| Metamath
Proof Explorer Theorem List (p. 360 of 499) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30893) |
(30894-32416) |
(32417-49836) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Definition | df-range 35901 | Define the range function. See brrange 35967 for its value. (Contributed by Scott Fenton, 11-Apr-2014.) |
| ⊢ Range = Image(2nd ↾ (V × V)) | ||
| Definition | df-cup 35902 | Define the little cup function. See brcup 35972 for its value. (Contributed by Scott Fenton, 14-Apr-2014.) |
| ⊢ Cup = (((V × V) × V) ∖ ran ((V ⊗ E ) △ (((◡1st ∘ E ) ∪ (◡2nd ∘ E )) ⊗ V))) | ||
| Definition | df-cap 35903 | Define the little cap function. See brcap 35973 for its value. (Contributed by Scott Fenton, 17-Apr-2014.) |
| ⊢ Cap = (((V × V) × V) ∖ ran ((V ⊗ E ) △ (((◡1st ∘ E ) ∩ (◡2nd ∘ E )) ⊗ V))) | ||
| Definition | df-restrict 35904 | Define the restriction function. See brrestrict 35982 for its value. (Contributed by Scott Fenton, 17-Apr-2014.) |
| ⊢ Restrict = (Cap ∘ (1st ⊗ (Cart ∘ (2nd ⊗ (Range ∘ 1st ))))) | ||
| Definition | df-succf 35905 | Define the successor function. See brsuccf 35974 for its value. (Contributed by Scott Fenton, 14-Apr-2014.) |
| ⊢ Succ = (Cup ∘ ( I ⊗ Singleton)) | ||
| Definition | df-apply 35906 | Define the application function. See brapply 35971 for its value. (Contributed by Scott Fenton, 12-Apr-2014.) |
| ⊢ Apply = (( Bigcup ∘ Bigcup ) ∘ (((V × V) ∖ ran ((V ⊗ E ) △ (( E ↾ Singletons ) ⊗ V))) ∘ ((Singleton ∘ Img) ∘ pprod( I , Singleton)))) | ||
| Definition | df-funpart 35907 | Define the functional part of a class 𝐹. This is the maximal part of 𝐹 that is a function. See funpartfun 35976 and funpartfv 35978 for the meaning of this statement. (Contributed by Scott Fenton, 16-Apr-2014.) |
| ⊢ Funpart𝐹 = (𝐹 ↾ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons ))) | ||
| Definition | df-fullfun 35908 | Define the full function over 𝐹. This is a function with domain V that always agrees with 𝐹 for its value. (Contributed by Scott Fenton, 17-Apr-2014.) |
| ⊢ FullFun𝐹 = (Funpart𝐹 ∪ ((V ∖ dom Funpart𝐹) × {∅})) | ||
| Definition | df-ub 35909 | Define the upper bound relationship functor. See brub 35987 for value. (Contributed by Scott Fenton, 3-May-2018.) |
| ⊢ UB𝑅 = ((V × V) ∖ ((V ∖ 𝑅) ∘ ◡ E )) | ||
| Definition | df-lb 35910 | Define the lower bound relationship functor. See brlb 35988 for value. (Contributed by Scott Fenton, 3-May-2018.) |
| ⊢ LB𝑅 = UB◡𝑅 | ||
| Theorem | txpss3v 35911 | A tail Cartesian product is a subset of the class of ordered triples. (Contributed by Scott Fenton, 31-Mar-2012.) |
| ⊢ (𝐴 ⊗ 𝐵) ⊆ (V × (V × V)) | ||
| Theorem | txprel 35912 | A tail Cartesian product is a relationship. (Contributed by Scott Fenton, 31-Mar-2012.) |
| ⊢ Rel (𝐴 ⊗ 𝐵) | ||
| Theorem | brtxp 35913 | Characterize a ternary relation over a tail Cartesian product. Together with txpss3v 35911, this completely defines membership in a tail cross. (Contributed by Scott Fenton, 31-Mar-2012.) (Proof shortened by Peter Mazsa, 2-Oct-2022.) |
| ⊢ 𝑋 ∈ V & ⊢ 𝑌 ∈ V & ⊢ 𝑍 ∈ V ⇒ ⊢ (𝑋(𝐴 ⊗ 𝐵)〈𝑌, 𝑍〉 ↔ (𝑋𝐴𝑌 ∧ 𝑋𝐵𝑍)) | ||
| Theorem | brtxp2 35914* | The binary relation over a tail cross when the second argument is not an ordered pair. (Contributed by Scott Fenton, 14-Apr-2014.) (Revised by Mario Carneiro, 3-May-2015.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ (𝐴(𝑅 ⊗ 𝑆)𝐵 ↔ ∃𝑥∃𝑦(𝐵 = 〈𝑥, 𝑦〉 ∧ 𝐴𝑅𝑥 ∧ 𝐴𝑆𝑦)) | ||
| Theorem | dfpprod2 35915 | Expanded definition of parallel product. (Contributed by Scott Fenton, 3-May-2014.) |
| ⊢ pprod(𝐴, 𝐵) = ((◡(1st ↾ (V × V)) ∘ (𝐴 ∘ (1st ↾ (V × V)))) ∩ (◡(2nd ↾ (V × V)) ∘ (𝐵 ∘ (2nd ↾ (V × V))))) | ||
| Theorem | pprodcnveq 35916 | A converse law for parallel product. (Contributed by Scott Fenton, 3-May-2014.) |
| ⊢ pprod(𝑅, 𝑆) = ◡pprod(◡𝑅, ◡𝑆) | ||
| Theorem | pprodss4v 35917 | The parallel product is a subclass of ((V × V) × (V × V)). (Contributed by Scott Fenton, 11-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) (Proof shortened by Peter Mazsa, 2-Oct-2022.) |
| ⊢ pprod(𝐴, 𝐵) ⊆ ((V × V) × (V × V)) | ||
| Theorem | brpprod 35918 | Characterize a quaternary relation over a tail Cartesian product. Together with pprodss4v 35917, this completely defines membership in a parallel product. (Contributed by Scott Fenton, 11-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ 𝑋 ∈ V & ⊢ 𝑌 ∈ V & ⊢ 𝑍 ∈ V & ⊢ 𝑊 ∈ V ⇒ ⊢ (〈𝑋, 𝑌〉pprod(𝐴, 𝐵)〈𝑍, 𝑊〉 ↔ (𝑋𝐴𝑍 ∧ 𝑌𝐵𝑊)) | ||
| Theorem | brpprod3a 35919* | Condition for parallel product when the last argument is not an ordered pair. (Contributed by Scott Fenton, 11-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ 𝑋 ∈ V & ⊢ 𝑌 ∈ V & ⊢ 𝑍 ∈ V ⇒ ⊢ (〈𝑋, 𝑌〉pprod(𝑅, 𝑆)𝑍 ↔ ∃𝑧∃𝑤(𝑍 = 〈𝑧, 𝑤〉 ∧ 𝑋𝑅𝑧 ∧ 𝑌𝑆𝑤)) | ||
| Theorem | brpprod3b 35920* | Condition for parallel product when the first argument is not an ordered pair. (Contributed by Scott Fenton, 3-May-2014.) |
| ⊢ 𝑋 ∈ V & ⊢ 𝑌 ∈ V & ⊢ 𝑍 ∈ V ⇒ ⊢ (𝑋pprod(𝑅, 𝑆)〈𝑌, 𝑍〉 ↔ ∃𝑧∃𝑤(𝑋 = 〈𝑧, 𝑤〉 ∧ 𝑧𝑅𝑌 ∧ 𝑤𝑆𝑍)) | ||
| Theorem | relsset 35921 | The subset class is a binary relation. (Contributed by Scott Fenton, 31-Mar-2012.) |
| ⊢ Rel SSet | ||
| Theorem | brsset 35922 | For sets, the SSet binary relation is equivalent to the subset relationship. (Contributed by Scott Fenton, 31-Mar-2012.) |
| ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴 SSet 𝐵 ↔ 𝐴 ⊆ 𝐵) | ||
| Theorem | idsset 35923 | I is equal to the intersection of SSet and its converse. (Contributed by Scott Fenton, 31-Mar-2012.) |
| ⊢ I = ( SSet ∩ ◡ SSet ) | ||
| Theorem | eltrans 35924 | Membership in the class of all transitive sets. (Contributed by Scott Fenton, 31-Mar-2012.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ (𝐴 ∈ Trans ↔ Tr 𝐴) | ||
| Theorem | dfon3 35925 | A quantifier-free definition of On. (Contributed by Scott Fenton, 5-Apr-2012.) |
| ⊢ On = (V ∖ ran (( SSet ∩ ( Trans × V)) ∖ ( I ∪ E ))) | ||
| Theorem | dfon4 35926 | Another quantifier-free definition of On. (Contributed by Scott Fenton, 4-May-2014.) |
| ⊢ On = (V ∖ (( SSet ∖ ( I ∪ E )) “ Trans )) | ||
| Theorem | brtxpsd 35927* | Expansion of a common form used in quantifier-free definitions. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (¬ 𝐴ran ((V ⊗ E ) △ (𝑅 ⊗ V))𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐵 ↔ 𝑥𝑅𝐴)) | ||
| Theorem | brtxpsd2 35928* | Another common abbreviation for quantifier-free definitions. (Contributed by Scott Fenton, 21-Apr-2014.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝑅 = (𝐶 ∖ ran ((V ⊗ E ) △ (𝑆 ⊗ V))) & ⊢ 𝐴𝐶𝐵 ⇒ ⊢ (𝐴𝑅𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐵 ↔ 𝑥𝑆𝐴)) | ||
| Theorem | brtxpsd3 35929* | A third common abbreviation for quantifier-free definitions. (Contributed by Scott Fenton, 3-May-2014.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝑅 = (𝐶 ∖ ran ((V ⊗ E ) △ (𝑆 ⊗ V))) & ⊢ 𝐴𝐶𝐵 & ⊢ (𝑥 ∈ 𝑋 ↔ 𝑥𝑆𝐴) ⇒ ⊢ (𝐴𝑅𝐵 ↔ 𝐵 = 𝑋) | ||
| Theorem | relbigcup 35930 | The Bigcup relationship is a relationship. (Contributed by Scott Fenton, 11-Apr-2012.) |
| ⊢ Rel Bigcup | ||
| Theorem | brbigcup 35931 | Binary relation over Bigcup . (Contributed by Scott Fenton, 11-Apr-2012.) |
| ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴 Bigcup 𝐵 ↔ ∪ 𝐴 = 𝐵) | ||
| Theorem | dfbigcup2 35932 | Bigcup using maps-to notation. (Contributed by Scott Fenton, 16-Apr-2012.) |
| ⊢ Bigcup = (𝑥 ∈ V ↦ ∪ 𝑥) | ||
| Theorem | fobigcup 35933 | Bigcup maps the universe onto itself. (Contributed by Scott Fenton, 16-Apr-2012.) |
| ⊢ Bigcup :V–onto→V | ||
| Theorem | fnbigcup 35934 | Bigcup is a function over the universal class. (Contributed by Scott Fenton, 11-Apr-2012.) |
| ⊢ Bigcup Fn V | ||
| Theorem | fvbigcup 35935 | For sets, Bigcup yields union. (Contributed by Scott Fenton, 11-Apr-2012.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ ( Bigcup ‘𝐴) = ∪ 𝐴 | ||
| Theorem | elfix 35936 | Membership in the fixpoints of a class. (Contributed by Scott Fenton, 11-Apr-2012.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ (𝐴 ∈ Fix 𝑅 ↔ 𝐴𝑅𝐴) | ||
| Theorem | elfix2 35937 | Alternative membership in the fixpoint of a class. (Contributed by Scott Fenton, 11-Apr-2012.) |
| ⊢ Rel 𝑅 ⇒ ⊢ (𝐴 ∈ Fix 𝑅 ↔ 𝐴𝑅𝐴) | ||
| Theorem | dffix2 35938 | The fixpoints of a class in terms of its range. (Contributed by Scott Fenton, 16-Apr-2012.) |
| ⊢ Fix 𝐴 = ran (𝐴 ∩ I ) | ||
| Theorem | fixssdm 35939 | The fixpoints of a class are a subset of its domain. (Contributed by Scott Fenton, 16-Apr-2012.) |
| ⊢ Fix 𝐴 ⊆ dom 𝐴 | ||
| Theorem | fixssrn 35940 | The fixpoints of a class are a subset of its range. (Contributed by Scott Fenton, 16-Apr-2012.) |
| ⊢ Fix 𝐴 ⊆ ran 𝐴 | ||
| Theorem | fixcnv 35941 | The fixpoints of a class are the same as those of its converse. (Contributed by Scott Fenton, 16-Apr-2012.) |
| ⊢ Fix 𝐴 = Fix ◡𝐴 | ||
| Theorem | fixun 35942 | The fixpoint operator distributes over union. (Contributed by Scott Fenton, 16-Apr-2012.) |
| ⊢ Fix (𝐴 ∪ 𝐵) = ( Fix 𝐴 ∪ Fix 𝐵) | ||
| Theorem | ellimits 35943 | Membership in the class of all limit ordinals. (Contributed by Scott Fenton, 11-Apr-2012.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ (𝐴 ∈ Limits ↔ Lim 𝐴) | ||
| Theorem | limitssson 35944 | The class of all limit ordinals is a subclass of the class of all ordinals. (Contributed by Scott Fenton, 11-Apr-2012.) |
| ⊢ Limits ⊆ On | ||
| Theorem | dfom5b 35945 | A quantifier-free definition of ω that does not depend on ax-inf 9528. (Note: label was changed from dfom5 9540 to dfom5b 35945 to prevent naming conflict. NM, 12-Feb-2013.) (Contributed by Scott Fenton, 11-Apr-2012.) |
| ⊢ ω = (On ∩ ∩ Limits ) | ||
| Theorem | sscoid 35946 | A condition for subset and composition with identity. (Contributed by Scott Fenton, 13-Apr-2018.) |
| ⊢ (𝐴 ⊆ ( I ∘ 𝐵) ↔ (Rel 𝐴 ∧ 𝐴 ⊆ 𝐵)) | ||
| Theorem | dffun10 35947 | Another potential definition of functionality. Based on statements in http://people.math.gatech.edu/~belinfan/research/autoreas/otter/sum/fs/. (Contributed by Scott Fenton, 30-Aug-2017.) |
| ⊢ (Fun 𝐹 ↔ 𝐹 ⊆ ( I ∘ (V ∖ ((V ∖ I ) ∘ 𝐹)))) | ||
| Theorem | elfuns 35948 | Membership in the class of all functions. (Contributed by Scott Fenton, 18-Feb-2013.) |
| ⊢ 𝐹 ∈ V ⇒ ⊢ (𝐹 ∈ Funs ↔ Fun 𝐹) | ||
| Theorem | elfunsg 35949 | Closed form of elfuns 35948. (Contributed by Scott Fenton, 2-May-2014.) |
| ⊢ (𝐹 ∈ 𝑉 → (𝐹 ∈ Funs ↔ Fun 𝐹)) | ||
| Theorem | brsingle 35950 | The binary relation form of the singleton function. (Contributed by Scott Fenton, 4-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴Singleton𝐵 ↔ 𝐵 = {𝐴}) | ||
| Theorem | elsingles 35951* | Membership in the class of all singletons. (Contributed by Scott Fenton, 19-Feb-2013.) |
| ⊢ (𝐴 ∈ Singletons ↔ ∃𝑥 𝐴 = {𝑥}) | ||
| Theorem | fnsingle 35952 | The singleton relationship is a function over the universe. (Contributed by Scott Fenton, 4-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ Singleton Fn V | ||
| Theorem | fvsingle 35953 | The value of the singleton function. (Contributed by Scott Fenton, 4-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) (Revised by Scott Fenton, 13-Apr-2018.) |
| ⊢ (Singleton‘𝐴) = {𝐴} | ||
| Theorem | dfsingles2 35954* | Alternate definition of the class of all singletons. (Contributed by Scott Fenton, 20-Nov-2013.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ Singletons = {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} | ||
| Theorem | snelsingles 35955 | A singleton is a member of the class of all singletons. (Contributed by Scott Fenton, 19-Feb-2013.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ {𝐴} ∈ Singletons | ||
| Theorem | dfiota3 35956 | A definition of iota using minimal quantifiers. (Contributed by Scott Fenton, 19-Feb-2013.) |
| ⊢ (℩𝑥𝜑) = ∪ ∪ ({{𝑥 ∣ 𝜑}} ∩ Singletons ) | ||
| Theorem | dffv5 35957 | Another quantifier-free definition of function value. (Contributed by Scott Fenton, 19-Feb-2013.) |
| ⊢ (𝐹‘𝐴) = ∪ ∪ ({(𝐹 “ {𝐴})} ∩ Singletons ) | ||
| Theorem | unisnif 35958 | Express union of singleton in terms of if. (Contributed by Scott Fenton, 27-Mar-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ ∪ {𝐴} = if(𝐴 ∈ V, 𝐴, ∅) | ||
| Theorem | brimage 35959 | Binary relation form of the Image functor. (Contributed by Scott Fenton, 4-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴Image𝑅𝐵 ↔ 𝐵 = (𝑅 “ 𝐴)) | ||
| Theorem | brimageg 35960 | Closed form of brimage 35959. (Contributed by Scott Fenton, 4-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴Image𝑅𝐵 ↔ 𝐵 = (𝑅 “ 𝐴))) | ||
| Theorem | funimage 35961 | Image𝐴 is a function. (Contributed by Scott Fenton, 27-Mar-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ Fun Image𝐴 | ||
| Theorem | fnimage 35962* | Image𝑅 is a function over the set-like portion of 𝑅. (Contributed by Scott Fenton, 4-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ Image𝑅 Fn {𝑥 ∣ (𝑅 “ 𝑥) ∈ V} | ||
| Theorem | imageval 35963* | The image functor in maps-to notation. (Contributed by Scott Fenton, 4-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ Image𝑅 = (𝑥 ∈ V ↦ (𝑅 “ 𝑥)) | ||
| Theorem | fvimage 35964 | Value of the image functor. (Contributed by Scott Fenton, 4-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ (𝑅 “ 𝐴) ∈ 𝑊) → (Image𝑅‘𝐴) = (𝑅 “ 𝐴)) | ||
| Theorem | brcart 35965 | Binary relation form of the cartesian product operator. (Contributed by Scott Fenton, 11-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V ⇒ ⊢ (〈𝐴, 𝐵〉Cart𝐶 ↔ 𝐶 = (𝐴 × 𝐵)) | ||
| Theorem | brdomain 35966 | Binary relation form of the domain function. (Contributed by Scott Fenton, 11-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴Domain𝐵 ↔ 𝐵 = dom 𝐴) | ||
| Theorem | brrange 35967 | Binary relation form of the range function. (Contributed by Scott Fenton, 11-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴Range𝐵 ↔ 𝐵 = ran 𝐴) | ||
| Theorem | brdomaing 35968 | Closed form of brdomain 35966. (Contributed by Scott Fenton, 2-May-2014.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴Domain𝐵 ↔ 𝐵 = dom 𝐴)) | ||
| Theorem | brrangeg 35969 | Closed form of brrange 35967. (Contributed by Scott Fenton, 3-May-2014.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴Range𝐵 ↔ 𝐵 = ran 𝐴)) | ||
| Theorem | brimg 35970 | Binary relation form of the Img function. (Contributed by Scott Fenton, 12-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) (Proof shortened by Peter Mazsa, 2-Oct-2022.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V ⇒ ⊢ (〈𝐴, 𝐵〉Img𝐶 ↔ 𝐶 = (𝐴 “ 𝐵)) | ||
| Theorem | brapply 35971 | Binary relation form of the Apply function. (Contributed by Scott Fenton, 12-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) (Proof shortened by Peter Mazsa, 2-Oct-2022.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V ⇒ ⊢ (〈𝐴, 𝐵〉Apply𝐶 ↔ 𝐶 = (𝐴‘𝐵)) | ||
| Theorem | brcup 35972 | Binary relation form of the Cup function. (Contributed by Scott Fenton, 14-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V ⇒ ⊢ (〈𝐴, 𝐵〉Cup𝐶 ↔ 𝐶 = (𝐴 ∪ 𝐵)) | ||
| Theorem | brcap 35973 | Binary relation form of the Cap function. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V ⇒ ⊢ (〈𝐴, 𝐵〉Cap𝐶 ↔ 𝐶 = (𝐴 ∩ 𝐵)) | ||
| Theorem | brsuccf 35974 | Binary relation form of the Succ function. (Contributed by Scott Fenton, 14-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴Succ𝐵 ↔ 𝐵 = suc 𝐴) | ||
| Theorem | funpartlem 35975* | Lemma for funpartfun 35976. Show membership in the restriction. (Contributed by Scott Fenton, 4-Dec-2017.) |
| ⊢ (𝐴 ∈ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )) ↔ ∃𝑥(𝐹 “ {𝐴}) = {𝑥}) | ||
| Theorem | funpartfun 35976 | The functional part of 𝐹 is a function. (Contributed by Scott Fenton, 16-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) (Proof shortened by Peter Mazsa, 2-Oct-2022.) |
| ⊢ Fun Funpart𝐹 | ||
| Theorem | funpartss 35977 | The functional part of 𝐹 is a subset of 𝐹. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ Funpart𝐹 ⊆ 𝐹 | ||
| Theorem | funpartfv 35978 | The function value of the functional part is identical to the original functional value. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ (Funpart𝐹‘𝐴) = (𝐹‘𝐴) | ||
| Theorem | fullfunfnv 35979 | The full functional part of 𝐹 is a function over V. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ FullFun𝐹 Fn V | ||
| Theorem | fullfunfv 35980 | The function value of the full function of 𝐹 agrees with 𝐹. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ (FullFun𝐹‘𝐴) = (𝐹‘𝐴) | ||
| Theorem | brfullfun 35981 | A binary relation form condition for the full function. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴FullFun𝐹𝐵 ↔ 𝐵 = (𝐹‘𝐴)) | ||
| Theorem | brrestrict 35982 | Binary relation form of the Restrict function. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V ⇒ ⊢ (〈𝐴, 𝐵〉Restrict𝐶 ↔ 𝐶 = (𝐴 ↾ 𝐵)) | ||
| Theorem | dfrecs2 35983 | A quantifier-free definition of recs. (Contributed by Scott Fenton, 17-Jul-2020.) |
| ⊢ recs(𝐹) = ∪ (( Funs ∩ (◡Domain “ On)) ∖ dom ((◡ E ∘ Domain) ∖ Fix (◡Apply ∘ (FullFun𝐹 ∘ Restrict)))) | ||
| Theorem | dfrdg4 35984 | A quantifier-free definition of the recursive definition generator. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) (Proof shortened by Peter Mazsa, 2-Oct-2022.) |
| ⊢ rec(𝐹, 𝐴) = ∪ (( Funs ∩ (◡Domain “ On)) ∖ dom ((◡ E ∘ Domain) ∖ Fix (◡Apply ∘ (((V × {∅}) × {∪ {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ))))))) | ||
| Theorem | dfint3 35985 | Quantifier-free definition of class intersection. (Contributed by Scott Fenton, 13-Apr-2018.) |
| ⊢ ∩ 𝐴 = (V ∖ (◡(V ∖ E ) “ 𝐴)) | ||
| Theorem | imagesset 35986 | The Image functor applied to the converse of the subset relationship yields a subset of the subset relationship. (Contributed by Scott Fenton, 14-Apr-2018.) |
| ⊢ Image◡ SSet ⊆ SSet | ||
| Theorem | brub 35987* | Binary relation form of the upper bound functor. (Contributed by Scott Fenton, 3-May-2018.) |
| ⊢ 𝑆 ∈ V & ⊢ 𝐴 ∈ V ⇒ ⊢ (𝑆UB𝑅𝐴 ↔ ∀𝑥 ∈ 𝑆 𝑥𝑅𝐴) | ||
| Theorem | brlb 35988* | Binary relation form of the lower bound functor. (Contributed by Scott Fenton, 3-May-2018.) |
| ⊢ 𝑆 ∈ V & ⊢ 𝐴 ∈ V ⇒ ⊢ (𝑆LB𝑅𝐴 ↔ ∀𝑥 ∈ 𝑆 𝐴𝑅𝑥) | ||
| Syntax | caltop 35989 | Declare the syntax for an alternate ordered pair. |
| class ⟪𝐴, 𝐵⟫ | ||
| Syntax | caltxp 35990 | Declare the syntax for an alternate Cartesian product. |
| class (𝐴 ×× 𝐵) | ||
| Definition | df-altop 35991 | An alternative definition of ordered pairs. This definition removes a hypothesis from its defining theorem (see altopth 36002), making it more convenient in some circumstances. (Contributed by Scott Fenton, 22-Mar-2012.) |
| ⊢ ⟪𝐴, 𝐵⟫ = {{𝐴}, {𝐴, {𝐵}}} | ||
| Definition | df-altxp 35992* | Define Cartesian products of alternative ordered pairs. (Contributed by Scott Fenton, 23-Mar-2012.) |
| ⊢ (𝐴 ×× 𝐵) = {𝑧 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = ⟪𝑥, 𝑦⟫} | ||
| Theorem | altopex 35993 | Alternative ordered pairs always exist. (Contributed by Scott Fenton, 22-Mar-2012.) |
| ⊢ ⟪𝐴, 𝐵⟫ ∈ V | ||
| Theorem | altopthsn 35994 | Two alternate ordered pairs are equal iff the singletons of their respective elements are equal. Note that this holds regardless of sethood of any of the elements. (Contributed by Scott Fenton, 16-Apr-2012.) |
| ⊢ (⟪𝐴, 𝐵⟫ = ⟪𝐶, 𝐷⟫ ↔ ({𝐴} = {𝐶} ∧ {𝐵} = {𝐷})) | ||
| Theorem | altopeq12 35995 | Equality for alternate ordered pairs. (Contributed by Scott Fenton, 22-Mar-2012.) |
| ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → ⟪𝐴, 𝐶⟫ = ⟪𝐵, 𝐷⟫) | ||
| Theorem | altopeq1 35996 | Equality for alternate ordered pairs. (Contributed by Scott Fenton, 22-Mar-2012.) |
| ⊢ (𝐴 = 𝐵 → ⟪𝐴, 𝐶⟫ = ⟪𝐵, 𝐶⟫) | ||
| Theorem | altopeq2 35997 | Equality for alternate ordered pairs. (Contributed by Scott Fenton, 22-Mar-2012.) |
| ⊢ (𝐴 = 𝐵 → ⟪𝐶, 𝐴⟫ = ⟪𝐶, 𝐵⟫) | ||
| Theorem | altopth1 35998 | Equality of the first members of equal alternate ordered pairs, which holds regardless of the second members' sethood. (Contributed by Scott Fenton, 22-Mar-2012.) |
| ⊢ (𝐴 ∈ 𝑉 → (⟪𝐴, 𝐵⟫ = ⟪𝐶, 𝐷⟫ → 𝐴 = 𝐶)) | ||
| Theorem | altopth2 35999 | Equality of the second members of equal alternate ordered pairs, which holds regardless of the first members' sethood. (Contributed by Scott Fenton, 22-Mar-2012.) |
| ⊢ (𝐵 ∈ 𝑉 → (⟪𝐴, 𝐵⟫ = ⟪𝐶, 𝐷⟫ → 𝐵 = 𝐷)) | ||
| Theorem | altopthg 36000 | Alternate ordered pair theorem. (Contributed by Scott Fenton, 22-Mar-2012.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (⟪𝐴, 𝐵⟫ = ⟪𝐶, 𝐷⟫ ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |