Detailed syntax breakdown of Definition df-prf
| Step | Hyp | Ref
| Expression |
| 1 | | cprf 18216 |
. 2
class
〈,〉F |
| 2 | | vf |
. . 3
setvar 𝑓 |
| 3 | | vg |
. . 3
setvar 𝑔 |
| 4 | | cvv 3480 |
. . 3
class
V |
| 5 | | vb |
. . . 4
setvar 𝑏 |
| 6 | 2 | cv 1539 |
. . . . . 6
class 𝑓 |
| 7 | | c1st 8012 |
. . . . . 6
class
1st |
| 8 | 6, 7 | cfv 6561 |
. . . . 5
class
(1st ‘𝑓) |
| 9 | 8 | cdm 5685 |
. . . 4
class dom
(1st ‘𝑓) |
| 10 | | vx |
. . . . . 6
setvar 𝑥 |
| 11 | 5 | cv 1539 |
. . . . . 6
class 𝑏 |
| 12 | 10 | cv 1539 |
. . . . . . . 8
class 𝑥 |
| 13 | 12, 8 | cfv 6561 |
. . . . . . 7
class
((1st ‘𝑓)‘𝑥) |
| 14 | 3 | cv 1539 |
. . . . . . . . 9
class 𝑔 |
| 15 | 14, 7 | cfv 6561 |
. . . . . . . 8
class
(1st ‘𝑔) |
| 16 | 12, 15 | cfv 6561 |
. . . . . . 7
class
((1st ‘𝑔)‘𝑥) |
| 17 | 13, 16 | cop 4632 |
. . . . . 6
class
〈((1st ‘𝑓)‘𝑥), ((1st ‘𝑔)‘𝑥)〉 |
| 18 | 10, 11, 17 | cmpt 5225 |
. . . . 5
class (𝑥 ∈ 𝑏 ↦ 〈((1st ‘𝑓)‘𝑥), ((1st ‘𝑔)‘𝑥)〉) |
| 19 | | vy |
. . . . . 6
setvar 𝑦 |
| 20 | | vh |
. . . . . . 7
setvar ℎ |
| 21 | 19 | cv 1539 |
. . . . . . . . 9
class 𝑦 |
| 22 | | c2nd 8013 |
. . . . . . . . . 10
class
2nd |
| 23 | 6, 22 | cfv 6561 |
. . . . . . . . 9
class
(2nd ‘𝑓) |
| 24 | 12, 21, 23 | co 7431 |
. . . . . . . 8
class (𝑥(2nd ‘𝑓)𝑦) |
| 25 | 24 | cdm 5685 |
. . . . . . 7
class dom
(𝑥(2nd
‘𝑓)𝑦) |
| 26 | 20 | cv 1539 |
. . . . . . . . 9
class ℎ |
| 27 | 26, 24 | cfv 6561 |
. . . . . . . 8
class ((𝑥(2nd ‘𝑓)𝑦)‘ℎ) |
| 28 | 14, 22 | cfv 6561 |
. . . . . . . . . 10
class
(2nd ‘𝑔) |
| 29 | 12, 21, 28 | co 7431 |
. . . . . . . . 9
class (𝑥(2nd ‘𝑔)𝑦) |
| 30 | 26, 29 | cfv 6561 |
. . . . . . . 8
class ((𝑥(2nd ‘𝑔)𝑦)‘ℎ) |
| 31 | 27, 30 | cop 4632 |
. . . . . . 7
class
〈((𝑥(2nd ‘𝑓)𝑦)‘ℎ), ((𝑥(2nd ‘𝑔)𝑦)‘ℎ)〉 |
| 32 | 20, 25, 31 | cmpt 5225 |
. . . . . 6
class (ℎ ∈ dom (𝑥(2nd ‘𝑓)𝑦) ↦ 〈((𝑥(2nd ‘𝑓)𝑦)‘ℎ), ((𝑥(2nd ‘𝑔)𝑦)‘ℎ)〉) |
| 33 | 10, 19, 11, 11, 32 | cmpo 7433 |
. . . . 5
class (𝑥 ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (ℎ ∈ dom (𝑥(2nd ‘𝑓)𝑦) ↦ 〈((𝑥(2nd ‘𝑓)𝑦)‘ℎ), ((𝑥(2nd ‘𝑔)𝑦)‘ℎ)〉)) |
| 34 | 18, 33 | cop 4632 |
. . . 4
class
〈(𝑥 ∈
𝑏 ↦
〈((1st ‘𝑓)‘𝑥), ((1st ‘𝑔)‘𝑥)〉), (𝑥 ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (ℎ ∈ dom (𝑥(2nd ‘𝑓)𝑦) ↦ 〈((𝑥(2nd ‘𝑓)𝑦)‘ℎ), ((𝑥(2nd ‘𝑔)𝑦)‘ℎ)〉))〉 |
| 35 | 5, 9, 34 | csb 3899 |
. . 3
class
⦋dom (1st ‘𝑓) / 𝑏⦌〈(𝑥 ∈ 𝑏 ↦ 〈((1st ‘𝑓)‘𝑥), ((1st ‘𝑔)‘𝑥)〉), (𝑥 ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (ℎ ∈ dom (𝑥(2nd ‘𝑓)𝑦) ↦ 〈((𝑥(2nd ‘𝑓)𝑦)‘ℎ), ((𝑥(2nd ‘𝑔)𝑦)‘ℎ)〉))〉 |
| 36 | 2, 3, 4, 4, 35 | cmpo 7433 |
. 2
class (𝑓 ∈ V, 𝑔 ∈ V ↦ ⦋dom
(1st ‘𝑓) /
𝑏⦌〈(𝑥 ∈ 𝑏 ↦ 〈((1st ‘𝑓)‘𝑥), ((1st ‘𝑔)‘𝑥)〉), (𝑥 ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (ℎ ∈ dom (𝑥(2nd ‘𝑓)𝑦) ↦ 〈((𝑥(2nd ‘𝑓)𝑦)‘ℎ), ((𝑥(2nd ‘𝑔)𝑦)‘ℎ)〉))〉) |
| 37 | 1, 36 | wceq 1540 |
1
wff
〈,〉F = (𝑓 ∈ V, 𝑔 ∈ V ↦ ⦋dom
(1st ‘𝑓) /
𝑏⦌〈(𝑥 ∈ 𝑏 ↦ 〈((1st ‘𝑓)‘𝑥), ((1st ‘𝑔)‘𝑥)〉), (𝑥 ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (ℎ ∈ dom (𝑥(2nd ‘𝑓)𝑦) ↦ 〈((𝑥(2nd ‘𝑓)𝑦)‘ℎ), ((𝑥(2nd ‘𝑔)𝑦)‘ℎ)〉))〉) |