MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfnot Structured version   Visualization version   GIF version

Theorem dfnot 1558
Description: Given falsum , we can define the negation of a wff 𝜑 as the statement that follows from assuming 𝜑. (Contributed by Mario Carneiro, 9-Feb-2017.) (Proof shortened by Wolf Lammen, 21-Jul-2019.)
Assertion
Ref Expression
dfnot 𝜑 ↔ (𝜑 → ⊥))

Proof of Theorem dfnot
StepHypRef Expression
1 fal 1553 . 2 ¬ ⊥
2 mtt 364 . 2 (¬ ⊥ → (¬ 𝜑 ↔ (𝜑 → ⊥)))
31, 2ax-mp 5 1 𝜑 ↔ (𝜑 → ⊥))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wfal 1551
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-tru 1542  df-fal 1552
This theorem is referenced by:  inegd  1559  ralf0  4441  bj-godellob  34714  irrdifflemf  35423
  Copyright terms: Public domain W3C validator