Detailed syntax breakdown of Definition df-2ndf
Step | Hyp | Ref
| Expression |
1 | | c2ndf 17887 |
. 2
class
2ndF |
2 | | vr |
. . 3
setvar 𝑟 |
3 | | vs |
. . 3
setvar 𝑠 |
4 | | ccat 17373 |
. . 3
class
Cat |
5 | | vb |
. . . 4
setvar 𝑏 |
6 | 2 | cv 1538 |
. . . . . 6
class 𝑟 |
7 | | cbs 16912 |
. . . . . 6
class
Base |
8 | 6, 7 | cfv 6433 |
. . . . 5
class
(Base‘𝑟) |
9 | 3 | cv 1538 |
. . . . . 6
class 𝑠 |
10 | 9, 7 | cfv 6433 |
. . . . 5
class
(Base‘𝑠) |
11 | 8, 10 | cxp 5587 |
. . . 4
class
((Base‘𝑟)
× (Base‘𝑠)) |
12 | | c2nd 7830 |
. . . . . 6
class
2nd |
13 | 5 | cv 1538 |
. . . . . 6
class 𝑏 |
14 | 12, 13 | cres 5591 |
. . . . 5
class
(2nd ↾ 𝑏) |
15 | | vx |
. . . . . 6
setvar 𝑥 |
16 | | vy |
. . . . . 6
setvar 𝑦 |
17 | 15 | cv 1538 |
. . . . . . . 8
class 𝑥 |
18 | 16 | cv 1538 |
. . . . . . . 8
class 𝑦 |
19 | | cxpc 17885 |
. . . . . . . . . 10
class
×c |
20 | 6, 9, 19 | co 7275 |
. . . . . . . . 9
class (𝑟 ×c
𝑠) |
21 | | chom 16973 |
. . . . . . . . 9
class
Hom |
22 | 20, 21 | cfv 6433 |
. . . . . . . 8
class (Hom
‘(𝑟
×c 𝑠)) |
23 | 17, 18, 22 | co 7275 |
. . . . . . 7
class (𝑥(Hom ‘(𝑟 ×c 𝑠))𝑦) |
24 | 12, 23 | cres 5591 |
. . . . . 6
class
(2nd ↾ (𝑥(Hom ‘(𝑟 ×c 𝑠))𝑦)) |
25 | 15, 16, 13, 13, 24 | cmpo 7277 |
. . . . 5
class (𝑥 ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (2nd ↾ (𝑥(Hom ‘(𝑟 ×c 𝑠))𝑦))) |
26 | 14, 25 | cop 4567 |
. . . 4
class
〈(2nd ↾ 𝑏), (𝑥 ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (2nd ↾ (𝑥(Hom ‘(𝑟 ×c 𝑠))𝑦)))〉 |
27 | 5, 11, 26 | csb 3832 |
. . 3
class
⦋((Base‘𝑟) × (Base‘𝑠)) / 𝑏⦌〈(2nd ↾
𝑏), (𝑥 ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (2nd ↾ (𝑥(Hom ‘(𝑟 ×c 𝑠))𝑦)))〉 |
28 | 2, 3, 4, 4, 27 | cmpo 7277 |
. 2
class (𝑟 ∈ Cat, 𝑠 ∈ Cat ↦
⦋((Base‘𝑟) × (Base‘𝑠)) / 𝑏⦌〈(2nd ↾
𝑏), (𝑥 ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (2nd ↾ (𝑥(Hom ‘(𝑟 ×c 𝑠))𝑦)))〉) |
29 | 1, 28 | wceq 1539 |
1
wff
2ndF = (𝑟 ∈ Cat, 𝑠 ∈ Cat ↦
⦋((Base‘𝑟) × (Base‘𝑠)) / 𝑏⦌〈(2nd ↾
𝑏), (𝑥 ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (2nd ↾ (𝑥(Hom ‘(𝑟 ×c 𝑠))𝑦)))〉) |