| Step | Hyp | Ref
| Expression |
| 1 | | 0sno 27795 |
. . . . . . . . . 10
⊢
0s ∈ No |
| 2 | 1 | elexi 3487 |
. . . . . . . . 9
⊢
0s ∈ V |
| 3 | | oveq1 7417 |
. . . . . . . . . 10
⊢ (𝑦 = 0s → (𝑦 +s 1s ) =
( 0s +s 1s )) |
| 4 | 3 | eqeq2d 2747 |
. . . . . . . . 9
⊢ (𝑦 = 0s → (𝑥 = (𝑦 +s 1s ) ↔ 𝑥 = ( 0s +s
1s ))) |
| 5 | 2, 4 | rexsn 4663 |
. . . . . . . 8
⊢
(∃𝑦 ∈ {
0s }𝑥 = (𝑦 +s 1s )
↔ 𝑥 = ( 0s
+s 1s )) |
| 6 | | 1sno 27796 |
. . . . . . . . . 10
⊢
1s ∈ No |
| 7 | | addslid 27932 |
. . . . . . . . . 10
⊢ (
1s ∈ No → ( 0s
+s 1s ) = 1s ) |
| 8 | 6, 7 | ax-mp 5 |
. . . . . . . . 9
⊢ (
0s +s 1s ) = 1s |
| 9 | 8 | eqeq2i 2749 |
. . . . . . . 8
⊢ (𝑥 = ( 0s +s
1s ) ↔ 𝑥 =
1s ) |
| 10 | 5, 9 | bitri 275 |
. . . . . . 7
⊢
(∃𝑦 ∈ {
0s }𝑥 = (𝑦 +s 1s )
↔ 𝑥 = 1s
) |
| 11 | 10 | abbii 2803 |
. . . . . 6
⊢ {𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = (𝑦 +s 1s )} = {𝑥 ∣ 𝑥 = 1s } |
| 12 | | df-sn 4607 |
. . . . . 6
⊢ {
1s } = {𝑥
∣ 𝑥 = 1s
} |
| 13 | 11, 12 | eqtr4i 2762 |
. . . . 5
⊢ {𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = (𝑦 +s 1s )} = {
1s } |
| 14 | | oveq2 7418 |
. . . . . . . . . 10
⊢ (𝑦 = 0s → (
1s +s 𝑦) = ( 1s +s
0s )) |
| 15 | 14 | eqeq2d 2747 |
. . . . . . . . 9
⊢ (𝑦 = 0s → (𝑥 = ( 1s +s
𝑦) ↔ 𝑥 = ( 1s +s
0s ))) |
| 16 | 2, 15 | rexsn 4663 |
. . . . . . . 8
⊢
(∃𝑦 ∈ {
0s }𝑥 = (
1s +s 𝑦) ↔ 𝑥 = ( 1s +s
0s )) |
| 17 | | addsrid 27928 |
. . . . . . . . . 10
⊢ (
1s ∈ No → ( 1s
+s 0s ) = 1s ) |
| 18 | 6, 17 | ax-mp 5 |
. . . . . . . . 9
⊢ (
1s +s 0s ) = 1s |
| 19 | 18 | eqeq2i 2749 |
. . . . . . . 8
⊢ (𝑥 = ( 1s +s
0s ) ↔ 𝑥 =
1s ) |
| 20 | 16, 19 | bitri 275 |
. . . . . . 7
⊢
(∃𝑦 ∈ {
0s }𝑥 = (
1s +s 𝑦) ↔ 𝑥 = 1s ) |
| 21 | 20 | abbii 2803 |
. . . . . 6
⊢ {𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = ( 1s +s
𝑦)} = {𝑥 ∣ 𝑥 = 1s } |
| 22 | 21, 12 | eqtr4i 2762 |
. . . . 5
⊢ {𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = ( 1s +s
𝑦)} = { 1s
} |
| 23 | 13, 22 | uneq12i 4146 |
. . . 4
⊢ ({𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = (𝑦 +s 1s )} ∪ {𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = ( 1s +s
𝑦)}) = ({ 1s }
∪ { 1s }) |
| 24 | | unidm 4137 |
. . . 4
⊢ ({
1s } ∪ { 1s }) = { 1s } |
| 25 | 23, 24 | eqtri 2759 |
. . 3
⊢ ({𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = (𝑦 +s 1s )} ∪ {𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = ( 1s +s
𝑦)}) = { 1s
} |
| 26 | | rex0 4340 |
. . . . . 6
⊢ ¬
∃𝑦 ∈ ∅
𝑥 = (𝑦 +s 1s
) |
| 27 | 26 | abf 4386 |
. . . . 5
⊢ {𝑥 ∣ ∃𝑦 ∈ ∅ 𝑥 = (𝑦 +s 1s )} =
∅ |
| 28 | | rex0 4340 |
. . . . . 6
⊢ ¬
∃𝑦 ∈ ∅
𝑥 = ( 1s
+s 𝑦) |
| 29 | 28 | abf 4386 |
. . . . 5
⊢ {𝑥 ∣ ∃𝑦 ∈ ∅ 𝑥 = ( 1s +s
𝑦)} =
∅ |
| 30 | 27, 29 | uneq12i 4146 |
. . . 4
⊢ ({𝑥 ∣ ∃𝑦 ∈ ∅ 𝑥 = (𝑦 +s 1s )} ∪ {𝑥 ∣ ∃𝑦 ∈ ∅ 𝑥 = ( 1s +s
𝑦)}) = (∅ ∪
∅) |
| 31 | | unidm 4137 |
. . . 4
⊢ (∅
∪ ∅) = ∅ |
| 32 | 30, 31 | eqtri 2759 |
. . 3
⊢ ({𝑥 ∣ ∃𝑦 ∈ ∅ 𝑥 = (𝑦 +s 1s )} ∪ {𝑥 ∣ ∃𝑦 ∈ ∅ 𝑥 = ( 1s +s
𝑦)}) =
∅ |
| 33 | 25, 32 | oveq12i 7422 |
. 2
⊢ (({𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = (𝑦 +s 1s )} ∪ {𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = ( 1s +s
𝑦)}) |s ({𝑥 ∣ ∃𝑦 ∈ ∅ 𝑥 = (𝑦 +s 1s )} ∪ {𝑥 ∣ ∃𝑦 ∈ ∅ 𝑥 = ( 1s +s
𝑦)})) = ({ 1s }
|s ∅) |
| 34 | | snelpwi 5423 |
. . . . . . 7
⊢ (
0s ∈ No → { 0s }
∈ 𝒫 No ) |
| 35 | 1, 34 | ax-mp 5 |
. . . . . 6
⊢ {
0s } ∈ 𝒫 No
|
| 36 | | nulssgt 27767 |
. . . . . 6
⊢ ({
0s } ∈ 𝒫 No → {
0s } <<s ∅) |
| 37 | 35, 36 | ax-mp 5 |
. . . . 5
⊢ {
0s } <<s ∅ |
| 38 | 37 | a1i 11 |
. . . 4
⊢ (⊤
→ { 0s } <<s ∅) |
| 39 | | df-1s 27794 |
. . . . 5
⊢
1s = ({ 0s } |s ∅) |
| 40 | 39 | a1i 11 |
. . . 4
⊢ (⊤
→ 1s = ({ 0s } |s ∅)) |
| 41 | 38, 38, 40, 40 | addsunif 27966 |
. . 3
⊢ (⊤
→ ( 1s +s 1s ) = (({𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = (𝑦 +s 1s )} ∪ {𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = ( 1s +s
𝑦)}) |s ({𝑥 ∣ ∃𝑦 ∈ ∅ 𝑥 = (𝑦 +s 1s )} ∪ {𝑥 ∣ ∃𝑦 ∈ ∅ 𝑥 = ( 1s +s
𝑦)}))) |
| 42 | 41 | mptru 1547 |
. 2
⊢ (
1s +s 1s ) = (({𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = (𝑦 +s 1s )} ∪ {𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = ( 1s +s
𝑦)}) |s ({𝑥 ∣ ∃𝑦 ∈ ∅ 𝑥 = (𝑦 +s 1s )} ∪ {𝑥 ∣ ∃𝑦 ∈ ∅ 𝑥 = ( 1s +s
𝑦)})) |
| 43 | | df-2s 28354 |
. 2
⊢
2s = ({ 1s } |s ∅) |
| 44 | 33, 42, 43 | 3eqtr4i 2769 |
1
⊢ (
1s +s 1s ) = 2s |