𝐺𝑦)))} ⇒ ⊢ ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp) → (𝐹 ∈ (𝐺 GrpOpHom 𝐻) ↔ (𝐹:ran 𝐺⟶ran 𝐻 ∧ ∀𝑥 ∈ ran 𝐺∀𝑦 ∈ ran 𝐺((𝐹‘𝑥)𝐻(𝐹‘𝑦)) = (𝐹‘(𝑥𝐺𝑦))))) | ||
Theorem | elghomOLD 35972* | Obsolete version of isghm 18749 as of 15-Mar-2020. Membership in the set of group homomorphisms from 𝐺 to 𝐻. (Contributed by Paul Chapman, 3-Mar-2008.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝑋 = ran 𝐺 & ⊢ 𝑊 = ran 𝐻 ⇒ ⊢ ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp) → (𝐹 ∈ (𝐺 GrpOpHom 𝐻) ↔ (𝐹:𝑋⟶𝑊 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝐹‘𝑥)𝐻(𝐹‘𝑦)) = (𝐹‘(𝑥𝐺𝑦))))) | ||
Theorem | ghomlinOLD 35973 | Obsolete version of ghmlin 18754 as of 15-Mar-2020. Linearity of a group homomorphism. (Contributed by Paul Chapman, 3-Mar-2008.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝑋 = ran 𝐺 ⇒ ⊢ (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → ((𝐹‘𝐴)𝐻(𝐹‘𝐵)) = (𝐹‘(𝐴𝐺𝐵))) | ||
Theorem | ghomidOLD 35974 | Obsolete version of ghmid 18755 as of 15-Mar-2020. A group homomorphism maps identity element to identity element. (Contributed by Paul Chapman, 3-Mar-2008.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝑈 = (GId‘𝐺) & ⊢ 𝑇 = (GId‘𝐻) ⇒ ⊢ ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → (𝐹‘𝑈) = 𝑇) | ||
Theorem | ghomf 35975 | Mapping property of a group homomorphism. (Contributed by Jeff Madsen, 1-Dec-2009.) |
⊢ 𝑋 = ran 𝐺 & ⊢ 𝑊 = ran 𝐻 ⇒ ⊢ ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → 𝐹:𝑋⟶𝑊) | ||
Theorem | ghomco 35976 | The composition of two group homomorphisms is a group homomorphism. (Contributed by Jeff Madsen, 1-Dec-2009.) (Revised by Mario Carneiro, 27-Dec-2014.) |
⊢ (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐾 ∈ GrpOp) ∧ (𝑆 ∈ (𝐺 GrpOpHom 𝐻) ∧ 𝑇 ∈ (𝐻 GrpOpHom 𝐾))) → (𝑇 ∘ 𝑆) ∈ (𝐺 GrpOpHom 𝐾)) | ||
Theorem | ghomdiv 35977 | Group homomorphisms preserve division. (Contributed by Jeff Madsen, 16-Jun-2011.) |
⊢ 𝑋 = ran 𝐺 & ⊢ 𝐷 = ( /𝑔 ‘𝐺) & ⊢ 𝐶 = ( /𝑔 ‘𝐻) ⇒ ⊢ (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐹‘(𝐴𝐷𝐵)) = ((𝐹‘𝐴)𝐶(𝐹‘𝐵))) | ||
Theorem | grpokerinj 35978 | A group homomorphism is injective if and only if its kernel is zero. (Contributed by Jeff Madsen, 16-Jun-2011.) |
⊢ 𝑋 = ran 𝐺 & ⊢ 𝑊 = (GId‘𝐺) & ⊢ 𝑌 = ran 𝐻 & ⊢ 𝑈 = (GId‘𝐻) ⇒ ⊢ ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → (𝐹:𝑋–1-1→𝑌 ↔ (◡𝐹 “ {𝑈}) = {𝑊})) | ||
Syntax | crngo 35979 | Extend class notation with the class of all unital rings. |
class RingOps | ||
Definition | df-rngo 35980* | Define the class of all unital rings. (Contributed by Jeff Hankins, 21-Nov-2006.) (New usage is discouraged.) |
⊢ RingOps = {〈𝑔, ℎ〉 ∣ ((𝑔 ∈ AbelOp ∧ ℎ:(ran 𝑔 × ran 𝑔)⟶ran 𝑔) ∧ (∀𝑥 ∈ ran 𝑔∀𝑦 ∈ ran 𝑔∀𝑧 ∈ ran 𝑔(((𝑥ℎ𝑦)ℎ𝑧) = (𝑥ℎ(𝑦ℎ𝑧)) ∧ (𝑥ℎ(𝑦𝑔𝑧)) = ((𝑥ℎ𝑦)𝑔(𝑥ℎ𝑧)) ∧ ((𝑥𝑔𝑦)ℎ𝑧) = ((𝑥ℎ𝑧)𝑔(𝑦ℎ𝑧))) ∧ ∃𝑥 ∈ ran 𝑔∀𝑦 ∈ ran 𝑔((𝑥ℎ𝑦) = 𝑦 ∧ (𝑦ℎ𝑥) = 𝑦)))} | ||
Theorem | relrngo 35981 | The class of all unital rings is a relation. (Contributed by FL, 31-Aug-2009.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.) |
⊢ Rel RingOps | ||
Theorem | isrngo 35982* | The predicate "is a (unital) ring." Definition of ring with unit in [Schechter] p. 187. (Contributed by Jeff Hankins, 21-Nov-2006.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.) |
⊢ 𝑋 = ran 𝐺 ⇒ ⊢ (𝐻 ∈ 𝐴 → (〈𝐺, 𝐻〉 ∈ RingOps ↔ ((𝐺 ∈ AbelOp ∧ 𝐻:(𝑋 × 𝑋)⟶𝑋) ∧ (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 (((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ (𝑥𝐻(𝑦𝐺𝑧)) = ((𝑥𝐻𝑦)𝐺(𝑥𝐻𝑧)) ∧ ((𝑥𝐺𝑦)𝐻𝑧) = ((𝑥𝐻𝑧)𝐺(𝑦𝐻𝑧))) ∧ ∃𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦))))) | ||
Theorem | isrngod 35983* | Conditions that determine a ring. (Changed label from isringd 19739 to isrngod 35983-NM 2-Aug-2013.) (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.) |
⊢ (𝜑 → 𝐺 ∈ AbelOp) & ⊢ (𝜑 → 𝑋 = ran 𝐺) & ⊢ (𝜑 → 𝐻:(𝑋 × 𝑋)⟶𝑋) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → ((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧))) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑥𝐻(𝑦𝐺𝑧)) = ((𝑥𝐻𝑦)𝐺(𝑥𝐻𝑧))) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → ((𝑥𝐺𝑦)𝐻𝑧) = ((𝑥𝐻𝑧)𝐺(𝑦𝐻𝑧))) & ⊢ (𝜑 → 𝑈 ∈ 𝑋) & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑋) → (𝑈𝐻𝑦) = 𝑦) & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑋) → (𝑦𝐻𝑈) = 𝑦) ⇒ ⊢ (𝜑 → 〈𝐺, 𝐻〉 ∈ RingOps) | ||
Theorem | rngoi 35984* | The properties of a unital ring. (Contributed by Steve Rodriguez, 8-Sep-2007.) (Proof shortened by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝐻 = (2nd ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ (𝑅 ∈ RingOps → ((𝐺 ∈ AbelOp ∧ 𝐻:(𝑋 × 𝑋)⟶𝑋) ∧ (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 (((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ (𝑥𝐻(𝑦𝐺𝑧)) = ((𝑥𝐻𝑦)𝐺(𝑥𝐻𝑧)) ∧ ((𝑥𝐺𝑦)𝐻𝑧) = ((𝑥𝐻𝑧)𝐺(𝑦𝐻𝑧))) ∧ ∃𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦)))) | ||
Theorem | rngosm 35985 | Functionality of the multiplication operation of a ring. (Contributed by Steve Rodriguez, 9-Sep-2007.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝐻 = (2nd ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ (𝑅 ∈ RingOps → 𝐻:(𝑋 × 𝑋)⟶𝑋) | ||
Theorem | rngocl 35986 | Closure of the multiplication operation of a ring. (Contributed by Steve Rodriguez, 9-Sep-2007.) (New usage is discouraged.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝐻 = (2nd ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐻𝐵) ∈ 𝑋) | ||
Theorem | rngoid 35987* | The multiplication operation of a unital ring has (one or more) identity elements. (Contributed by Steve Rodriguez, 9-Sep-2007.) (Revised by Mario Carneiro, 22-Dec-2013.) (New usage is discouraged.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝐻 = (2nd ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → ∃𝑢 ∈ 𝑋 ((𝑢𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑢) = 𝐴)) | ||
Theorem | rngoideu 35988* | The unit element of a ring is unique. (Contributed by NM, 4-Apr-2009.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝐻 = (2nd ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ (𝑅 ∈ RingOps → ∃!𝑢 ∈ 𝑋 ∀𝑥 ∈ 𝑋 ((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥)) | ||
Theorem | rngodi 35989 | Distributive law for the multiplication operation of a ring (left-distributivity). (Contributed by Steve Rodriguez, 9-Sep-2007.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝐻 = (2nd ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ ((𝑅 ∈ RingOps ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝐻(𝐵𝐺𝐶)) = ((𝐴𝐻𝐵)𝐺(𝐴𝐻𝐶))) | ||
Theorem | rngodir 35990 | Distributive law for the multiplication operation of a ring (right-distributivity). (Contributed by Steve Rodriguez, 9-Sep-2007.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝐻 = (2nd ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ ((𝑅 ∈ RingOps ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝐺𝐵)𝐻𝐶) = ((𝐴𝐻𝐶)𝐺(𝐵𝐻𝐶))) | ||
Theorem | rngoass 35991 | Associative law for the multiplication operation of a ring. (Contributed by Steve Rodriguez, 9-Sep-2007.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝐻 = (2nd ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ ((𝑅 ∈ RingOps ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝐻𝐵)𝐻𝐶) = (𝐴𝐻(𝐵𝐻𝐶))) | ||
Theorem | rngo2 35992* | A ring element plus itself is two times the element. (Contributed by Steve Rodriguez, 9-Sep-2007.) (Revised by Mario Carneiro, 22-Dec-2013.) (New usage is discouraged.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝐻 = (2nd ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → ∃𝑥 ∈ 𝑋 (𝐴𝐺𝐴) = ((𝑥𝐺𝑥)𝐻𝐴)) | ||
Theorem | rngoablo 35993 | A ring's addition operation is an Abelian group operation. (Contributed by Steve Rodriguez, 9-Sep-2007.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.) |
⊢ 𝐺 = (1st ‘𝑅) ⇒ ⊢ (𝑅 ∈ RingOps → 𝐺 ∈ AbelOp) | ||
Theorem | rngoablo2 35994 | In a unital ring the addition is an abelian group. (Contributed by FL, 31-Aug-2009.) (New usage is discouraged.) |
⊢ (〈𝐺, 𝐻〉 ∈ RingOps → 𝐺 ∈ AbelOp) | ||
Theorem | rngogrpo 35995 | A ring's addition operation is a group operation. (Contributed by Steve Rodriguez, 9-Sep-2007.) (New usage is discouraged.) |
⊢ 𝐺 = (1st ‘𝑅) ⇒ ⊢ (𝑅 ∈ RingOps → 𝐺 ∈ GrpOp) | ||
Theorem | rngone0 35996 | The base set of a ring is not empty. (Contributed by FL, 24-Jan-2010.) (New usage is discouraged.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ (𝑅 ∈ RingOps → 𝑋 ≠ ∅) | ||
Theorem | rngogcl 35997 | Closure law for the addition (group) operation of a ring. (Contributed by Steve Rodriguez, 9-Sep-2007.) (New usage is discouraged.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐺𝐵) ∈ 𝑋) | ||
Theorem | rngocom 35998 | The addition operation of a ring is commutative. (Contributed by Steve Rodriguez, 9-Sep-2007.) (New usage is discouraged.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐺𝐵) = (𝐵𝐺𝐴)) | ||
Theorem | rngoaass 35999 | The addition operation of a ring is associative. (Contributed by Steve Rodriguez, 9-Sep-2007.) (New usage is discouraged.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ ((𝑅 ∈ RingOps ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝐺𝐵)𝐺𝐶) = (𝐴𝐺(𝐵𝐺𝐶))) | ||
Theorem | rngoa32 36000 | The addition operation of a ring is commutative. (Contributed by Steve Rodriguez, 9-Sep-2007.) (New usage is discouraged.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ ((𝑅 ∈ RingOps ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝐺𝐵)𝐺𝐶) = ((𝐴𝐺𝐶)𝐺𝐵)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |