MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2ndfval Structured version   Visualization version   GIF version

Theorem 2ndfval 18118
Description: Value of the first projection functor. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
1stfval.t 𝑇 = (𝐶 ×c 𝐷)
1stfval.b 𝐵 = (Base‘𝑇)
1stfval.h 𝐻 = (Hom ‘𝑇)
1stfval.c (𝜑𝐶 ∈ Cat)
1stfval.d (𝜑𝐷 ∈ Cat)
2ndfval.p 𝑄 = (𝐶 2ndF 𝐷)
Assertion
Ref Expression
2ndfval (𝜑𝑄 = ⟨(2nd𝐵), (𝑥𝐵, 𝑦𝐵 ↦ (2nd ↾ (𝑥𝐻𝑦)))⟩)
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐶,𝑦   𝑥,𝐷,𝑦   𝑥,𝐻,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝑄(𝑥,𝑦)   𝑇(𝑥,𝑦)

Proof of Theorem 2ndfval
Dummy variables 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2ndfval.p . 2 𝑄 = (𝐶 2ndF 𝐷)
2 1stfval.c . . 3 (𝜑𝐶 ∈ Cat)
3 1stfval.d . . 3 (𝜑𝐷 ∈ Cat)
4 fvex 6839 . . . . . . 7 (Base‘𝑐) ∈ V
5 fvex 6839 . . . . . . 7 (Base‘𝑑) ∈ V
64, 5xpex 7693 . . . . . 6 ((Base‘𝑐) × (Base‘𝑑)) ∈ V
76a1i 11 . . . . 5 ((𝑐 = 𝐶𝑑 = 𝐷) → ((Base‘𝑐) × (Base‘𝑑)) ∈ V)
8 simpl 482 . . . . . . . 8 ((𝑐 = 𝐶𝑑 = 𝐷) → 𝑐 = 𝐶)
98fveq2d 6830 . . . . . . 7 ((𝑐 = 𝐶𝑑 = 𝐷) → (Base‘𝑐) = (Base‘𝐶))
10 simpr 484 . . . . . . . 8 ((𝑐 = 𝐶𝑑 = 𝐷) → 𝑑 = 𝐷)
1110fveq2d 6830 . . . . . . 7 ((𝑐 = 𝐶𝑑 = 𝐷) → (Base‘𝑑) = (Base‘𝐷))
129, 11xpeq12d 5654 . . . . . 6 ((𝑐 = 𝐶𝑑 = 𝐷) → ((Base‘𝑐) × (Base‘𝑑)) = ((Base‘𝐶) × (Base‘𝐷)))
13 1stfval.t . . . . . . . 8 𝑇 = (𝐶 ×c 𝐷)
14 eqid 2729 . . . . . . . 8 (Base‘𝐶) = (Base‘𝐶)
15 eqid 2729 . . . . . . . 8 (Base‘𝐷) = (Base‘𝐷)
1613, 14, 15xpcbas 18102 . . . . . . 7 ((Base‘𝐶) × (Base‘𝐷)) = (Base‘𝑇)
17 1stfval.b . . . . . . 7 𝐵 = (Base‘𝑇)
1816, 17eqtr4i 2755 . . . . . 6 ((Base‘𝐶) × (Base‘𝐷)) = 𝐵
1912, 18eqtrdi 2780 . . . . 5 ((𝑐 = 𝐶𝑑 = 𝐷) → ((Base‘𝑐) × (Base‘𝑑)) = 𝐵)
20 simpr 484 . . . . . . 7 (((𝑐 = 𝐶𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → 𝑏 = 𝐵)
2120reseq2d 5934 . . . . . 6 (((𝑐 = 𝐶𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (2nd𝑏) = (2nd𝐵))
22 simpll 766 . . . . . . . . . . . . 13 (((𝑐 = 𝐶𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → 𝑐 = 𝐶)
23 simplr 768 . . . . . . . . . . . . 13 (((𝑐 = 𝐶𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → 𝑑 = 𝐷)
2422, 23oveq12d 7371 . . . . . . . . . . . 12 (((𝑐 = 𝐶𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (𝑐 ×c 𝑑) = (𝐶 ×c 𝐷))
2524, 13eqtr4di 2782 . . . . . . . . . . 11 (((𝑐 = 𝐶𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (𝑐 ×c 𝑑) = 𝑇)
2625fveq2d 6830 . . . . . . . . . 10 (((𝑐 = 𝐶𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (Hom ‘(𝑐 ×c 𝑑)) = (Hom ‘𝑇))
27 1stfval.h . . . . . . . . . 10 𝐻 = (Hom ‘𝑇)
2826, 27eqtr4di 2782 . . . . . . . . 9 (((𝑐 = 𝐶𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (Hom ‘(𝑐 ×c 𝑑)) = 𝐻)
2928oveqd 7370 . . . . . . . 8 (((𝑐 = 𝐶𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (𝑥(Hom ‘(𝑐 ×c 𝑑))𝑦) = (𝑥𝐻𝑦))
3029reseq2d 5934 . . . . . . 7 (((𝑐 = 𝐶𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (2nd ↾ (𝑥(Hom ‘(𝑐 ×c 𝑑))𝑦)) = (2nd ↾ (𝑥𝐻𝑦)))
3120, 20, 30mpoeq123dv 7428 . . . . . 6 (((𝑐 = 𝐶𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (𝑥𝑏, 𝑦𝑏 ↦ (2nd ↾ (𝑥(Hom ‘(𝑐 ×c 𝑑))𝑦))) = (𝑥𝐵, 𝑦𝐵 ↦ (2nd ↾ (𝑥𝐻𝑦))))
3221, 31opeq12d 4835 . . . . 5 (((𝑐 = 𝐶𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → ⟨(2nd𝑏), (𝑥𝑏, 𝑦𝑏 ↦ (2nd ↾ (𝑥(Hom ‘(𝑐 ×c 𝑑))𝑦)))⟩ = ⟨(2nd𝐵), (𝑥𝐵, 𝑦𝐵 ↦ (2nd ↾ (𝑥𝐻𝑦)))⟩)
337, 19, 32csbied2 3890 . . . 4 ((𝑐 = 𝐶𝑑 = 𝐷) → ((Base‘𝑐) × (Base‘𝑑)) / 𝑏⟨(2nd𝑏), (𝑥𝑏, 𝑦𝑏 ↦ (2nd ↾ (𝑥(Hom ‘(𝑐 ×c 𝑑))𝑦)))⟩ = ⟨(2nd𝐵), (𝑥𝐵, 𝑦𝐵 ↦ (2nd ↾ (𝑥𝐻𝑦)))⟩)
34 df-2ndf 18098 . . . 4 2ndF = (𝑐 ∈ Cat, 𝑑 ∈ Cat ↦ ((Base‘𝑐) × (Base‘𝑑)) / 𝑏⟨(2nd𝑏), (𝑥𝑏, 𝑦𝑏 ↦ (2nd ↾ (𝑥(Hom ‘(𝑐 ×c 𝑑))𝑦)))⟩)
35 opex 5411 . . . 4 ⟨(2nd𝐵), (𝑥𝐵, 𝑦𝐵 ↦ (2nd ↾ (𝑥𝐻𝑦)))⟩ ∈ V
3633, 34, 35ovmpoa 7508 . . 3 ((𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → (𝐶 2ndF 𝐷) = ⟨(2nd𝐵), (𝑥𝐵, 𝑦𝐵 ↦ (2nd ↾ (𝑥𝐻𝑦)))⟩)
372, 3, 36syl2anc 584 . 2 (𝜑 → (𝐶 2ndF 𝐷) = ⟨(2nd𝐵), (𝑥𝐵, 𝑦𝐵 ↦ (2nd ↾ (𝑥𝐻𝑦)))⟩)
381, 37eqtrid 2776 1 (𝜑𝑄 = ⟨(2nd𝐵), (𝑥𝐵, 𝑦𝐵 ↦ (2nd ↾ (𝑥𝐻𝑦)))⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3438  csb 3853  cop 4585   × cxp 5621  cres 5625  cfv 6486  (class class class)co 7353  cmpo 7355  2nd c2nd 7930  Basecbs 17138  Hom chom 17190  Catccat 17588   ×c cxpc 18092   2ndF c2ndf 18094
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-z 12490  df-dec 12610  df-slot 17111  df-ndx 17123  df-base 17139  df-hom 17203  df-cco 17204  df-xpc 18096  df-2ndf 18098
This theorem is referenced by:  2ndf1  18119  2ndf2  18120  2ndfcl  18122  oppc2ndf  49275  2ndfpropd  49277
  Copyright terms: Public domain W3C validator