MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  conax1k Structured version   Visualization version   GIF version

Theorem conax1k 171
Description: Weakening of conax1 170. General instance of pm2.51 172 and of pm2.52 173. (Contributed by BJ, 28-Oct-2023.)
Assertion
Ref Expression
conax1k (¬ (𝜑𝜓) → (𝜒 → ¬ 𝜓))

Proof of Theorem conax1k
StepHypRef Expression
1 conax1 170 . 2 (¬ (𝜑𝜓) → ¬ 𝜓)
21a1d 25 1 (¬ (𝜑𝜓) → (𝜒 → ¬ 𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem is referenced by:  pm2.51  172  pm2.52  173
  Copyright terms: Public domain W3C validator