Detailed syntax breakdown of Definition df-prf
Step | Hyp | Ref
| Expression |
1 | | cprf 17888 |
. 2
class
〈,〉F |
2 | | vf |
. . 3
setvar 𝑓 |
3 | | vg |
. . 3
setvar 𝑔 |
4 | | cvv 3432 |
. . 3
class
V |
5 | | vb |
. . . 4
setvar 𝑏 |
6 | 2 | cv 1538 |
. . . . . 6
class 𝑓 |
7 | | c1st 7829 |
. . . . . 6
class
1st |
8 | 6, 7 | cfv 6433 |
. . . . 5
class
(1st ‘𝑓) |
9 | 8 | cdm 5589 |
. . . 4
class dom
(1st ‘𝑓) |
10 | | vx |
. . . . . 6
setvar 𝑥 |
11 | 5 | cv 1538 |
. . . . . 6
class 𝑏 |
12 | 10 | cv 1538 |
. . . . . . . 8
class 𝑥 |
13 | 12, 8 | cfv 6433 |
. . . . . . 7
class
((1st ‘𝑓)‘𝑥) |
14 | 3 | cv 1538 |
. . . . . . . . 9
class 𝑔 |
15 | 14, 7 | cfv 6433 |
. . . . . . . 8
class
(1st ‘𝑔) |
16 | 12, 15 | cfv 6433 |
. . . . . . 7
class
((1st ‘𝑔)‘𝑥) |
17 | 13, 16 | cop 4567 |
. . . . . 6
class
〈((1st ‘𝑓)‘𝑥), ((1st ‘𝑔)‘𝑥)〉 |
18 | 10, 11, 17 | cmpt 5157 |
. . . . 5
class (𝑥 ∈ 𝑏 ↦ 〈((1st ‘𝑓)‘𝑥), ((1st ‘𝑔)‘𝑥)〉) |
19 | | vy |
. . . . . 6
setvar 𝑦 |
20 | | vh |
. . . . . . 7
setvar ℎ |
21 | 19 | cv 1538 |
. . . . . . . . 9
class 𝑦 |
22 | | c2nd 7830 |
. . . . . . . . . 10
class
2nd |
23 | 6, 22 | cfv 6433 |
. . . . . . . . 9
class
(2nd ‘𝑓) |
24 | 12, 21, 23 | co 7275 |
. . . . . . . 8
class (𝑥(2nd ‘𝑓)𝑦) |
25 | 24 | cdm 5589 |
. . . . . . 7
class dom
(𝑥(2nd
‘𝑓)𝑦) |
26 | 20 | cv 1538 |
. . . . . . . . 9
class ℎ |
27 | 26, 24 | cfv 6433 |
. . . . . . . 8
class ((𝑥(2nd ‘𝑓)𝑦)‘ℎ) |
28 | 14, 22 | cfv 6433 |
. . . . . . . . . 10
class
(2nd ‘𝑔) |
29 | 12, 21, 28 | co 7275 |
. . . . . . . . 9
class (𝑥(2nd ‘𝑔)𝑦) |
30 | 26, 29 | cfv 6433 |
. . . . . . . 8
class ((𝑥(2nd ‘𝑔)𝑦)‘ℎ) |
31 | 27, 30 | cop 4567 |
. . . . . . 7
class
〈((𝑥(2nd ‘𝑓)𝑦)‘ℎ), ((𝑥(2nd ‘𝑔)𝑦)‘ℎ)〉 |
32 | 20, 25, 31 | cmpt 5157 |
. . . . . 6
class (ℎ ∈ dom (𝑥(2nd ‘𝑓)𝑦) ↦ 〈((𝑥(2nd ‘𝑓)𝑦)‘ℎ), ((𝑥(2nd ‘𝑔)𝑦)‘ℎ)〉) |
33 | 10, 19, 11, 11, 32 | cmpo 7277 |
. . . . 5
class (𝑥 ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (ℎ ∈ dom (𝑥(2nd ‘𝑓)𝑦) ↦ 〈((𝑥(2nd ‘𝑓)𝑦)‘ℎ), ((𝑥(2nd ‘𝑔)𝑦)‘ℎ)〉)) |
34 | 18, 33 | cop 4567 |
. . . 4
class
〈(𝑥 ∈
𝑏 ↦
〈((1st ‘𝑓)‘𝑥), ((1st ‘𝑔)‘𝑥)〉), (𝑥 ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (ℎ ∈ dom (𝑥(2nd ‘𝑓)𝑦) ↦ 〈((𝑥(2nd ‘𝑓)𝑦)‘ℎ), ((𝑥(2nd ‘𝑔)𝑦)‘ℎ)〉))〉 |
35 | 5, 9, 34 | csb 3832 |
. . 3
class
⦋dom (1st ‘𝑓) / 𝑏⦌〈(𝑥 ∈ 𝑏 ↦ 〈((1st ‘𝑓)‘𝑥), ((1st ‘𝑔)‘𝑥)〉), (𝑥 ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (ℎ ∈ dom (𝑥(2nd ‘𝑓)𝑦) ↦ 〈((𝑥(2nd ‘𝑓)𝑦)‘ℎ), ((𝑥(2nd ‘𝑔)𝑦)‘ℎ)〉))〉 |
36 | 2, 3, 4, 4, 35 | cmpo 7277 |
. 2
class (𝑓 ∈ V, 𝑔 ∈ V ↦ ⦋dom
(1st ‘𝑓) /
𝑏⦌〈(𝑥 ∈ 𝑏 ↦ 〈((1st ‘𝑓)‘𝑥), ((1st ‘𝑔)‘𝑥)〉), (𝑥 ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (ℎ ∈ dom (𝑥(2nd ‘𝑓)𝑦) ↦ 〈((𝑥(2nd ‘𝑓)𝑦)‘ℎ), ((𝑥(2nd ‘𝑔)𝑦)‘ℎ)〉))〉) |
37 | 1, 36 | wceq 1539 |
1
wff
〈,〉F = (𝑓 ∈ V, 𝑔 ∈ V ↦ ⦋dom
(1st ‘𝑓) /
𝑏⦌〈(𝑥 ∈ 𝑏 ↦ 〈((1st ‘𝑓)‘𝑥), ((1st ‘𝑔)‘𝑥)〉), (𝑥 ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (ℎ ∈ dom (𝑥(2nd ‘𝑓)𝑦) ↦ 〈((𝑥(2nd ‘𝑓)𝑦)‘ℎ), ((𝑥(2nd ‘𝑔)𝑦)‘ℎ)〉))〉) |