MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2ndfval Structured version   Visualization version   GIF version

Theorem 2ndfval 17515
Description: Value of the first projection functor. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
1stfval.t 𝑇 = (𝐶 ×c 𝐷)
1stfval.b 𝐵 = (Base‘𝑇)
1stfval.h 𝐻 = (Hom ‘𝑇)
1stfval.c (𝜑𝐶 ∈ Cat)
1stfval.d (𝜑𝐷 ∈ Cat)
2ndfval.p 𝑄 = (𝐶 2ndF 𝐷)
Assertion
Ref Expression
2ndfval (𝜑𝑄 = ⟨(2nd𝐵), (𝑥𝐵, 𝑦𝐵 ↦ (2nd ↾ (𝑥𝐻𝑦)))⟩)
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐶,𝑦   𝑥,𝐷,𝑦   𝑥,𝐻,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝑄(𝑥,𝑦)   𝑇(𝑥,𝑦)

Proof of Theorem 2ndfval
Dummy variables 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2ndfval.p . 2 𝑄 = (𝐶 2ndF 𝐷)
2 1stfval.c . . 3 (𝜑𝐶 ∈ Cat)
3 1stfval.d . . 3 (𝜑𝐷 ∈ Cat)
4 fvex 6675 . . . . . . 7 (Base‘𝑐) ∈ V
5 fvex 6675 . . . . . . 7 (Base‘𝑑) ∈ V
64, 5xpex 7479 . . . . . 6 ((Base‘𝑐) × (Base‘𝑑)) ∈ V
76a1i 11 . . . . 5 ((𝑐 = 𝐶𝑑 = 𝐷) → ((Base‘𝑐) × (Base‘𝑑)) ∈ V)
8 simpl 486 . . . . . . . 8 ((𝑐 = 𝐶𝑑 = 𝐷) → 𝑐 = 𝐶)
98fveq2d 6666 . . . . . . 7 ((𝑐 = 𝐶𝑑 = 𝐷) → (Base‘𝑐) = (Base‘𝐶))
10 simpr 488 . . . . . . . 8 ((𝑐 = 𝐶𝑑 = 𝐷) → 𝑑 = 𝐷)
1110fveq2d 6666 . . . . . . 7 ((𝑐 = 𝐶𝑑 = 𝐷) → (Base‘𝑑) = (Base‘𝐷))
129, 11xpeq12d 5558 . . . . . 6 ((𝑐 = 𝐶𝑑 = 𝐷) → ((Base‘𝑐) × (Base‘𝑑)) = ((Base‘𝐶) × (Base‘𝐷)))
13 1stfval.t . . . . . . . 8 𝑇 = (𝐶 ×c 𝐷)
14 eqid 2758 . . . . . . . 8 (Base‘𝐶) = (Base‘𝐶)
15 eqid 2758 . . . . . . . 8 (Base‘𝐷) = (Base‘𝐷)
1613, 14, 15xpcbas 17499 . . . . . . 7 ((Base‘𝐶) × (Base‘𝐷)) = (Base‘𝑇)
17 1stfval.b . . . . . . 7 𝐵 = (Base‘𝑇)
1816, 17eqtr4i 2784 . . . . . 6 ((Base‘𝐶) × (Base‘𝐷)) = 𝐵
1912, 18eqtrdi 2809 . . . . 5 ((𝑐 = 𝐶𝑑 = 𝐷) → ((Base‘𝑐) × (Base‘𝑑)) = 𝐵)
20 simpr 488 . . . . . . 7 (((𝑐 = 𝐶𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → 𝑏 = 𝐵)
2120reseq2d 5827 . . . . . 6 (((𝑐 = 𝐶𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (2nd𝑏) = (2nd𝐵))
22 simpll 766 . . . . . . . . . . . . 13 (((𝑐 = 𝐶𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → 𝑐 = 𝐶)
23 simplr 768 . . . . . . . . . . . . 13 (((𝑐 = 𝐶𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → 𝑑 = 𝐷)
2422, 23oveq12d 7173 . . . . . . . . . . . 12 (((𝑐 = 𝐶𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (𝑐 ×c 𝑑) = (𝐶 ×c 𝐷))
2524, 13eqtr4di 2811 . . . . . . . . . . 11 (((𝑐 = 𝐶𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (𝑐 ×c 𝑑) = 𝑇)
2625fveq2d 6666 . . . . . . . . . 10 (((𝑐 = 𝐶𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (Hom ‘(𝑐 ×c 𝑑)) = (Hom ‘𝑇))
27 1stfval.h . . . . . . . . . 10 𝐻 = (Hom ‘𝑇)
2826, 27eqtr4di 2811 . . . . . . . . 9 (((𝑐 = 𝐶𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (Hom ‘(𝑐 ×c 𝑑)) = 𝐻)
2928oveqd 7172 . . . . . . . 8 (((𝑐 = 𝐶𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (𝑥(Hom ‘(𝑐 ×c 𝑑))𝑦) = (𝑥𝐻𝑦))
3029reseq2d 5827 . . . . . . 7 (((𝑐 = 𝐶𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (2nd ↾ (𝑥(Hom ‘(𝑐 ×c 𝑑))𝑦)) = (2nd ↾ (𝑥𝐻𝑦)))
3120, 20, 30mpoeq123dv 7228 . . . . . 6 (((𝑐 = 𝐶𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (𝑥𝑏, 𝑦𝑏 ↦ (2nd ↾ (𝑥(Hom ‘(𝑐 ×c 𝑑))𝑦))) = (𝑥𝐵, 𝑦𝐵 ↦ (2nd ↾ (𝑥𝐻𝑦))))
3221, 31opeq12d 4774 . . . . 5 (((𝑐 = 𝐶𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → ⟨(2nd𝑏), (𝑥𝑏, 𝑦𝑏 ↦ (2nd ↾ (𝑥(Hom ‘(𝑐 ×c 𝑑))𝑦)))⟩ = ⟨(2nd𝐵), (𝑥𝐵, 𝑦𝐵 ↦ (2nd ↾ (𝑥𝐻𝑦)))⟩)
337, 19, 32csbied2 3844 . . . 4 ((𝑐 = 𝐶𝑑 = 𝐷) → ((Base‘𝑐) × (Base‘𝑑)) / 𝑏⟨(2nd𝑏), (𝑥𝑏, 𝑦𝑏 ↦ (2nd ↾ (𝑥(Hom ‘(𝑐 ×c 𝑑))𝑦)))⟩ = ⟨(2nd𝐵), (𝑥𝐵, 𝑦𝐵 ↦ (2nd ↾ (𝑥𝐻𝑦)))⟩)
34 df-2ndf 17495 . . . 4 2ndF = (𝑐 ∈ Cat, 𝑑 ∈ Cat ↦ ((Base‘𝑐) × (Base‘𝑑)) / 𝑏⟨(2nd𝑏), (𝑥𝑏, 𝑦𝑏 ↦ (2nd ↾ (𝑥(Hom ‘(𝑐 ×c 𝑑))𝑦)))⟩)
35 opex 5327 . . . 4 ⟨(2nd𝐵), (𝑥𝐵, 𝑦𝐵 ↦ (2nd ↾ (𝑥𝐻𝑦)))⟩ ∈ V
3633, 34, 35ovmpoa 7305 . . 3 ((𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → (𝐶 2ndF 𝐷) = ⟨(2nd𝐵), (𝑥𝐵, 𝑦𝐵 ↦ (2nd ↾ (𝑥𝐻𝑦)))⟩)
372, 3, 36syl2anc 587 . 2 (𝜑 → (𝐶 2ndF 𝐷) = ⟨(2nd𝐵), (𝑥𝐵, 𝑦𝐵 ↦ (2nd ↾ (𝑥𝐻𝑦)))⟩)
381, 37syl5eq 2805 1 (𝜑𝑄 = ⟨(2nd𝐵), (𝑥𝐵, 𝑦𝐵 ↦ (2nd ↾ (𝑥𝐻𝑦)))⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  Vcvv 3409  csb 3807  cop 4531   × cxp 5525  cres 5529  cfv 6339  (class class class)co 7155  cmpo 7157  2nd c2nd 7697  Basecbs 16546  Hom chom 16639  Catccat 16998   ×c cxpc 17489   2ndF c2ndf 17491
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5159  ax-sep 5172  ax-nul 5179  ax-pow 5237  ax-pr 5301  ax-un 7464  ax-cnex 10636  ax-resscn 10637  ax-1cn 10638  ax-icn 10639  ax-addcl 10640  ax-addrcl 10641  ax-mulcl 10642  ax-mulrcl 10643  ax-mulcom 10644  ax-addass 10645  ax-mulass 10646  ax-distr 10647  ax-i2m1 10648  ax-1ne0 10649  ax-1rid 10650  ax-rnegex 10651  ax-rrecex 10652  ax-cnre 10653  ax-pre-lttri 10654  ax-pre-lttrn 10655  ax-pre-ltadd 10656  ax-pre-mulgt0 10657
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-iun 4888  df-br 5036  df-opab 5098  df-mpt 5116  df-tr 5142  df-id 5433  df-eprel 5438  df-po 5446  df-so 5447  df-fr 5486  df-we 5488  df-xp 5533  df-rel 5534  df-cnv 5535  df-co 5536  df-dm 5537  df-rn 5538  df-res 5539  df-ima 5540  df-pred 6130  df-ord 6176  df-on 6177  df-lim 6178  df-suc 6179  df-iota 6298  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7585  df-1st 7698  df-2nd 7699  df-wrecs 7962  df-recs 8023  df-rdg 8061  df-er 8304  df-en 8533  df-dom 8534  df-sdom 8535  df-pnf 10720  df-mnf 10721  df-xr 10722  df-ltxr 10723  df-le 10724  df-sub 10915  df-neg 10916  df-nn 11680  df-2 11742  df-3 11743  df-4 11744  df-5 11745  df-6 11746  df-7 11747  df-8 11748  df-9 11749  df-n0 11940  df-z 12026  df-dec 12143  df-ndx 16549  df-slot 16550  df-base 16552  df-hom 16652  df-cco 16653  df-xpc 17493  df-2ndf 17495
This theorem is referenced by:  2ndf1  17516  2ndf2  17517  2ndfcl  17519
  Copyright terms: Public domain W3C validator