HomeHome Metamath Proof Explorer
Theorem List (p. 360 of 464)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-29181)
  Hilbert Space Explorer  Hilbert Space Explorer
(29182-30704)
  Users' Mathboxes  Users' Mathboxes
(30705-46395)
 

Theorem List for Metamath Proof Explorer - 35901-36000   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremheiborlem6 35901* Lemma for heibor 35906. Since the sequence of balls connected by the function 𝑇 ensures that each ball nontrivially intersects with the next (since the empty set has a finite subcover, the intersection of any two successive balls in the sequence is nonempty), and each ball is half the size of the previous one, the distance between the centers is at most 3 / 2 times the size of the larger, and so if we expand each ball by a factor of 3 we get a nested sequence of balls. (Contributed by Jeff Madsen, 23-Jan-2014.)
𝐽 = (MetOpen‘𝐷)    &   𝐾 = {𝑢 ∣ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 𝑣}    &   𝐺 = {⟨𝑦, 𝑛⟩ ∣ (𝑛 ∈ ℕ0𝑦 ∈ (𝐹𝑛) ∧ (𝑦𝐵𝑛) ∈ 𝐾)}    &   𝐵 = (𝑧𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))    &   (𝜑𝐷 ∈ (CMet‘𝑋))    &   (𝜑𝐹:ℕ0⟶(𝒫 𝑋 ∩ Fin))    &   (𝜑 → ∀𝑛 ∈ ℕ0 𝑋 = 𝑦 ∈ (𝐹𝑛)(𝑦𝐵𝑛))    &   (𝜑 → ∀𝑥𝐺 ((𝑇𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑇𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾))    &   (𝜑𝐶𝐺0)    &   𝑆 = seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1))))    &   𝑀 = (𝑛 ∈ ℕ ↦ ⟨(𝑆𝑛), (3 / (2↑𝑛))⟩)       (𝜑 → ∀𝑘 ∈ ℕ ((ball‘𝐷)‘(𝑀‘(𝑘 + 1))) ⊆ ((ball‘𝐷)‘(𝑀𝑘)))
 
Theoremheiborlem7 35902* Lemma for heibor 35906. Since the sizes of the balls decrease exponentially, the sequence converges to zero. (Contributed by Jeff Madsen, 23-Jan-2014.)
𝐽 = (MetOpen‘𝐷)    &   𝐾 = {𝑢 ∣ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 𝑣}    &   𝐺 = {⟨𝑦, 𝑛⟩ ∣ (𝑛 ∈ ℕ0𝑦 ∈ (𝐹𝑛) ∧ (𝑦𝐵𝑛) ∈ 𝐾)}    &   𝐵 = (𝑧𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))    &   (𝜑𝐷 ∈ (CMet‘𝑋))    &   (𝜑𝐹:ℕ0⟶(𝒫 𝑋 ∩ Fin))    &   (𝜑 → ∀𝑛 ∈ ℕ0 𝑋 = 𝑦 ∈ (𝐹𝑛)(𝑦𝐵𝑛))    &   (𝜑 → ∀𝑥𝐺 ((𝑇𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑇𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾))    &   (𝜑𝐶𝐺0)    &   𝑆 = seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1))))    &   𝑀 = (𝑛 ∈ ℕ ↦ ⟨(𝑆𝑛), (3 / (2↑𝑛))⟩)       𝑟 ∈ ℝ+𝑘 ∈ ℕ (2nd ‘(𝑀𝑘)) < 𝑟
 
Theoremheiborlem8 35903* Lemma for heibor 35906. The previous lemmas establish that the sequence 𝑀 is Cauchy, so using completeness we now consider the convergent point 𝑌. By assumption, 𝑈 is an open cover, so 𝑌 is an element of some 𝑍𝑈, and some ball centered at 𝑌 is contained in 𝑍. But the sequence contains arbitrarily small balls close to 𝑌, so some element ball(𝑀𝑛) of the sequence is contained in 𝑍. And finally we arrive at a contradiction, because {𝑍} is a finite subcover of 𝑈 that covers ball(𝑀𝑛), yet ball(𝑀𝑛) ∈ 𝐾. For convenience, we write this contradiction as 𝜑𝜓 where 𝜑 is all the accumulated hypotheses and 𝜓 is anything at all. (Contributed by Jeff Madsen, 22-Jan-2014.)
𝐽 = (MetOpen‘𝐷)    &   𝐾 = {𝑢 ∣ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 𝑣}    &   𝐺 = {⟨𝑦, 𝑛⟩ ∣ (𝑛 ∈ ℕ0𝑦 ∈ (𝐹𝑛) ∧ (𝑦𝐵𝑛) ∈ 𝐾)}    &   𝐵 = (𝑧𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))    &   (𝜑𝐷 ∈ (CMet‘𝑋))    &   (𝜑𝐹:ℕ0⟶(𝒫 𝑋 ∩ Fin))    &   (𝜑 → ∀𝑛 ∈ ℕ0 𝑋 = 𝑦 ∈ (𝐹𝑛)(𝑦𝐵𝑛))    &   (𝜑 → ∀𝑥𝐺 ((𝑇𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑇𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾))    &   (𝜑𝐶𝐺0)    &   𝑆 = seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1))))    &   𝑀 = (𝑛 ∈ ℕ ↦ ⟨(𝑆𝑛), (3 / (2↑𝑛))⟩)    &   (𝜑𝑈𝐽)    &   𝑌 ∈ V    &   (𝜑𝑌𝑍)    &   (𝜑𝑍𝑈)    &   (𝜑 → (1st𝑀)(⇝𝑡𝐽)𝑌)       (𝜑𝜓)
 
Theoremheiborlem9 35904* Lemma for heibor 35906. Discharge the hypotheses of heiborlem8 35903 by applying caubl 24377 to get a convergent point and adding the open cover assumption. (Contributed by Jeff Madsen, 20-Jan-2014.)
𝐽 = (MetOpen‘𝐷)    &   𝐾 = {𝑢 ∣ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 𝑣}    &   𝐺 = {⟨𝑦, 𝑛⟩ ∣ (𝑛 ∈ ℕ0𝑦 ∈ (𝐹𝑛) ∧ (𝑦𝐵𝑛) ∈ 𝐾)}    &   𝐵 = (𝑧𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))    &   (𝜑𝐷 ∈ (CMet‘𝑋))    &   (𝜑𝐹:ℕ0⟶(𝒫 𝑋 ∩ Fin))    &   (𝜑 → ∀𝑛 ∈ ℕ0 𝑋 = 𝑦 ∈ (𝐹𝑛)(𝑦𝐵𝑛))    &   (𝜑 → ∀𝑥𝐺 ((𝑇𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑇𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾))    &   (𝜑𝐶𝐺0)    &   𝑆 = seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1))))    &   𝑀 = (𝑛 ∈ ℕ ↦ ⟨(𝑆𝑛), (3 / (2↑𝑛))⟩)    &   (𝜑𝑈𝐽)    &   (𝜑 𝑈 = 𝑋)       (𝜑𝜓)
 
Theoremheiborlem10 35905* Lemma for heibor 35906. The last remaining piece of the proof is to find an element 𝐶 such that 𝐶𝐺0, i.e. 𝐶 is an element of (𝐹‘0) that has no finite subcover, which is true by heiborlem1 35896, since (𝐹‘0) is a finite cover of 𝑋, which has no finite subcover. Thus, the rest of the proof follows to a contradiction, and thus there must be a finite subcover of 𝑈 that covers 𝑋, i.e. 𝑋 is compact. (Contributed by Jeff Madsen, 22-Jan-2014.)
𝐽 = (MetOpen‘𝐷)    &   𝐾 = {𝑢 ∣ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 𝑣}    &   𝐺 = {⟨𝑦, 𝑛⟩ ∣ (𝑛 ∈ ℕ0𝑦 ∈ (𝐹𝑛) ∧ (𝑦𝐵𝑛) ∈ 𝐾)}    &   𝐵 = (𝑧𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))    &   (𝜑𝐷 ∈ (CMet‘𝑋))    &   (𝜑𝐹:ℕ0⟶(𝒫 𝑋 ∩ Fin))    &   (𝜑 → ∀𝑛 ∈ ℕ0 𝑋 = 𝑦 ∈ (𝐹𝑛)(𝑦𝐵𝑛))       ((𝜑 ∧ (𝑈𝐽 𝐽 = 𝑈)) → ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin) 𝐽 = 𝑣)
 
Theoremheibor 35906 Generalized Heine-Borel Theorem. A metric space is compact iff it is complete and totally bounded. See heibor1 35895 and heiborlem1 35896 for a description of the proof. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 28-Jan-2014.)
𝐽 = (MetOpen‘𝐷)       ((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ↔ (𝐷 ∈ (CMet‘𝑋) ∧ 𝐷 ∈ (TotBnd‘𝑋)))
 
20.20.10  Banach Fixed Point Theorem
 
Theorembfplem1 35907* Lemma for bfp 35909. The sequence 𝐺, which simply starts from any point in the space and iterates 𝐹, satisfies the property that the distance from 𝐺(𝑛) to 𝐺(𝑛 + 1) decreases by at least 𝐾 after each step. Thus, the total distance from any 𝐺(𝑖) to 𝐺(𝑗) is bounded by a geometric series, and the sequence is Cauchy. Therefore, it converges to a point ((⇝𝑡𝐽)‘𝐺) since the space is complete. (Contributed by Jeff Madsen, 17-Jun-2014.)
(𝜑𝐷 ∈ (CMet‘𝑋))    &   (𝜑𝑋 ≠ ∅)    &   (𝜑𝐾 ∈ ℝ+)    &   (𝜑𝐾 < 1)    &   (𝜑𝐹:𝑋𝑋)    &   ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → ((𝐹𝑥)𝐷(𝐹𝑦)) ≤ (𝐾 · (𝑥𝐷𝑦)))    &   𝐽 = (MetOpen‘𝐷)    &   (𝜑𝐴𝑋)    &   𝐺 = seq1((𝐹 ∘ 1st ), (ℕ × {𝐴}))       (𝜑𝐺(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝐺))
 
Theorembfplem2 35908* Lemma for bfp 35909. Using the point found in bfplem1 35907, we show that this convergent point is a fixed point of 𝐹. Since for any positive 𝑥, the sequence 𝐺 is in 𝐵(𝑥 / 2, 𝑃) for all 𝑘 ∈ (ℤ𝑗) (where 𝑃 = ((⇝𝑡𝐽)‘𝐺)), we have 𝐷(𝐺(𝑗 + 1), 𝐹(𝑃)) ≤ 𝐷(𝐺(𝑗), 𝑃) < 𝑥 / 2 and 𝐷(𝐺(𝑗 + 1), 𝑃) < 𝑥 / 2, so 𝐹(𝑃) is in every neighborhood of 𝑃 and 𝑃 is a fixed point of 𝐹. (Contributed by Jeff Madsen, 5-Jun-2014.)
(𝜑𝐷 ∈ (CMet‘𝑋))    &   (𝜑𝑋 ≠ ∅)    &   (𝜑𝐾 ∈ ℝ+)    &   (𝜑𝐾 < 1)    &   (𝜑𝐹:𝑋𝑋)    &   ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → ((𝐹𝑥)𝐷(𝐹𝑦)) ≤ (𝐾 · (𝑥𝐷𝑦)))    &   𝐽 = (MetOpen‘𝐷)    &   (𝜑𝐴𝑋)    &   𝐺 = seq1((𝐹 ∘ 1st ), (ℕ × {𝐴}))       (𝜑 → ∃𝑧𝑋 (𝐹𝑧) = 𝑧)
 
Theorembfp 35909* Banach fixed point theorem, also known as contraction mapping theorem. A contraction on a complete metric space has a unique fixed point. We show existence in the lemmas, and uniqueness here - if 𝐹 has two fixed points, then the distance between them is less than 𝐾 times itself, a contradiction. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 5-Jun-2014.)
(𝜑𝐷 ∈ (CMet‘𝑋))    &   (𝜑𝑋 ≠ ∅)    &   (𝜑𝐾 ∈ ℝ+)    &   (𝜑𝐾 < 1)    &   (𝜑𝐹:𝑋𝑋)    &   ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → ((𝐹𝑥)𝐷(𝐹𝑦)) ≤ (𝐾 · (𝑥𝐷𝑦)))       (𝜑 → ∃!𝑧𝑋 (𝐹𝑧) = 𝑧)
 
20.20.11  Euclidean space
 
Syntaxcrrn 35910 Extend class notation with the n-dimensional Euclidean space.
class n
 
Definitiondf-rrn 35911* Define n-dimensional Euclidean space as a metric space with the standard Euclidean norm given by the quadratic mean. (Contributed by Jeff Madsen, 2-Sep-2009.)
n = (𝑖 ∈ Fin ↦ (𝑥 ∈ (ℝ ↑m 𝑖), 𝑦 ∈ (ℝ ↑m 𝑖) ↦ (√‘Σ𝑘𝑖 (((𝑥𝑘) − (𝑦𝑘))↑2))))
 
Theoremrrnval 35912* The n-dimensional Euclidean space. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 13-Sep-2015.)
𝑋 = (ℝ ↑m 𝐼)       (𝐼 ∈ Fin → (ℝn𝐼) = (𝑥𝑋, 𝑦𝑋 ↦ (√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2))))
 
Theoremrrnmval 35913* The value of the Euclidean metric. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 13-Sep-2015.)
𝑋 = (ℝ ↑m 𝐼)       ((𝐼 ∈ Fin ∧ 𝐹𝑋𝐺𝑋) → (𝐹(ℝn𝐼)𝐺) = (√‘Σ𝑘𝐼 (((𝐹𝑘) − (𝐺𝑘))↑2)))
 
Theoremrrnmet 35914 Euclidean space is a metric space. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 5-Jun-2014.)
𝑋 = (ℝ ↑m 𝐼)       (𝐼 ∈ Fin → (ℝn𝐼) ∈ (Met‘𝑋))
 
Theoremrrndstprj1 35915 The distance between two points in Euclidean space is greater than the distance between the projections onto one coordinate. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 13-Sep-2015.)
𝑋 = (ℝ ↑m 𝐼)    &   𝑀 = ((abs ∘ − ) ↾ (ℝ × ℝ))       (((𝐼 ∈ Fin ∧ 𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) → ((𝐹𝐴)𝑀(𝐺𝐴)) ≤ (𝐹(ℝn𝐼)𝐺))
 
Theoremrrndstprj2 35916* Bound on the distance between two points in Euclidean space given bounds on the distances in each coordinate. This theorem and rrndstprj1 35915 can be used to show that the supremum norm and Euclidean norm are equivalent. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 13-Sep-2015.)
𝑋 = (ℝ ↑m 𝐼)    &   𝑀 = ((abs ∘ − ) ↾ (ℝ × ℝ))       (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → (𝐹(ℝn𝐼)𝐺) < (𝑅 · (√‘(♯‘𝐼))))
 
Theoremrrncmslem 35917* Lemma for rrncms 35918. (Contributed by Jeff Madsen, 6-Jun-2014.) (Revised by Mario Carneiro, 13-Sep-2015.)
𝑋 = (ℝ ↑m 𝐼)    &   𝑀 = ((abs ∘ − ) ↾ (ℝ × ℝ))    &   𝐽 = (MetOpen‘(ℝn𝐼))    &   (𝜑𝐼 ∈ Fin)    &   (𝜑𝐹 ∈ (Cau‘(ℝn𝐼)))    &   (𝜑𝐹:ℕ⟶𝑋)    &   𝑃 = (𝑚𝐼 ↦ ( ⇝ ‘(𝑡 ∈ ℕ ↦ ((𝐹𝑡)‘𝑚))))       (𝜑𝐹 ∈ dom (⇝𝑡𝐽))
 
Theoremrrncms 35918 Euclidean space is complete. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 13-Sep-2015.)
𝑋 = (ℝ ↑m 𝐼)       (𝐼 ∈ Fin → (ℝn𝐼) ∈ (CMet‘𝑋))
 
Theoremrepwsmet 35919 The supremum metric on ℝ↑𝐼 is a metric. (Contributed by Jeff Madsen, 15-Sep-2015.)
𝑌 = ((ℂflds ℝ) ↑s 𝐼)    &   𝐷 = (dist‘𝑌)    &   𝑋 = (ℝ ↑m 𝐼)       (𝐼 ∈ Fin → 𝐷 ∈ (Met‘𝑋))
 
Theoremrrnequiv 35920 The supremum metric on ℝ↑𝐼 is equivalent to the n metric. (Contributed by Jeff Madsen, 15-Sep-2015.)
𝑌 = ((ℂflds ℝ) ↑s 𝐼)    &   𝐷 = (dist‘𝑌)    &   𝑋 = (ℝ ↑m 𝐼)    &   (𝜑𝐼 ∈ Fin)       ((𝜑 ∧ (𝐹𝑋𝐺𝑋)) → ((𝐹𝐷𝐺) ≤ (𝐹(ℝn𝐼)𝐺) ∧ (𝐹(ℝn𝐼)𝐺) ≤ ((√‘(♯‘𝐼)) · (𝐹𝐷𝐺))))
 
Theoremrrntotbnd 35921 A set in Euclidean space is totally bounded iff its is bounded. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 16-Sep-2015.)
𝑋 = (ℝ ↑m 𝐼)    &   𝑀 = ((ℝn𝐼) ↾ (𝑌 × 𝑌))       (𝐼 ∈ Fin → (𝑀 ∈ (TotBnd‘𝑌) ↔ 𝑀 ∈ (Bnd‘𝑌)))
 
Theoremrrnheibor 35922 Heine-Borel theorem for Euclidean space. A subset of Euclidean space is compact iff it is closed and bounded. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 22-Sep-2015.)
𝑋 = (ℝ ↑m 𝐼)    &   𝑀 = ((ℝn𝐼) ↾ (𝑌 × 𝑌))    &   𝑇 = (MetOpen‘𝑀)    &   𝑈 = (MetOpen‘(ℝn𝐼))       ((𝐼 ∈ Fin ∧ 𝑌𝑋) → (𝑇 ∈ Comp ↔ (𝑌 ∈ (Clsd‘𝑈) ∧ 𝑀 ∈ (Bnd‘𝑌))))
 
20.20.12  Intervals (continued)
 
Theoremismrer1 35923* An isometry between and ℝ↑1. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 22-Sep-2015.)
𝑅 = ((abs ∘ − ) ↾ (ℝ × ℝ))    &   𝐹 = (𝑥 ∈ ℝ ↦ ({𝐴} × {𝑥}))       (𝐴𝑉𝐹 ∈ (𝑅 Ismty (ℝn‘{𝐴})))
 
Theoremreheibor 35924 Heine-Borel theorem for real numbers. A subset of is compact iff it is closed and bounded. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 22-Sep-2015.)
𝑀 = ((abs ∘ − ) ↾ (𝑌 × 𝑌))    &   𝑇 = (MetOpen‘𝑀)    &   𝑈 = (topGen‘ran (,))       (𝑌 ⊆ ℝ → (𝑇 ∈ Comp ↔ (𝑌 ∈ (Clsd‘𝑈) ∧ 𝑀 ∈ (Bnd‘𝑌))))
 
Theoremiccbnd 35925 A closed interval in is bounded. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 22-Sep-2015.)
𝐽 = (𝐴[,]𝐵)    &   𝑀 = ((abs ∘ − ) ↾ (𝐽 × 𝐽))       ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝑀 ∈ (Bnd‘𝐽))
 
TheoremicccmpALT 35926 A closed interval in is compact. Alternate proof of icccmp 23894 using the Heine-Borel theorem heibor 35906. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 14-Aug-2014.) (New usage is discouraged.) (Proof modification is discouraged.)
𝐽 = (𝐴[,]𝐵)    &   𝑀 = ((abs ∘ − ) ↾ (𝐽 × 𝐽))    &   𝑇 = (MetOpen‘𝑀)       ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝑇 ∈ Comp)
 
20.20.13  Operation properties
 
Syntaxcass 35927 Extend class notation with a device to add associativity to internal operations.
class Ass
 
Definitiondf-ass 35928* A device to add associativity to various sorts of internal operations. The definition is meaningful when 𝑔 is a magma at least. (Contributed by FL, 1-Nov-2009.) (New usage is discouraged.)
Ass = {𝑔 ∣ ∀𝑥 ∈ dom dom 𝑔𝑦 ∈ dom dom 𝑔𝑧 ∈ dom dom 𝑔((𝑥𝑔𝑦)𝑔𝑧) = (𝑥𝑔(𝑦𝑔𝑧))}
 
Syntaxcexid 35929 Extend class notation with the class of all the internal operations with an identity element.
class ExId
 
Definitiondf-exid 35930* A device to add an identity element to various sorts of internal operations. (Contributed by FL, 2-Nov-2009.) (New usage is discouraged.)
ExId = {𝑔 ∣ ∃𝑥 ∈ dom dom 𝑔𝑦 ∈ dom dom 𝑔((𝑥𝑔𝑦) = 𝑦 ∧ (𝑦𝑔𝑥) = 𝑦)}
 
Theoremisass 35931* The predicate "is an associative operation". (Contributed by FL, 1-Nov-2009.) (New usage is discouraged.)
𝑋 = dom dom 𝐺       (𝐺𝐴 → (𝐺 ∈ Ass ↔ ∀𝑥𝑋𝑦𝑋𝑧𝑋 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧))))
 
Theoremisexid 35932* The predicate 𝐺 has a left and right identity element. (Contributed by FL, 2-Nov-2009.) (Revised by Mario Carneiro, 22-Dec-2013.) (New usage is discouraged.)
𝑋 = dom dom 𝐺       (𝐺𝐴 → (𝐺 ∈ ExId ↔ ∃𝑥𝑋𝑦𝑋 ((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦)))
 
20.20.14  Groups and related structures
 
Syntaxcmagm 35933 Extend class notation with the class of all magmas.
class Magma
 
Definitiondf-mgmOLD 35934* Obsolete version of df-mgm 18241 as of 3-Feb-2020. A magma is a binary internal operation. (Contributed by FL, 2-Nov-2009.) (New usage is discouraged.)
Magma = {𝑔 ∣ ∃𝑡 𝑔:(𝑡 × 𝑡)⟶𝑡}
 
TheoremismgmOLD 35935 Obsolete version of ismgm 18242 as of 3-Feb-2020. The predicate "is a magma". (Contributed by FL, 2-Nov-2009.) (New usage is discouraged.) (Proof modification is discouraged.)
𝑋 = dom dom 𝐺       (𝐺𝐴 → (𝐺 ∈ Magma ↔ 𝐺:(𝑋 × 𝑋)⟶𝑋))
 
TheoremclmgmOLD 35936 Obsolete version of mgmcl 18244 as of 3-Feb-2020. Closure of a magma. (Contributed by FL, 14-Sep-2010.) (New usage is discouraged.) (Proof modification is discouraged.)
𝑋 = dom dom 𝐺       ((𝐺 ∈ Magma ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐺𝐵) ∈ 𝑋)
 
TheoremopidonOLD 35937 Obsolete version of mndpfo 18323 as of 23-Jan-2020. An operation with a left and right identity element is onto. (Contributed by FL, 2-Nov-2009.) (Revised by Mario Carneiro, 22-Dec-2013.) (New usage is discouraged.) (Proof modification is discouraged.)
𝑋 = dom dom 𝐺       (𝐺 ∈ (Magma ∩ ExId ) → 𝐺:(𝑋 × 𝑋)–onto𝑋)
 
TheoremrngopidOLD 35938 Obsolete version of mndpfo 18323 as of 23-Jan-2020. Range of an operation with a left and right identity element. (Contributed by FL, 2-Nov-2009.) (New usage is discouraged.) (Proof modification is discouraged.)
(𝐺 ∈ (Magma ∩ ExId ) → ran 𝐺 = dom dom 𝐺)
 
Theoremopidon2OLD 35939 Obsolete version of mndpfo 18323 as of 23-Jan-2020. An operation with a left and right identity element is onto. (Contributed by FL, 2-Nov-2009.) (New usage is discouraged.) (Proof modification is discouraged.)
𝑋 = ran 𝐺       (𝐺 ∈ (Magma ∩ ExId ) → 𝐺:(𝑋 × 𝑋)–onto𝑋)
 
Theoremisexid2 35940* If 𝐺 ∈ (Magma ∩ ExId ), then it has a left and right identity element that belongs to the range of the operation. (Contributed by FL, 12-Dec-2009.) (Revised by Mario Carneiro, 22-Dec-2013.) (New usage is discouraged.)
𝑋 = ran 𝐺       (𝐺 ∈ (Magma ∩ ExId ) → ∃𝑢𝑋𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥))
 
Theoremexidu1 35941* Uniqueness of the left and right identity element of a magma when it exists. (Contributed by FL, 12-Dec-2009.) (Revised by Mario Carneiro, 22-Dec-2013.) (New usage is discouraged.)
𝑋 = ran 𝐺       (𝐺 ∈ (Magma ∩ ExId ) → ∃!𝑢𝑋𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥))
 
Theoremidrval 35942* The value of the identity element. (Contributed by FL, 12-Dec-2009.) (Revised by Mario Carneiro, 22-Dec-2013.) (New usage is discouraged.)
𝑋 = ran 𝐺    &   𝑈 = (GId‘𝐺)       (𝐺𝐴𝑈 = (𝑢𝑋𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)))
 
Theoremiorlid 35943 A magma right and left identity belongs to the underlying set of the operation. (Contributed by FL, 12-Dec-2009.) (Revised by Mario Carneiro, 22-Dec-2013.) (New usage is discouraged.)
𝑋 = ran 𝐺    &   𝑈 = (GId‘𝐺)       (𝐺 ∈ (Magma ∩ ExId ) → 𝑈𝑋)
 
Theoremcmpidelt 35944 A magma right and left identity element keeps the other elements unchanged. (Contributed by FL, 12-Dec-2009.) (Revised by Mario Carneiro, 22-Dec-2013.) (New usage is discouraged.)
𝑋 = ran 𝐺    &   𝑈 = (GId‘𝐺)       ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝐴𝑋) → ((𝑈𝐺𝐴) = 𝐴 ∧ (𝐴𝐺𝑈) = 𝐴))
 
Syntaxcsem 35945 Extend class notation with the class of all semigroups.
class SemiGrp
 
Definitiondf-sgrOLD 35946 Obsolete version of df-sgrp 18290 as of 3-Feb-2020. A semigroup is an associative magma. (Contributed by FL, 2-Nov-2009.) (New usage is discouraged.)
SemiGrp = (Magma ∩ Ass)
 
TheoremsmgrpismgmOLD 35947 Obsolete version of sgrpmgm 18295 as of 3-Feb-2020. A semigroup is a magma. (Contributed by FL, 2-Nov-2009.) (New usage is discouraged.) (Proof modification is discouraged.)
(𝐺 ∈ SemiGrp → 𝐺 ∈ Magma)
 
TheoremissmgrpOLD 35948* Obsolete version of issgrp 18291 as of 3-Feb-2020. The predicate "is a semigroup". (Contributed by FL, 2-Nov-2009.) (New usage is discouraged.) (Proof modification is discouraged.)
𝑋 = dom dom 𝐺       (𝐺𝐴 → (𝐺 ∈ SemiGrp ↔ (𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ ∀𝑥𝑋𝑦𝑋𝑧𝑋 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)))))
 
Theoremsmgrpmgm 35949 A semigroup is a magma. (Contributed by FL, 2-Nov-2009.) (New usage is discouraged.)
𝑋 = dom dom 𝐺       (𝐺 ∈ SemiGrp → 𝐺:(𝑋 × 𝑋)⟶𝑋)
 
TheoremsmgrpassOLD 35950* Obsolete version of sgrpass 18296 as of 3-Feb-2020. A semigroup is associative. (Contributed by FL, 2-Nov-2009.) (New usage is discouraged.) (Proof modification is discouraged.)
𝑋 = dom dom 𝐺       (𝐺 ∈ SemiGrp → ∀𝑥𝑋𝑦𝑋𝑧𝑋 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)))
 
Syntaxcmndo 35951 Extend class notation with the class of all monoids.
class MndOp
 
Definitiondf-mndo 35952 A monoid is a semigroup with an identity element. (Contributed by FL, 2-Nov-2009.) (New usage is discouraged.)
MndOp = (SemiGrp ∩ ExId )
 
TheoremmndoissmgrpOLD 35953 Obsolete version of mndsgrp 18306 as of 3-Feb-2020. A monoid is a semigroup. (Contributed by FL, 2-Nov-2009.) (New usage is discouraged.) (Proof modification is discouraged.)
(𝐺 ∈ MndOp → 𝐺 ∈ SemiGrp)
 
Theoremmndoisexid 35954 A monoid has an identity element. (Contributed by FL, 2-Nov-2009.) (New usage is discouraged.)
(𝐺 ∈ MndOp → 𝐺 ∈ ExId )
 
TheoremmndoismgmOLD 35955 Obsolete version of mndmgm 18307 as of 3-Feb-2020. A monoid is a magma. (Contributed by FL, 2-Nov-2009.) (New usage is discouraged.) (Proof modification is discouraged.)
(𝐺 ∈ MndOp → 𝐺 ∈ Magma)
 
Theoremmndomgmid 35956 A monoid is a magma with an identity element. (Contributed by FL, 18-Feb-2010.) (New usage is discouraged.)
(𝐺 ∈ MndOp → 𝐺 ∈ (Magma ∩ ExId ))
 
Theoremismndo 35957* The predicate "is a monoid". (Contributed by FL, 2-Nov-2009.) (Revised by Mario Carneiro, 22-Dec-2013.) (New usage is discouraged.)
𝑋 = dom dom 𝐺       (𝐺𝐴 → (𝐺 ∈ MndOp ↔ (𝐺 ∈ SemiGrp ∧ ∃𝑥𝑋𝑦𝑋 ((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦))))
 
Theoremismndo1 35958* The predicate "is a monoid". (Contributed by FL, 2-Nov-2009.) (Revised by Mario Carneiro, 22-Dec-2013.) (New usage is discouraged.)
𝑋 = dom dom 𝐺       (𝐺𝐴 → (𝐺 ∈ MndOp ↔ (𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ ∀𝑥𝑋𝑦𝑋𝑧𝑋 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ∧ ∃𝑥𝑋𝑦𝑋 ((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦))))
 
Theoremismndo2 35959* The predicate "is a monoid". (Contributed by FL, 2-Nov-2009.) (Revised by Mario Carneiro, 22-Dec-2013.) (New usage is discouraged.)
𝑋 = ran 𝐺       (𝐺𝐴 → (𝐺 ∈ MndOp ↔ (𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ ∀𝑥𝑋𝑦𝑋𝑧𝑋 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ∧ ∃𝑥𝑋𝑦𝑋 ((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦))))
 
Theoremgrpomndo 35960 A group is a monoid. (Contributed by FL, 2-Nov-2009.) (Revised by Mario Carneiro, 22-Dec-2013.) (New usage is discouraged.)
(𝐺 ∈ GrpOp → 𝐺 ∈ MndOp)
 
Theoremexidcl 35961 Closure of the binary operation of a magma with identity. (Contributed by Jeff Madsen, 16-Jun-2011.)
𝑋 = ran 𝐺       ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐺𝐵) ∈ 𝑋)
 
Theoremexidreslem 35962* Lemma for exidres 35963 and exidresid 35964. (Contributed by Jeff Madsen, 8-Jun-2010.) (Revised by Mario Carneiro, 23-Dec-2013.)
𝑋 = ran 𝐺    &   𝑈 = (GId‘𝐺)    &   𝐻 = (𝐺 ↾ (𝑌 × 𝑌))       ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋𝑈𝑌) → (𝑈 ∈ dom dom 𝐻 ∧ ∀𝑥 ∈ dom dom 𝐻((𝑈𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑈) = 𝑥)))
 
Theoremexidres 35963 The restriction of a binary operation with identity to a subset containing the identity has an identity element. (Contributed by Jeff Madsen, 8-Jun-2010.) (Revised by Mario Carneiro, 23-Dec-2013.)
𝑋 = ran 𝐺    &   𝑈 = (GId‘𝐺)    &   𝐻 = (𝐺 ↾ (𝑌 × 𝑌))       ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋𝑈𝑌) → 𝐻 ∈ ExId )
 
Theoremexidresid 35964 The restriction of a binary operation with identity to a subset containing the identity has the same identity element. (Contributed by Jeff Madsen, 8-Jun-2010.) (Revised by Mario Carneiro, 23-Dec-2013.)
𝑋 = ran 𝐺    &   𝑈 = (GId‘𝐺)    &   𝐻 = (𝐺 ↾ (𝑌 × 𝑌))       (((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌𝑋𝑈𝑌) ∧ 𝐻 ∈ Magma) → (GId‘𝐻) = 𝑈)
 
Theoremablo4pnp 35965 A commutative/associative law for Abelian groups. (Contributed by Jeff Madsen, 11-Jun-2010.)
𝑋 = ran 𝐺    &   𝐷 = ( /𝑔𝐺)       ((𝐺 ∈ AbelOp ∧ ((𝐴𝑋𝐵𝑋) ∧ (𝐶𝑋𝐹𝑋))) → ((𝐴𝐺𝐵)𝐷(𝐶𝐺𝐹)) = ((𝐴𝐷𝐶)𝐺(𝐵𝐷𝐹)))
 
Theoremgrpoeqdivid 35966 Two group elements are equal iff their quotient is the identity. (Contributed by Jeff Madsen, 6-Jan-2011.)
𝑋 = ran 𝐺    &   𝑈 = (GId‘𝐺)    &   𝐷 = ( /𝑔𝐺)       ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → (𝐴 = 𝐵 ↔ (𝐴𝐷𝐵) = 𝑈))
 
TheoremgrposnOLD 35967 The group operation for the singleton group. Obsolete, use grp1 18597. instead. (Contributed by NM, 4-Nov-2006.) (New usage is discouraged.) (Proof modification is discouraged.)
𝐴 ∈ V       {⟨⟨𝐴, 𝐴⟩, 𝐴⟩} ∈ GrpOp
 
20.20.15  Group homomorphism and isomorphism
 
SyntaxcghomOLD 35968 Obsolete version of cghm 18746 as of 15-Mar-2020. Extend class notation to include the class of group homomorphisms. (New usage is discouraged.)
class GrpOpHom
 
Definitiondf-ghomOLD 35969* Obsolete version of df-ghm 18747 as of 15-Mar-2020. Define the set of group homomorphisms from 𝑔 to . (Contributed by Paul Chapman, 25-Feb-2008.) (New usage is discouraged.)
GrpOpHom = (𝑔 ∈ GrpOp, ∈ GrpOp ↦ {𝑓 ∣ (𝑓:ran 𝑔⟶ran ∧ ∀𝑥 ∈ ran 𝑔𝑦 ∈ ran 𝑔((𝑓𝑥)(𝑓𝑦)) = (𝑓‘(𝑥𝑔𝑦)))})
 
Theoremelghomlem1OLD 35970* Obsolete as of 15-Mar-2020. Lemma for elghomOLD 35972. (Contributed by Paul Chapman, 25-Feb-2008.) (New usage is discouraged.) (Proof modification is discouraged.)
𝑆 = {𝑓 ∣ (𝑓:ran 𝐺⟶ran 𝐻 ∧ ∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝑓𝑥)𝐻(𝑓𝑦)) = (𝑓‘(𝑥𝐺𝑦)))}       ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp) → (𝐺 GrpOpHom 𝐻) = 𝑆)
 
Theoremelghomlem2OLD 35971* Obsolete as of 15-Mar-2020. Lemma for elghomOLD 35972. (Contributed by Paul Chapman, 25-Feb-2008.) (New usage is discouraged.) (Proof modification is discouraged.)
𝑆 = {𝑓 ∣ (𝑓:ran 𝐺⟶ran 𝐻 ∧ ∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝑓𝑥)𝐻(𝑓𝑦)) = (𝑓‘(𝑥𝐺𝑦)))}       ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp) → (𝐹 ∈ (𝐺 GrpOpHom 𝐻) ↔ (𝐹:ran 𝐺⟶ran 𝐻 ∧ ∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝐹𝑥)𝐻(𝐹𝑦)) = (𝐹‘(𝑥𝐺𝑦)))))
 
TheoremelghomOLD 35972* Obsolete version of isghm 18749 as of 15-Mar-2020. Membership in the set of group homomorphisms from 𝐺 to 𝐻. (Contributed by Paul Chapman, 3-Mar-2008.) (New usage is discouraged.) (Proof modification is discouraged.)
𝑋 = ran 𝐺    &   𝑊 = ran 𝐻       ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp) → (𝐹 ∈ (𝐺 GrpOpHom 𝐻) ↔ (𝐹:𝑋𝑊 ∧ ∀𝑥𝑋𝑦𝑋 ((𝐹𝑥)𝐻(𝐹𝑦)) = (𝐹‘(𝑥𝐺𝑦)))))
 
TheoremghomlinOLD 35973 Obsolete version of ghmlin 18754 as of 15-Mar-2020. Linearity of a group homomorphism. (Contributed by Paul Chapman, 3-Mar-2008.) (New usage is discouraged.) (Proof modification is discouraged.)
𝑋 = ran 𝐺       (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝐴𝑋𝐵𝑋)) → ((𝐹𝐴)𝐻(𝐹𝐵)) = (𝐹‘(𝐴𝐺𝐵)))
 
TheoremghomidOLD 35974 Obsolete version of ghmid 18755 as of 15-Mar-2020. A group homomorphism maps identity element to identity element. (Contributed by Paul Chapman, 3-Mar-2008.) (New usage is discouraged.) (Proof modification is discouraged.)
𝑈 = (GId‘𝐺)    &   𝑇 = (GId‘𝐻)       ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → (𝐹𝑈) = 𝑇)
 
Theoremghomf 35975 Mapping property of a group homomorphism. (Contributed by Jeff Madsen, 1-Dec-2009.)
𝑋 = ran 𝐺    &   𝑊 = ran 𝐻       ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → 𝐹:𝑋𝑊)
 
Theoremghomco 35976 The composition of two group homomorphisms is a group homomorphism. (Contributed by Jeff Madsen, 1-Dec-2009.) (Revised by Mario Carneiro, 27-Dec-2014.)
(((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐾 ∈ GrpOp) ∧ (𝑆 ∈ (𝐺 GrpOpHom 𝐻) ∧ 𝑇 ∈ (𝐻 GrpOpHom 𝐾))) → (𝑇𝑆) ∈ (𝐺 GrpOpHom 𝐾))
 
Theoremghomdiv 35977 Group homomorphisms preserve division. (Contributed by Jeff Madsen, 16-Jun-2011.)
𝑋 = ran 𝐺    &   𝐷 = ( /𝑔𝐺)    &   𝐶 = ( /𝑔𝐻)       (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝐴𝑋𝐵𝑋)) → (𝐹‘(𝐴𝐷𝐵)) = ((𝐹𝐴)𝐶(𝐹𝐵)))
 
Theoremgrpokerinj 35978 A group homomorphism is injective if and only if its kernel is zero. (Contributed by Jeff Madsen, 16-Jun-2011.)
𝑋 = ran 𝐺    &   𝑊 = (GId‘𝐺)    &   𝑌 = ran 𝐻    &   𝑈 = (GId‘𝐻)       ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → (𝐹:𝑋1-1𝑌 ↔ (𝐹 “ {𝑈}) = {𝑊}))
 
20.20.16  Rings
 
Syntaxcrngo 35979 Extend class notation with the class of all unital rings.
class RingOps
 
Definitiondf-rngo 35980* Define the class of all unital rings. (Contributed by Jeff Hankins, 21-Nov-2006.) (New usage is discouraged.)
RingOps = {⟨𝑔, ⟩ ∣ ((𝑔 ∈ AbelOp ∧ :(ran 𝑔 × ran 𝑔)⟶ran 𝑔) ∧ (∀𝑥 ∈ ran 𝑔𝑦 ∈ ran 𝑔𝑧 ∈ ran 𝑔(((𝑥𝑦)𝑧) = (𝑥(𝑦𝑧)) ∧ (𝑥(𝑦𝑔𝑧)) = ((𝑥𝑦)𝑔(𝑥𝑧)) ∧ ((𝑥𝑔𝑦)𝑧) = ((𝑥𝑧)𝑔(𝑦𝑧))) ∧ ∃𝑥 ∈ ran 𝑔𝑦 ∈ ran 𝑔((𝑥𝑦) = 𝑦 ∧ (𝑦𝑥) = 𝑦)))}
 
Theoremrelrngo 35981 The class of all unital rings is a relation. (Contributed by FL, 31-Aug-2009.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.)
Rel RingOps
 
Theoremisrngo 35982* The predicate "is a (unital) ring." Definition of ring with unit in [Schechter] p. 187. (Contributed by Jeff Hankins, 21-Nov-2006.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.)
𝑋 = ran 𝐺       (𝐻𝐴 → (⟨𝐺, 𝐻⟩ ∈ RingOps ↔ ((𝐺 ∈ AbelOp ∧ 𝐻:(𝑋 × 𝑋)⟶𝑋) ∧ (∀𝑥𝑋𝑦𝑋𝑧𝑋 (((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ (𝑥𝐻(𝑦𝐺𝑧)) = ((𝑥𝐻𝑦)𝐺(𝑥𝐻𝑧)) ∧ ((𝑥𝐺𝑦)𝐻𝑧) = ((𝑥𝐻𝑧)𝐺(𝑦𝐻𝑧))) ∧ ∃𝑥𝑋𝑦𝑋 ((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦)))))
 
Theoremisrngod 35983* Conditions that determine a ring. (Changed label from isringd 19739 to isrngod 35983-NM 2-Aug-2013.) (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.)
(𝜑𝐺 ∈ AbelOp)    &   (𝜑𝑋 = ran 𝐺)    &   (𝜑𝐻:(𝑋 × 𝑋)⟶𝑋)    &   ((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → ((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)))    &   ((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → (𝑥𝐻(𝑦𝐺𝑧)) = ((𝑥𝐻𝑦)𝐺(𝑥𝐻𝑧)))    &   ((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → ((𝑥𝐺𝑦)𝐻𝑧) = ((𝑥𝐻𝑧)𝐺(𝑦𝐻𝑧)))    &   (𝜑𝑈𝑋)    &   ((𝜑𝑦𝑋) → (𝑈𝐻𝑦) = 𝑦)    &   ((𝜑𝑦𝑋) → (𝑦𝐻𝑈) = 𝑦)       (𝜑 → ⟨𝐺, 𝐻⟩ ∈ RingOps)
 
Theoremrngoi 35984* The properties of a unital ring. (Contributed by Steve Rodriguez, 8-Sep-2007.) (Proof shortened by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.)
𝐺 = (1st𝑅)    &   𝐻 = (2nd𝑅)    &   𝑋 = ran 𝐺       (𝑅 ∈ RingOps → ((𝐺 ∈ AbelOp ∧ 𝐻:(𝑋 × 𝑋)⟶𝑋) ∧ (∀𝑥𝑋𝑦𝑋𝑧𝑋 (((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ (𝑥𝐻(𝑦𝐺𝑧)) = ((𝑥𝐻𝑦)𝐺(𝑥𝐻𝑧)) ∧ ((𝑥𝐺𝑦)𝐻𝑧) = ((𝑥𝐻𝑧)𝐺(𝑦𝐻𝑧))) ∧ ∃𝑥𝑋𝑦𝑋 ((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦))))
 
Theoremrngosm 35985 Functionality of the multiplication operation of a ring. (Contributed by Steve Rodriguez, 9-Sep-2007.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.)
𝐺 = (1st𝑅)    &   𝐻 = (2nd𝑅)    &   𝑋 = ran 𝐺       (𝑅 ∈ RingOps → 𝐻:(𝑋 × 𝑋)⟶𝑋)
 
Theoremrngocl 35986 Closure of the multiplication operation of a ring. (Contributed by Steve Rodriguez, 9-Sep-2007.) (New usage is discouraged.)
𝐺 = (1st𝑅)    &   𝐻 = (2nd𝑅)    &   𝑋 = ran 𝐺       ((𝑅 ∈ RingOps ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐻𝐵) ∈ 𝑋)
 
Theoremrngoid 35987* The multiplication operation of a unital ring has (one or more) identity elements. (Contributed by Steve Rodriguez, 9-Sep-2007.) (Revised by Mario Carneiro, 22-Dec-2013.) (New usage is discouraged.)
𝐺 = (1st𝑅)    &   𝐻 = (2nd𝑅)    &   𝑋 = ran 𝐺       ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → ∃𝑢𝑋 ((𝑢𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑢) = 𝐴))
 
Theoremrngoideu 35988* The unit element of a ring is unique. (Contributed by NM, 4-Apr-2009.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.)
𝐺 = (1st𝑅)    &   𝐻 = (2nd𝑅)    &   𝑋 = ran 𝐺       (𝑅 ∈ RingOps → ∃!𝑢𝑋𝑥𝑋 ((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥))
 
Theoremrngodi 35989 Distributive law for the multiplication operation of a ring (left-distributivity). (Contributed by Steve Rodriguez, 9-Sep-2007.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.)
𝐺 = (1st𝑅)    &   𝐻 = (2nd𝑅)    &   𝑋 = ran 𝐺       ((𝑅 ∈ RingOps ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝐻(𝐵𝐺𝐶)) = ((𝐴𝐻𝐵)𝐺(𝐴𝐻𝐶)))
 
Theoremrngodir 35990 Distributive law for the multiplication operation of a ring (right-distributivity). (Contributed by Steve Rodriguez, 9-Sep-2007.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.)
𝐺 = (1st𝑅)    &   𝐻 = (2nd𝑅)    &   𝑋 = ran 𝐺       ((𝑅 ∈ RingOps ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐺𝐵)𝐻𝐶) = ((𝐴𝐻𝐶)𝐺(𝐵𝐻𝐶)))
 
Theoremrngoass 35991 Associative law for the multiplication operation of a ring. (Contributed by Steve Rodriguez, 9-Sep-2007.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.)
𝐺 = (1st𝑅)    &   𝐻 = (2nd𝑅)    &   𝑋 = ran 𝐺       ((𝑅 ∈ RingOps ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐻𝐵)𝐻𝐶) = (𝐴𝐻(𝐵𝐻𝐶)))
 
Theoremrngo2 35992* A ring element plus itself is two times the element. (Contributed by Steve Rodriguez, 9-Sep-2007.) (Revised by Mario Carneiro, 22-Dec-2013.) (New usage is discouraged.)
𝐺 = (1st𝑅)    &   𝐻 = (2nd𝑅)    &   𝑋 = ran 𝐺       ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → ∃𝑥𝑋 (𝐴𝐺𝐴) = ((𝑥𝐺𝑥)𝐻𝐴))
 
Theoremrngoablo 35993 A ring's addition operation is an Abelian group operation. (Contributed by Steve Rodriguez, 9-Sep-2007.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.)
𝐺 = (1st𝑅)       (𝑅 ∈ RingOps → 𝐺 ∈ AbelOp)
 
Theoremrngoablo2 35994 In a unital ring the addition is an abelian group. (Contributed by FL, 31-Aug-2009.) (New usage is discouraged.)
(⟨𝐺, 𝐻⟩ ∈ RingOps → 𝐺 ∈ AbelOp)
 
Theoremrngogrpo 35995 A ring's addition operation is a group operation. (Contributed by Steve Rodriguez, 9-Sep-2007.) (New usage is discouraged.)
𝐺 = (1st𝑅)       (𝑅 ∈ RingOps → 𝐺 ∈ GrpOp)
 
Theoremrngone0 35996 The base set of a ring is not empty. (Contributed by FL, 24-Jan-2010.) (New usage is discouraged.)
𝐺 = (1st𝑅)    &   𝑋 = ran 𝐺       (𝑅 ∈ RingOps → 𝑋 ≠ ∅)
 
Theoremrngogcl 35997 Closure law for the addition (group) operation of a ring. (Contributed by Steve Rodriguez, 9-Sep-2007.) (New usage is discouraged.)
𝐺 = (1st𝑅)    &   𝑋 = ran 𝐺       ((𝑅 ∈ RingOps ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐺𝐵) ∈ 𝑋)
 
Theoremrngocom 35998 The addition operation of a ring is commutative. (Contributed by Steve Rodriguez, 9-Sep-2007.) (New usage is discouraged.)
𝐺 = (1st𝑅)    &   𝑋 = ran 𝐺       ((𝑅 ∈ RingOps ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐺𝐵) = (𝐵𝐺𝐴))
 
Theoremrngoaass 35999 The addition operation of a ring is associative. (Contributed by Steve Rodriguez, 9-Sep-2007.) (New usage is discouraged.)
𝐺 = (1st𝑅)    &   𝑋 = ran 𝐺       ((𝑅 ∈ RingOps ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐺𝐵)𝐺𝐶) = (𝐴𝐺(𝐵𝐺𝐶)))
 
Theoremrngoa32 36000 The addition operation of a ring is commutative. (Contributed by Steve Rodriguez, 9-Sep-2007.) (New usage is discouraged.)
𝐺 = (1st𝑅)    &   𝑋 = ran 𝐺       ((𝑅 ∈ RingOps ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐺𝐵)𝐺𝐶) = ((𝐴𝐺𝐶)𝐺𝐵))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46395
  Copyright terms: Public domain < Previous  Next >