MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2ndfval Structured version   Visualization version   GIF version

Theorem 2ndfval 18162
Description: Value of the first projection functor. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
1stfval.t 𝑇 = (𝐶 ×c 𝐷)
1stfval.b 𝐵 = (Base‘𝑇)
1stfval.h 𝐻 = (Hom ‘𝑇)
1stfval.c (𝜑𝐶 ∈ Cat)
1stfval.d (𝜑𝐷 ∈ Cat)
2ndfval.p 𝑄 = (𝐶 2ndF 𝐷)
Assertion
Ref Expression
2ndfval (𝜑𝑄 = ⟨(2nd𝐵), (𝑥𝐵, 𝑦𝐵 ↦ (2nd ↾ (𝑥𝐻𝑦)))⟩)
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐶,𝑦   𝑥,𝐷,𝑦   𝑥,𝐻,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝑄(𝑥,𝑦)   𝑇(𝑥,𝑦)

Proof of Theorem 2ndfval
Dummy variables 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2ndfval.p . 2 𝑄 = (𝐶 2ndF 𝐷)
2 1stfval.c . . 3 (𝜑𝐶 ∈ Cat)
3 1stfval.d . . 3 (𝜑𝐷 ∈ Cat)
4 fvex 6874 . . . . . . 7 (Base‘𝑐) ∈ V
5 fvex 6874 . . . . . . 7 (Base‘𝑑) ∈ V
64, 5xpex 7732 . . . . . 6 ((Base‘𝑐) × (Base‘𝑑)) ∈ V
76a1i 11 . . . . 5 ((𝑐 = 𝐶𝑑 = 𝐷) → ((Base‘𝑐) × (Base‘𝑑)) ∈ V)
8 simpl 482 . . . . . . . 8 ((𝑐 = 𝐶𝑑 = 𝐷) → 𝑐 = 𝐶)
98fveq2d 6865 . . . . . . 7 ((𝑐 = 𝐶𝑑 = 𝐷) → (Base‘𝑐) = (Base‘𝐶))
10 simpr 484 . . . . . . . 8 ((𝑐 = 𝐶𝑑 = 𝐷) → 𝑑 = 𝐷)
1110fveq2d 6865 . . . . . . 7 ((𝑐 = 𝐶𝑑 = 𝐷) → (Base‘𝑑) = (Base‘𝐷))
129, 11xpeq12d 5672 . . . . . 6 ((𝑐 = 𝐶𝑑 = 𝐷) → ((Base‘𝑐) × (Base‘𝑑)) = ((Base‘𝐶) × (Base‘𝐷)))
13 1stfval.t . . . . . . . 8 𝑇 = (𝐶 ×c 𝐷)
14 eqid 2730 . . . . . . . 8 (Base‘𝐶) = (Base‘𝐶)
15 eqid 2730 . . . . . . . 8 (Base‘𝐷) = (Base‘𝐷)
1613, 14, 15xpcbas 18146 . . . . . . 7 ((Base‘𝐶) × (Base‘𝐷)) = (Base‘𝑇)
17 1stfval.b . . . . . . 7 𝐵 = (Base‘𝑇)
1816, 17eqtr4i 2756 . . . . . 6 ((Base‘𝐶) × (Base‘𝐷)) = 𝐵
1912, 18eqtrdi 2781 . . . . 5 ((𝑐 = 𝐶𝑑 = 𝐷) → ((Base‘𝑐) × (Base‘𝑑)) = 𝐵)
20 simpr 484 . . . . . . 7 (((𝑐 = 𝐶𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → 𝑏 = 𝐵)
2120reseq2d 5953 . . . . . 6 (((𝑐 = 𝐶𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (2nd𝑏) = (2nd𝐵))
22 simpll 766 . . . . . . . . . . . . 13 (((𝑐 = 𝐶𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → 𝑐 = 𝐶)
23 simplr 768 . . . . . . . . . . . . 13 (((𝑐 = 𝐶𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → 𝑑 = 𝐷)
2422, 23oveq12d 7408 . . . . . . . . . . . 12 (((𝑐 = 𝐶𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (𝑐 ×c 𝑑) = (𝐶 ×c 𝐷))
2524, 13eqtr4di 2783 . . . . . . . . . . 11 (((𝑐 = 𝐶𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (𝑐 ×c 𝑑) = 𝑇)
2625fveq2d 6865 . . . . . . . . . 10 (((𝑐 = 𝐶𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (Hom ‘(𝑐 ×c 𝑑)) = (Hom ‘𝑇))
27 1stfval.h . . . . . . . . . 10 𝐻 = (Hom ‘𝑇)
2826, 27eqtr4di 2783 . . . . . . . . 9 (((𝑐 = 𝐶𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (Hom ‘(𝑐 ×c 𝑑)) = 𝐻)
2928oveqd 7407 . . . . . . . 8 (((𝑐 = 𝐶𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (𝑥(Hom ‘(𝑐 ×c 𝑑))𝑦) = (𝑥𝐻𝑦))
3029reseq2d 5953 . . . . . . 7 (((𝑐 = 𝐶𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (2nd ↾ (𝑥(Hom ‘(𝑐 ×c 𝑑))𝑦)) = (2nd ↾ (𝑥𝐻𝑦)))
3120, 20, 30mpoeq123dv 7467 . . . . . 6 (((𝑐 = 𝐶𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (𝑥𝑏, 𝑦𝑏 ↦ (2nd ↾ (𝑥(Hom ‘(𝑐 ×c 𝑑))𝑦))) = (𝑥𝐵, 𝑦𝐵 ↦ (2nd ↾ (𝑥𝐻𝑦))))
3221, 31opeq12d 4848 . . . . 5 (((𝑐 = 𝐶𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → ⟨(2nd𝑏), (𝑥𝑏, 𝑦𝑏 ↦ (2nd ↾ (𝑥(Hom ‘(𝑐 ×c 𝑑))𝑦)))⟩ = ⟨(2nd𝐵), (𝑥𝐵, 𝑦𝐵 ↦ (2nd ↾ (𝑥𝐻𝑦)))⟩)
337, 19, 32csbied2 3902 . . . 4 ((𝑐 = 𝐶𝑑 = 𝐷) → ((Base‘𝑐) × (Base‘𝑑)) / 𝑏⟨(2nd𝑏), (𝑥𝑏, 𝑦𝑏 ↦ (2nd ↾ (𝑥(Hom ‘(𝑐 ×c 𝑑))𝑦)))⟩ = ⟨(2nd𝐵), (𝑥𝐵, 𝑦𝐵 ↦ (2nd ↾ (𝑥𝐻𝑦)))⟩)
34 df-2ndf 18142 . . . 4 2ndF = (𝑐 ∈ Cat, 𝑑 ∈ Cat ↦ ((Base‘𝑐) × (Base‘𝑑)) / 𝑏⟨(2nd𝑏), (𝑥𝑏, 𝑦𝑏 ↦ (2nd ↾ (𝑥(Hom ‘(𝑐 ×c 𝑑))𝑦)))⟩)
35 opex 5427 . . . 4 ⟨(2nd𝐵), (𝑥𝐵, 𝑦𝐵 ↦ (2nd ↾ (𝑥𝐻𝑦)))⟩ ∈ V
3633, 34, 35ovmpoa 7547 . . 3 ((𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → (𝐶 2ndF 𝐷) = ⟨(2nd𝐵), (𝑥𝐵, 𝑦𝐵 ↦ (2nd ↾ (𝑥𝐻𝑦)))⟩)
372, 3, 36syl2anc 584 . 2 (𝜑 → (𝐶 2ndF 𝐷) = ⟨(2nd𝐵), (𝑥𝐵, 𝑦𝐵 ↦ (2nd ↾ (𝑥𝐻𝑦)))⟩)
381, 37eqtrid 2777 1 (𝜑𝑄 = ⟨(2nd𝐵), (𝑥𝐵, 𝑦𝐵 ↦ (2nd ↾ (𝑥𝐻𝑦)))⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3450  csb 3865  cop 4598   × cxp 5639  cres 5643  cfv 6514  (class class class)co 7390  cmpo 7392  2nd c2nd 7970  Basecbs 17186  Hom chom 17238  Catccat 17632   ×c cxpc 18136   2ndF c2ndf 18138
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-slot 17159  df-ndx 17171  df-base 17187  df-hom 17251  df-cco 17252  df-xpc 18140  df-2ndf 18142
This theorem is referenced by:  2ndf1  18163  2ndf2  18164  2ndfcl  18166  oppc2ndf  49282  2ndfpropd  49284
  Copyright terms: Public domain W3C validator