Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > a1d | Structured version Visualization version GIF version |
Description: Deduction introducing an embedded antecedent. Deduction form of ax-1 6 and a1i 11. (Contributed by NM, 5-Jan-1993.) (Proof shortened by Stefan Allan, 20-Mar-2006.) |
Ref | Expression |
---|---|
a1d.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
a1d | ⊢ (𝜑 → (𝜒 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | a1d.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | ax-1 6 | . 2 ⊢ (𝜓 → (𝜒 → 𝜓)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝜒 → 𝜓)) |
Copyright terms: Public domain | W3C validator |