| Metamath
Proof Explorer Theorem List (p. 360 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30847) |
(30848-32370) |
(32371-49794) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | sscoid 35901 | A condition for subset and composition with identity. (Contributed by Scott Fenton, 13-Apr-2018.) |
| ⊢ (𝐴 ⊆ ( I ∘ 𝐵) ↔ (Rel 𝐴 ∧ 𝐴 ⊆ 𝐵)) | ||
| Theorem | dffun10 35902 | Another potential definition of functionality. Based on statements in http://people.math.gatech.edu/~belinfan/research/autoreas/otter/sum/fs/. (Contributed by Scott Fenton, 30-Aug-2017.) |
| ⊢ (Fun 𝐹 ↔ 𝐹 ⊆ ( I ∘ (V ∖ ((V ∖ I ) ∘ 𝐹)))) | ||
| Theorem | elfuns 35903 | Membership in the class of all functions. (Contributed by Scott Fenton, 18-Feb-2013.) |
| ⊢ 𝐹 ∈ V ⇒ ⊢ (𝐹 ∈ Funs ↔ Fun 𝐹) | ||
| Theorem | elfunsg 35904 | Closed form of elfuns 35903. (Contributed by Scott Fenton, 2-May-2014.) |
| ⊢ (𝐹 ∈ 𝑉 → (𝐹 ∈ Funs ↔ Fun 𝐹)) | ||
| Theorem | brsingle 35905 | The binary relation form of the singleton function. (Contributed by Scott Fenton, 4-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴Singleton𝐵 ↔ 𝐵 = {𝐴}) | ||
| Theorem | elsingles 35906* | Membership in the class of all singletons. (Contributed by Scott Fenton, 19-Feb-2013.) |
| ⊢ (𝐴 ∈ Singletons ↔ ∃𝑥 𝐴 = {𝑥}) | ||
| Theorem | fnsingle 35907 | The singleton relationship is a function over the universe. (Contributed by Scott Fenton, 4-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ Singleton Fn V | ||
| Theorem | fvsingle 35908 | The value of the singleton function. (Contributed by Scott Fenton, 4-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) (Revised by Scott Fenton, 13-Apr-2018.) |
| ⊢ (Singleton‘𝐴) = {𝐴} | ||
| Theorem | dfsingles2 35909* | Alternate definition of the class of all singletons. (Contributed by Scott Fenton, 20-Nov-2013.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ Singletons = {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} | ||
| Theorem | snelsingles 35910 | A singleton is a member of the class of all singletons. (Contributed by Scott Fenton, 19-Feb-2013.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ {𝐴} ∈ Singletons | ||
| Theorem | dfiota3 35911 | A definition of iota using minimal quantifiers. (Contributed by Scott Fenton, 19-Feb-2013.) |
| ⊢ (℩𝑥𝜑) = ∪ ∪ ({{𝑥 ∣ 𝜑}} ∩ Singletons ) | ||
| Theorem | dffv5 35912 | Another quantifier-free definition of function value. (Contributed by Scott Fenton, 19-Feb-2013.) |
| ⊢ (𝐹‘𝐴) = ∪ ∪ ({(𝐹 “ {𝐴})} ∩ Singletons ) | ||
| Theorem | unisnif 35913 | Express union of singleton in terms of if. (Contributed by Scott Fenton, 27-Mar-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ ∪ {𝐴} = if(𝐴 ∈ V, 𝐴, ∅) | ||
| Theorem | brimage 35914 | Binary relation form of the Image functor. (Contributed by Scott Fenton, 4-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴Image𝑅𝐵 ↔ 𝐵 = (𝑅 “ 𝐴)) | ||
| Theorem | brimageg 35915 | Closed form of brimage 35914. (Contributed by Scott Fenton, 4-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴Image𝑅𝐵 ↔ 𝐵 = (𝑅 “ 𝐴))) | ||
| Theorem | funimage 35916 | Image𝐴 is a function. (Contributed by Scott Fenton, 27-Mar-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ Fun Image𝐴 | ||
| Theorem | fnimage 35917* | Image𝑅 is a function over the set-like portion of 𝑅. (Contributed by Scott Fenton, 4-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ Image𝑅 Fn {𝑥 ∣ (𝑅 “ 𝑥) ∈ V} | ||
| Theorem | imageval 35918* | The image functor in maps-to notation. (Contributed by Scott Fenton, 4-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ Image𝑅 = (𝑥 ∈ V ↦ (𝑅 “ 𝑥)) | ||
| Theorem | fvimage 35919 | Value of the image functor. (Contributed by Scott Fenton, 4-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ (𝑅 “ 𝐴) ∈ 𝑊) → (Image𝑅‘𝐴) = (𝑅 “ 𝐴)) | ||
| Theorem | brcart 35920 | Binary relation form of the cartesian product operator. (Contributed by Scott Fenton, 11-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V ⇒ ⊢ (〈𝐴, 𝐵〉Cart𝐶 ↔ 𝐶 = (𝐴 × 𝐵)) | ||
| Theorem | brdomain 35921 | Binary relation form of the domain function. (Contributed by Scott Fenton, 11-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴Domain𝐵 ↔ 𝐵 = dom 𝐴) | ||
| Theorem | brrange 35922 | Binary relation form of the range function. (Contributed by Scott Fenton, 11-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴Range𝐵 ↔ 𝐵 = ran 𝐴) | ||
| Theorem | brdomaing 35923 | Closed form of brdomain 35921. (Contributed by Scott Fenton, 2-May-2014.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴Domain𝐵 ↔ 𝐵 = dom 𝐴)) | ||
| Theorem | brrangeg 35924 | Closed form of brrange 35922. (Contributed by Scott Fenton, 3-May-2014.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴Range𝐵 ↔ 𝐵 = ran 𝐴)) | ||
| Theorem | brimg 35925 | Binary relation form of the Img function. (Contributed by Scott Fenton, 12-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) (Proof shortened by Peter Mazsa, 2-Oct-2022.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V ⇒ ⊢ (〈𝐴, 𝐵〉Img𝐶 ↔ 𝐶 = (𝐴 “ 𝐵)) | ||
| Theorem | brapply 35926 | Binary relation form of the Apply function. (Contributed by Scott Fenton, 12-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) (Proof shortened by Peter Mazsa, 2-Oct-2022.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V ⇒ ⊢ (〈𝐴, 𝐵〉Apply𝐶 ↔ 𝐶 = (𝐴‘𝐵)) | ||
| Theorem | brcup 35927 | Binary relation form of the Cup function. (Contributed by Scott Fenton, 14-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V ⇒ ⊢ (〈𝐴, 𝐵〉Cup𝐶 ↔ 𝐶 = (𝐴 ∪ 𝐵)) | ||
| Theorem | brcap 35928 | Binary relation form of the Cap function. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V ⇒ ⊢ (〈𝐴, 𝐵〉Cap𝐶 ↔ 𝐶 = (𝐴 ∩ 𝐵)) | ||
| Theorem | brsuccf 35929 | Binary relation form of the Succ function. (Contributed by Scott Fenton, 14-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴Succ𝐵 ↔ 𝐵 = suc 𝐴) | ||
| Theorem | funpartlem 35930* | Lemma for funpartfun 35931. Show membership in the restriction. (Contributed by Scott Fenton, 4-Dec-2017.) |
| ⊢ (𝐴 ∈ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )) ↔ ∃𝑥(𝐹 “ {𝐴}) = {𝑥}) | ||
| Theorem | funpartfun 35931 | The functional part of 𝐹 is a function. (Contributed by Scott Fenton, 16-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) (Proof shortened by Peter Mazsa, 2-Oct-2022.) |
| ⊢ Fun Funpart𝐹 | ||
| Theorem | funpartss 35932 | The functional part of 𝐹 is a subset of 𝐹. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ Funpart𝐹 ⊆ 𝐹 | ||
| Theorem | funpartfv 35933 | The function value of the functional part is identical to the original functional value. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ (Funpart𝐹‘𝐴) = (𝐹‘𝐴) | ||
| Theorem | fullfunfnv 35934 | The full functional part of 𝐹 is a function over V. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ FullFun𝐹 Fn V | ||
| Theorem | fullfunfv 35935 | The function value of the full function of 𝐹 agrees with 𝐹. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ (FullFun𝐹‘𝐴) = (𝐹‘𝐴) | ||
| Theorem | brfullfun 35936 | A binary relation form condition for the full function. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴FullFun𝐹𝐵 ↔ 𝐵 = (𝐹‘𝐴)) | ||
| Theorem | brrestrict 35937 | Binary relation form of the Restrict function. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V ⇒ ⊢ (〈𝐴, 𝐵〉Restrict𝐶 ↔ 𝐶 = (𝐴 ↾ 𝐵)) | ||
| Theorem | dfrecs2 35938 | A quantifier-free definition of recs. (Contributed by Scott Fenton, 17-Jul-2020.) |
| ⊢ recs(𝐹) = ∪ (( Funs ∩ (◡Domain “ On)) ∖ dom ((◡ E ∘ Domain) ∖ Fix (◡Apply ∘ (FullFun𝐹 ∘ Restrict)))) | ||
| Theorem | dfrdg4 35939 | A quantifier-free definition of the recursive definition generator. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) (Proof shortened by Peter Mazsa, 2-Oct-2022.) |
| ⊢ rec(𝐹, 𝐴) = ∪ (( Funs ∩ (◡Domain “ On)) ∖ dom ((◡ E ∘ Domain) ∖ Fix (◡Apply ∘ (((V × {∅}) × {∪ {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ))))))) | ||
| Theorem | dfint3 35940 | Quantifier-free definition of class intersection. (Contributed by Scott Fenton, 13-Apr-2018.) |
| ⊢ ∩ 𝐴 = (V ∖ (◡(V ∖ E ) “ 𝐴)) | ||
| Theorem | imagesset 35941 | The Image functor applied to the converse of the subset relationship yields a subset of the subset relationship. (Contributed by Scott Fenton, 14-Apr-2018.) |
| ⊢ Image◡ SSet ⊆ SSet | ||
| Theorem | brub 35942* | Binary relation form of the upper bound functor. (Contributed by Scott Fenton, 3-May-2018.) |
| ⊢ 𝑆 ∈ V & ⊢ 𝐴 ∈ V ⇒ ⊢ (𝑆UB𝑅𝐴 ↔ ∀𝑥 ∈ 𝑆 𝑥𝑅𝐴) | ||
| Theorem | brlb 35943* | Binary relation form of the lower bound functor. (Contributed by Scott Fenton, 3-May-2018.) |
| ⊢ 𝑆 ∈ V & ⊢ 𝐴 ∈ V ⇒ ⊢ (𝑆LB𝑅𝐴 ↔ ∀𝑥 ∈ 𝑆 𝐴𝑅𝑥) | ||
| Syntax | caltop 35944 | Declare the syntax for an alternate ordered pair. |
| class ⟪𝐴, 𝐵⟫ | ||
| Syntax | caltxp 35945 | Declare the syntax for an alternate Cartesian product. |
| class (𝐴 ×× 𝐵) | ||
| Definition | df-altop 35946 | An alternative definition of ordered pairs. This definition removes a hypothesis from its defining theorem (see altopth 35957), making it more convenient in some circumstances. (Contributed by Scott Fenton, 22-Mar-2012.) |
| ⊢ ⟪𝐴, 𝐵⟫ = {{𝐴}, {𝐴, {𝐵}}} | ||
| Definition | df-altxp 35947* | Define Cartesian products of alternative ordered pairs. (Contributed by Scott Fenton, 23-Mar-2012.) |
| ⊢ (𝐴 ×× 𝐵) = {𝑧 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = ⟪𝑥, 𝑦⟫} | ||
| Theorem | altopex 35948 | Alternative ordered pairs always exist. (Contributed by Scott Fenton, 22-Mar-2012.) |
| ⊢ ⟪𝐴, 𝐵⟫ ∈ V | ||
| Theorem | altopthsn 35949 | Two alternate ordered pairs are equal iff the singletons of their respective elements are equal. Note that this holds regardless of sethood of any of the elements. (Contributed by Scott Fenton, 16-Apr-2012.) |
| ⊢ (⟪𝐴, 𝐵⟫ = ⟪𝐶, 𝐷⟫ ↔ ({𝐴} = {𝐶} ∧ {𝐵} = {𝐷})) | ||
| Theorem | altopeq12 35950 | Equality for alternate ordered pairs. (Contributed by Scott Fenton, 22-Mar-2012.) |
| ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → ⟪𝐴, 𝐶⟫ = ⟪𝐵, 𝐷⟫) | ||
| Theorem | altopeq1 35951 | Equality for alternate ordered pairs. (Contributed by Scott Fenton, 22-Mar-2012.) |
| ⊢ (𝐴 = 𝐵 → ⟪𝐴, 𝐶⟫ = ⟪𝐵, 𝐶⟫) | ||
| Theorem | altopeq2 35952 | Equality for alternate ordered pairs. (Contributed by Scott Fenton, 22-Mar-2012.) |
| ⊢ (𝐴 = 𝐵 → ⟪𝐶, 𝐴⟫ = ⟪𝐶, 𝐵⟫) | ||
| Theorem | altopth1 35953 | Equality of the first members of equal alternate ordered pairs, which holds regardless of the second members' sethood. (Contributed by Scott Fenton, 22-Mar-2012.) |
| ⊢ (𝐴 ∈ 𝑉 → (⟪𝐴, 𝐵⟫ = ⟪𝐶, 𝐷⟫ → 𝐴 = 𝐶)) | ||
| Theorem | altopth2 35954 | Equality of the second members of equal alternate ordered pairs, which holds regardless of the first members' sethood. (Contributed by Scott Fenton, 22-Mar-2012.) |
| ⊢ (𝐵 ∈ 𝑉 → (⟪𝐴, 𝐵⟫ = ⟪𝐶, 𝐷⟫ → 𝐵 = 𝐷)) | ||
| Theorem | altopthg 35955 | Alternate ordered pair theorem. (Contributed by Scott Fenton, 22-Mar-2012.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (⟪𝐴, 𝐵⟫ = ⟪𝐶, 𝐷⟫ ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) | ||
| Theorem | altopthbg 35956 | Alternate ordered pair theorem. (Contributed by Scott Fenton, 14-Apr-2012.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊) → (⟪𝐴, 𝐵⟫ = ⟪𝐶, 𝐷⟫ ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) | ||
| Theorem | altopth 35957 | The alternate ordered pair theorem. If two alternate ordered pairs are equal, their first elements are equal and their second elements are equal. Note that 𝐶 and 𝐷 are not required to be a set due to a peculiarity of our specific ordered pair definition, as opposed to the regular ordered pairs used here, which (as in opth 5436), requires 𝐷 to be a set. (Contributed by Scott Fenton, 23-Mar-2012.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (⟪𝐴, 𝐵⟫ = ⟪𝐶, 𝐷⟫ ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) | ||
| Theorem | altopthb 35958 | Alternate ordered pair theorem with different sethood requirements. See altopth 35957 for more comments. (Contributed by Scott Fenton, 14-Apr-2012.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐷 ∈ V ⇒ ⊢ (⟪𝐴, 𝐵⟫ = ⟪𝐶, 𝐷⟫ ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) | ||
| Theorem | altopthc 35959 | Alternate ordered pair theorem with different sethood requirements. See altopth 35957 for more comments. (Contributed by Scott Fenton, 14-Apr-2012.) |
| ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V ⇒ ⊢ (⟪𝐴, 𝐵⟫ = ⟪𝐶, 𝐷⟫ ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) | ||
| Theorem | altopthd 35960 | Alternate ordered pair theorem with different sethood requirements. See altopth 35957 for more comments. (Contributed by Scott Fenton, 14-Apr-2012.) |
| ⊢ 𝐶 ∈ V & ⊢ 𝐷 ∈ V ⇒ ⊢ (⟪𝐴, 𝐵⟫ = ⟪𝐶, 𝐷⟫ ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) | ||
| Theorem | altxpeq1 35961 | Equality for alternate Cartesian products. (Contributed by Scott Fenton, 24-Mar-2012.) |
| ⊢ (𝐴 = 𝐵 → (𝐴 ×× 𝐶) = (𝐵 ×× 𝐶)) | ||
| Theorem | altxpeq2 35962 | Equality for alternate Cartesian products. (Contributed by Scott Fenton, 24-Mar-2012.) |
| ⊢ (𝐴 = 𝐵 → (𝐶 ×× 𝐴) = (𝐶 ×× 𝐵)) | ||
| Theorem | elaltxp 35963* | Membership in alternate Cartesian products. (Contributed by Scott Fenton, 23-Mar-2012.) |
| ⊢ (𝑋 ∈ (𝐴 ×× 𝐵) ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑋 = ⟪𝑥, 𝑦⟫) | ||
| Theorem | altopelaltxp 35964 | Alternate ordered pair membership in a Cartesian product. Note that, unlike opelxp 5674, there is no sethood requirement here. (Contributed by Scott Fenton, 22-Mar-2012.) |
| ⊢ (⟪𝑋, 𝑌⟫ ∈ (𝐴 ×× 𝐵) ↔ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵)) | ||
| Theorem | altxpsspw 35965 | An inclusion rule for alternate Cartesian products. (Contributed by Scott Fenton, 24-Mar-2012.) |
| ⊢ (𝐴 ×× 𝐵) ⊆ 𝒫 𝒫 (𝐴 ∪ 𝒫 𝐵) | ||
| Theorem | altxpexg 35966 | The alternate Cartesian product of two sets is a set. (Contributed by Scott Fenton, 24-Mar-2012.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ×× 𝐵) ∈ V) | ||
| Theorem | rankaltopb 35967 | Compute the rank of an alternate ordered pair. (Contributed by Scott Fenton, 18-Dec-2013.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ ∪ (𝑅1 “ On)) → (rank‘⟪𝐴, 𝐵⟫) = suc suc ((rank‘𝐴) ∪ suc (rank‘𝐵))) | ||
| Theorem | nfaltop 35968 | Bound-variable hypothesis builder for alternate ordered pairs. (Contributed by Scott Fenton, 25-Sep-2015.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ Ⅎ𝑥⟪𝐴, 𝐵⟫ | ||
| Theorem | sbcaltop 35969* | Distribution of class substitution over alternate ordered pairs. (Contributed by Scott Fenton, 25-Sep-2015.) |
| ⊢ (𝐴 ∈ V → ⦋𝐴 / 𝑥⦌⟪𝐶, 𝐷⟫ = ⟪⦋𝐴 / 𝑥⦌𝐶, ⦋𝐴 / 𝑥⦌𝐷⟫) | ||
| Syntax | cofs 35970 | Declare the syntax for the outer five segment configuration. |
| class OuterFiveSeg | ||
| Definition | df-ofs 35971* | The outer five segment configuration is an abbreviation for the conditions of the Five Segment Axiom (ax5seg 28865). See brofs 35993 and 5segofs 35994 for how it is used. Definition 2.10 of [Schwabhauser] p. 28. (Contributed by Scott Fenton, 21-Sep-2013.) |
| ⊢ OuterFiveSeg = {〈𝑝, 𝑞〉 ∣ ∃𝑛 ∈ ℕ ∃𝑎 ∈ (𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)∃𝑥 ∈ (𝔼‘𝑛)∃𝑦 ∈ (𝔼‘𝑛)∃𝑧 ∈ (𝔼‘𝑛)∃𝑤 ∈ (𝔼‘𝑛)(𝑝 = 〈〈𝑎, 𝑏〉, 〈𝑐, 𝑑〉〉 ∧ 𝑞 = 〈〈𝑥, 𝑦〉, 〈𝑧, 𝑤〉〉 ∧ ((𝑏 Btwn 〈𝑎, 𝑐〉 ∧ 𝑦 Btwn 〈𝑥, 𝑧〉) ∧ (〈𝑎, 𝑏〉Cgr〈𝑥, 𝑦〉 ∧ 〈𝑏, 𝑐〉Cgr〈𝑦, 𝑧〉) ∧ (〈𝑎, 𝑑〉Cgr〈𝑥, 𝑤〉 ∧ 〈𝑏, 𝑑〉Cgr〈𝑦, 𝑤〉)))} | ||
| Theorem | cgrrflx2d 35972 | Deduction form of axcgrrflx 28841. (Contributed by Scott Fenton, 13-Oct-2013.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐴 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐵 ∈ (𝔼‘𝑁)) ⇒ ⊢ (𝜑 → 〈𝐴, 𝐵〉Cgr〈𝐵, 𝐴〉) | ||
| Theorem | cgrtr4d 35973 | Deduction form of axcgrtr 28842. (Contributed by Scott Fenton, 13-Oct-2013.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐴 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐵 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐶 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐷 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐸 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐹 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 〈𝐴, 𝐵〉Cgr〈𝐶, 𝐷〉) & ⊢ (𝜑 → 〈𝐴, 𝐵〉Cgr〈𝐸, 𝐹〉) ⇒ ⊢ (𝜑 → 〈𝐶, 𝐷〉Cgr〈𝐸, 𝐹〉) | ||
| Theorem | cgrtr4and 35974 | Deduction form of axcgrtr 28842. (Contributed by Scott Fenton, 13-Oct-2013.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐴 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐵 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐶 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐷 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐸 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐹 ∈ (𝔼‘𝑁)) & ⊢ ((𝜑 ∧ 𝜓) → 〈𝐴, 𝐵〉Cgr〈𝐶, 𝐷〉) & ⊢ ((𝜑 ∧ 𝜓) → 〈𝐴, 𝐵〉Cgr〈𝐸, 𝐹〉) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 〈𝐶, 𝐷〉Cgr〈𝐸, 𝐹〉) | ||
| Theorem | cgrrflx 35975 | Reflexivity law for congruence. Theorem 2.1 of [Schwabhauser] p. 27. (Contributed by Scott Fenton, 12-Jun-2013.) |
| ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → 〈𝐴, 𝐵〉Cgr〈𝐴, 𝐵〉) | ||
| Theorem | cgrrflxd 35976 | Deduction form of cgrrflx 35975. (Contributed by Scott Fenton, 13-Oct-2013.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐴 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐵 ∈ (𝔼‘𝑁)) ⇒ ⊢ (𝜑 → 〈𝐴, 𝐵〉Cgr〈𝐴, 𝐵〉) | ||
| Theorem | cgrcomim 35977 | Congruence commutes on the two sides. Implication version. Theorem 2.2 of [Schwabhauser] p. 27. (Contributed by Scott Fenton, 12-Jun-2013.) |
| ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (〈𝐴, 𝐵〉Cgr〈𝐶, 𝐷〉 → 〈𝐶, 𝐷〉Cgr〈𝐴, 𝐵〉)) | ||
| Theorem | cgrcom 35978 | Congruence commutes between the two sides. (Contributed by Scott Fenton, 12-Jun-2013.) |
| ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (〈𝐴, 𝐵〉Cgr〈𝐶, 𝐷〉 ↔ 〈𝐶, 𝐷〉Cgr〈𝐴, 𝐵〉)) | ||
| Theorem | cgrcomand 35979 | Deduction form of cgrcom 35978. (Contributed by Scott Fenton, 13-Oct-2013.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐴 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐵 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐶 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐷 ∈ (𝔼‘𝑁)) & ⊢ ((𝜑 ∧ 𝜓) → 〈𝐴, 𝐵〉Cgr〈𝐶, 𝐷〉) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 〈𝐶, 𝐷〉Cgr〈𝐴, 𝐵〉) | ||
| Theorem | cgrtr 35980 | Transitivity law for congruence. Theorem 2.3 of [Schwabhauser] p. 27. (Contributed by Scott Fenton, 24-Sep-2013.) |
| ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → ((〈𝐴, 𝐵〉Cgr〈𝐶, 𝐷〉 ∧ 〈𝐶, 𝐷〉Cgr〈𝐸, 𝐹〉) → 〈𝐴, 𝐵〉Cgr〈𝐸, 𝐹〉)) | ||
| Theorem | cgrtrand 35981 | Deduction form of cgrtr 35980. (Contributed by Scott Fenton, 13-Oct-2013.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐴 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐵 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐶 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐷 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐸 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐹 ∈ (𝔼‘𝑁)) & ⊢ ((𝜑 ∧ 𝜓) → 〈𝐴, 𝐵〉Cgr〈𝐶, 𝐷〉) & ⊢ ((𝜑 ∧ 𝜓) → 〈𝐶, 𝐷〉Cgr〈𝐸, 𝐹〉) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 〈𝐴, 𝐵〉Cgr〈𝐸, 𝐹〉) | ||
| Theorem | cgrtr3 35982 | Transitivity law for congruence. (Contributed by Scott Fenton, 7-Oct-2013.) |
| ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → ((〈𝐴, 𝐵〉Cgr〈𝐸, 𝐹〉 ∧ 〈𝐶, 𝐷〉Cgr〈𝐸, 𝐹〉) → 〈𝐴, 𝐵〉Cgr〈𝐶, 𝐷〉)) | ||
| Theorem | cgrtr3and 35983 | Deduction form of cgrtr3 35982. (Contributed by Scott Fenton, 13-Oct-2013.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐴 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐵 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐶 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐷 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐸 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐹 ∈ (𝔼‘𝑁)) & ⊢ ((𝜑 ∧ 𝜓) → 〈𝐴, 𝐵〉Cgr〈𝐸, 𝐹〉) & ⊢ ((𝜑 ∧ 𝜓) → 〈𝐶, 𝐷〉Cgr〈𝐸, 𝐹〉) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 〈𝐴, 𝐵〉Cgr〈𝐶, 𝐷〉) | ||
| Theorem | cgrcoml 35984 | Congruence commutes on the left. Biconditional version of Theorem 2.4 of [Schwabhauser] p. 27. (Contributed by Scott Fenton, 12-Jun-2013.) |
| ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (〈𝐴, 𝐵〉Cgr〈𝐶, 𝐷〉 ↔ 〈𝐵, 𝐴〉Cgr〈𝐶, 𝐷〉)) | ||
| Theorem | cgrcomr 35985 | Congruence commutes on the right. Biconditional version of Theorem 2.5 of [Schwabhauser] p. 27. (Contributed by Scott Fenton, 12-Jun-2013.) |
| ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (〈𝐴, 𝐵〉Cgr〈𝐶, 𝐷〉 ↔ 〈𝐴, 𝐵〉Cgr〈𝐷, 𝐶〉)) | ||
| Theorem | cgrcomlr 35986 | Congruence commutes on both sides. (Contributed by Scott Fenton, 12-Jun-2013.) |
| ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (〈𝐴, 𝐵〉Cgr〈𝐶, 𝐷〉 ↔ 〈𝐵, 𝐴〉Cgr〈𝐷, 𝐶〉)) | ||
| Theorem | cgrcomland 35987 | Deduction form of cgrcoml 35984. (Contributed by Scott Fenton, 14-Oct-2013.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐴 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐵 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐶 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐷 ∈ (𝔼‘𝑁)) & ⊢ ((𝜑 ∧ 𝜓) → 〈𝐴, 𝐵〉Cgr〈𝐶, 𝐷〉) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 〈𝐵, 𝐴〉Cgr〈𝐶, 𝐷〉) | ||
| Theorem | cgrcomrand 35988 | Deduction form of cgrcoml 35984. (Contributed by Scott Fenton, 14-Oct-2013.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐴 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐵 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐶 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐷 ∈ (𝔼‘𝑁)) & ⊢ ((𝜑 ∧ 𝜓) → 〈𝐴, 𝐵〉Cgr〈𝐶, 𝐷〉) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 〈𝐴, 𝐵〉Cgr〈𝐷, 𝐶〉) | ||
| Theorem | cgrcomlrand 35989 | Deduction form of cgrcomlr 35986. (Contributed by Scott Fenton, 14-Oct-2013.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐴 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐵 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐶 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐷 ∈ (𝔼‘𝑁)) & ⊢ ((𝜑 ∧ 𝜓) → 〈𝐴, 𝐵〉Cgr〈𝐶, 𝐷〉) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 〈𝐵, 𝐴〉Cgr〈𝐷, 𝐶〉) | ||
| Theorem | cgrtriv 35990 | Degenerate segments are congruent. Theorem 2.8 of [Schwabhauser] p. 28. (Contributed by Scott Fenton, 12-Jun-2013.) |
| ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → 〈𝐴, 𝐴〉Cgr〈𝐵, 𝐵〉) | ||
| Theorem | cgrid2 35991 | Identity law for congruence. (Contributed by Scott Fenton, 12-Jun-2013.) |
| ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (〈𝐴, 𝐴〉Cgr〈𝐵, 𝐶〉 → 𝐵 = 𝐶)) | ||
| Theorem | cgrdegen 35992 | Two congruent segments are either both degenerate or both nondegenerate. (Contributed by Scott Fenton, 12-Jun-2013.) |
| ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (〈𝐴, 𝐵〉Cgr〈𝐶, 𝐷〉 → (𝐴 = 𝐵 ↔ 𝐶 = 𝐷))) | ||
| Theorem | brofs 35993 | Binary relation form of the outer five segment predicate. (Contributed by Scott Fenton, 21-Sep-2013.) |
| ⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → (〈〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉〉 OuterFiveSeg 〈〈𝐸, 𝐹〉, 〈𝐺, 𝐻〉〉 ↔ ((𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐹 Btwn 〈𝐸, 𝐺〉) ∧ (〈𝐴, 𝐵〉Cgr〈𝐸, 𝐹〉 ∧ 〈𝐵, 𝐶〉Cgr〈𝐹, 𝐺〉) ∧ (〈𝐴, 𝐷〉Cgr〈𝐸, 𝐻〉 ∧ 〈𝐵, 𝐷〉Cgr〈𝐹, 𝐻〉)))) | ||
| Theorem | 5segofs 35994 | Rephrase ax5seg 28865 using the outer five segment predicate. Theorem 2.10 of [Schwabhauser] p. 28. (Contributed by Scott Fenton, 21-Sep-2013.) |
| ⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → ((〈〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉〉 OuterFiveSeg 〈〈𝐸, 𝐹〉, 〈𝐺, 𝐻〉〉 ∧ 𝐴 ≠ 𝐵) → 〈𝐶, 𝐷〉Cgr〈𝐺, 𝐻〉)) | ||
| Theorem | ofscom 35995 | The outer five segment predicate commutes. (Contributed by Scott Fenton, 26-Sep-2013.) |
| ⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → (〈〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉〉 OuterFiveSeg 〈〈𝐸, 𝐹〉, 〈𝐺, 𝐻〉〉 ↔ 〈〈𝐸, 𝐹〉, 〈𝐺, 𝐻〉〉 OuterFiveSeg 〈〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉〉)) | ||
| Theorem | cgrextend 35996 | Link congruence over a pair of line segments. Theorem 2.11 of [Schwabhauser] p. 29. (Contributed by Scott Fenton, 12-Jun-2013.) |
| ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → (((𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐸 Btwn 〈𝐷, 𝐹〉) ∧ (〈𝐴, 𝐵〉Cgr〈𝐷, 𝐸〉 ∧ 〈𝐵, 𝐶〉Cgr〈𝐸, 𝐹〉)) → 〈𝐴, 𝐶〉Cgr〈𝐷, 𝐹〉)) | ||
| Theorem | cgrextendand 35997 | Deduction form of cgrextend 35996. (Contributed by Scott Fenton, 14-Oct-2013.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐴 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐵 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐶 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐷 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐸 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐹 ∈ (𝔼‘𝑁)) & ⊢ ((𝜑 ∧ 𝜓) → 𝐵 Btwn 〈𝐴, 𝐶〉) & ⊢ ((𝜑 ∧ 𝜓) → 𝐸 Btwn 〈𝐷, 𝐹〉) & ⊢ ((𝜑 ∧ 𝜓) → 〈𝐴, 𝐵〉Cgr〈𝐷, 𝐸〉) & ⊢ ((𝜑 ∧ 𝜓) → 〈𝐵, 𝐶〉Cgr〈𝐸, 𝐹〉) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 〈𝐴, 𝐶〉Cgr〈𝐷, 𝐹〉) | ||
| Theorem | segconeq 35998 | Two points that satisfy the conclusion of axsegcon 28854 are identical. Uniqueness portion of Theorem 2.12 of [Schwabhauser] p. 29. (Contributed by Scott Fenton, 12-Jun-2013.) |
| ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) → ((𝑄 ≠ 𝐴 ∧ (𝐴 Btwn 〈𝑄, 𝑋〉 ∧ 〈𝐴, 𝑋〉Cgr〈𝐵, 𝐶〉) ∧ (𝐴 Btwn 〈𝑄, 𝑌〉 ∧ 〈𝐴, 𝑌〉Cgr〈𝐵, 𝐶〉)) → 𝑋 = 𝑌)) | ||
| Theorem | segconeu 35999* | Existential uniqueness version of segconeq 35998. (Contributed by Scott Fenton, 19-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ ((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶 ≠ 𝐷)) → ∃!𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn 〈𝐶, 𝑟〉 ∧ 〈𝐷, 𝑟〉Cgr〈𝐴, 𝐵〉)) | ||
| Theorem | btwntriv2 36000 | Betweenness always holds for the second endpoint. Theorem 3.1 of [Schwabhauser] p. 30. (Contributed by Scott Fenton, 12-Jun-2013.) |
| ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → 𝐵 Btwn 〈𝐴, 𝐵〉) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |