MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1p1e2s Structured version   Visualization version   GIF version

Theorem 1p1e2s 28309
Description: One plus one is two. Surreal version. (Contributed by Scott Fenton, 27-May-2025.)
Assertion
Ref Expression
1p1e2s ( 1s +s 1s ) = 2s

Proof of Theorem 1p1e2s
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0sno 27745 . . . . . . . . . 10 0s No
21elexi 3473 . . . . . . . . 9 0s ∈ V
3 oveq1 7397 . . . . . . . . . 10 (𝑦 = 0s → (𝑦 +s 1s ) = ( 0s +s 1s ))
43eqeq2d 2741 . . . . . . . . 9 (𝑦 = 0s → (𝑥 = (𝑦 +s 1s ) ↔ 𝑥 = ( 0s +s 1s )))
52, 4rexsn 4649 . . . . . . . 8 (∃𝑦 ∈ { 0s }𝑥 = (𝑦 +s 1s ) ↔ 𝑥 = ( 0s +s 1s ))
6 1sno 27746 . . . . . . . . . 10 1s No
7 addslid 27882 . . . . . . . . . 10 ( 1s No → ( 0s +s 1s ) = 1s )
86, 7ax-mp 5 . . . . . . . . 9 ( 0s +s 1s ) = 1s
98eqeq2i 2743 . . . . . . . 8 (𝑥 = ( 0s +s 1s ) ↔ 𝑥 = 1s )
105, 9bitri 275 . . . . . . 7 (∃𝑦 ∈ { 0s }𝑥 = (𝑦 +s 1s ) ↔ 𝑥 = 1s )
1110abbii 2797 . . . . . 6 {𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = (𝑦 +s 1s )} = {𝑥𝑥 = 1s }
12 df-sn 4593 . . . . . 6 { 1s } = {𝑥𝑥 = 1s }
1311, 12eqtr4i 2756 . . . . 5 {𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = (𝑦 +s 1s )} = { 1s }
14 oveq2 7398 . . . . . . . . . 10 (𝑦 = 0s → ( 1s +s 𝑦) = ( 1s +s 0s ))
1514eqeq2d 2741 . . . . . . . . 9 (𝑦 = 0s → (𝑥 = ( 1s +s 𝑦) ↔ 𝑥 = ( 1s +s 0s )))
162, 15rexsn 4649 . . . . . . . 8 (∃𝑦 ∈ { 0s }𝑥 = ( 1s +s 𝑦) ↔ 𝑥 = ( 1s +s 0s ))
17 addsrid 27878 . . . . . . . . . 10 ( 1s No → ( 1s +s 0s ) = 1s )
186, 17ax-mp 5 . . . . . . . . 9 ( 1s +s 0s ) = 1s
1918eqeq2i 2743 . . . . . . . 8 (𝑥 = ( 1s +s 0s ) ↔ 𝑥 = 1s )
2016, 19bitri 275 . . . . . . 7 (∃𝑦 ∈ { 0s }𝑥 = ( 1s +s 𝑦) ↔ 𝑥 = 1s )
2120abbii 2797 . . . . . 6 {𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = ( 1s +s 𝑦)} = {𝑥𝑥 = 1s }
2221, 12eqtr4i 2756 . . . . 5 {𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = ( 1s +s 𝑦)} = { 1s }
2313, 22uneq12i 4132 . . . 4 ({𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = (𝑦 +s 1s )} ∪ {𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = ( 1s +s 𝑦)}) = ({ 1s } ∪ { 1s })
24 unidm 4123 . . . 4 ({ 1s } ∪ { 1s }) = { 1s }
2523, 24eqtri 2753 . . 3 ({𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = (𝑦 +s 1s )} ∪ {𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = ( 1s +s 𝑦)}) = { 1s }
26 rex0 4326 . . . . . 6 ¬ ∃𝑦 ∈ ∅ 𝑥 = (𝑦 +s 1s )
2726abf 4372 . . . . 5 {𝑥 ∣ ∃𝑦 ∈ ∅ 𝑥 = (𝑦 +s 1s )} = ∅
28 rex0 4326 . . . . . 6 ¬ ∃𝑦 ∈ ∅ 𝑥 = ( 1s +s 𝑦)
2928abf 4372 . . . . 5 {𝑥 ∣ ∃𝑦 ∈ ∅ 𝑥 = ( 1s +s 𝑦)} = ∅
3027, 29uneq12i 4132 . . . 4 ({𝑥 ∣ ∃𝑦 ∈ ∅ 𝑥 = (𝑦 +s 1s )} ∪ {𝑥 ∣ ∃𝑦 ∈ ∅ 𝑥 = ( 1s +s 𝑦)}) = (∅ ∪ ∅)
31 unidm 4123 . . . 4 (∅ ∪ ∅) = ∅
3230, 31eqtri 2753 . . 3 ({𝑥 ∣ ∃𝑦 ∈ ∅ 𝑥 = (𝑦 +s 1s )} ∪ {𝑥 ∣ ∃𝑦 ∈ ∅ 𝑥 = ( 1s +s 𝑦)}) = ∅
3325, 32oveq12i 7402 . 2 (({𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = (𝑦 +s 1s )} ∪ {𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = ( 1s +s 𝑦)}) |s ({𝑥 ∣ ∃𝑦 ∈ ∅ 𝑥 = (𝑦 +s 1s )} ∪ {𝑥 ∣ ∃𝑦 ∈ ∅ 𝑥 = ( 1s +s 𝑦)})) = ({ 1s } |s ∅)
34 snelpwi 5406 . . . . . . 7 ( 0s No → { 0s } ∈ 𝒫 No )
351, 34ax-mp 5 . . . . . 6 { 0s } ∈ 𝒫 No
36 nulssgt 27717 . . . . . 6 ({ 0s } ∈ 𝒫 No → { 0s } <<s ∅)
3735, 36ax-mp 5 . . . . 5 { 0s } <<s ∅
3837a1i 11 . . . 4 (⊤ → { 0s } <<s ∅)
39 df-1s 27744 . . . . 5 1s = ({ 0s } |s ∅)
4039a1i 11 . . . 4 (⊤ → 1s = ({ 0s } |s ∅))
4138, 38, 40, 40addsunif 27916 . . 3 (⊤ → ( 1s +s 1s ) = (({𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = (𝑦 +s 1s )} ∪ {𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = ( 1s +s 𝑦)}) |s ({𝑥 ∣ ∃𝑦 ∈ ∅ 𝑥 = (𝑦 +s 1s )} ∪ {𝑥 ∣ ∃𝑦 ∈ ∅ 𝑥 = ( 1s +s 𝑦)})))
4241mptru 1547 . 2 ( 1s +s 1s ) = (({𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = (𝑦 +s 1s )} ∪ {𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = ( 1s +s 𝑦)}) |s ({𝑥 ∣ ∃𝑦 ∈ ∅ 𝑥 = (𝑦 +s 1s )} ∪ {𝑥 ∣ ∃𝑦 ∈ ∅ 𝑥 = ( 1s +s 𝑦)}))
43 df-2s 28304 . 2 2s = ({ 1s } |s ∅)
4433, 42, 433eqtr4i 2763 1 ( 1s +s 1s ) = 2s
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wtru 1541  wcel 2109  {cab 2708  wrex 3054  cun 3915  c0 4299  𝒫 cpw 4566  {csn 4592   class class class wbr 5110  (class class class)co 7390   No csur 27558   <<s csslt 27699   |s cscut 27701   0s c0s 27741   1s c1s 27742   +s cadds 27873  2sc2s 28303
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-ot 4601  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-1o 8437  df-2o 8438  df-nadd 8633  df-no 27561  df-slt 27562  df-bday 27563  df-sle 27664  df-sslt 27700  df-scut 27702  df-0s 27743  df-1s 27744  df-made 27762  df-old 27763  df-left 27765  df-right 27766  df-norec2 27863  df-adds 27874  df-2s 28304
This theorem is referenced by:  no2times  28310  2nns  28311  n0seo  28314  zseo  28315  addhalfcut  28341  pw2cutp1  28343  zs12bday  28350
  Copyright terms: Public domain W3C validator