| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-2s | Structured version Visualization version GIF version | ||
| Description: Define surreal two. This is the simplest number greater than one. See 1p1e2s 28355 for its addition version. (Contributed by Scott Fenton, 27-May-2025.) |
| Ref | Expression |
|---|---|
| df-2s | ⊢ 2s = ({ 1s } |s ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | c2s 28349 | . 2 class 2s | |
| 2 | c1s 27823 | . . . 4 class 1s | |
| 3 | 2 | csn 4608 | . . 3 class { 1s } |
| 4 | c0 4315 | . . 3 class ∅ | |
| 5 | cscut 27782 | . . 3 class |s | |
| 6 | 3, 4, 5 | co 7414 | . 2 class ({ 1s } |s ∅) |
| 7 | 1, 6 | wceq 1539 | 1 wff 2s = ({ 1s } |s ∅) |
| Colors of variables: wff setvar class |
| This definition is referenced by: 1p1e2s 28355 |
| Copyright terms: Public domain | W3C validator |