MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1p1e2s Structured version   Visualization version   GIF version

Theorem 1p1e2s 28326
Description: One plus one is two. Surreal version. (Contributed by Scott Fenton, 27-May-2025.)
Assertion
Ref Expression
1p1e2s ( 1s +s 1s ) = 2s

Proof of Theorem 1p1e2s
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0sno 27758 . . . . . . . . . 10 0s No
21elexi 3461 . . . . . . . . 9 0s ∈ V
3 oveq1 7360 . . . . . . . . . 10 (𝑦 = 0s → (𝑦 +s 1s ) = ( 0s +s 1s ))
43eqeq2d 2740 . . . . . . . . 9 (𝑦 = 0s → (𝑥 = (𝑦 +s 1s ) ↔ 𝑥 = ( 0s +s 1s )))
52, 4rexsn 4636 . . . . . . . 8 (∃𝑦 ∈ { 0s }𝑥 = (𝑦 +s 1s ) ↔ 𝑥 = ( 0s +s 1s ))
6 1sno 27759 . . . . . . . . . 10 1s No
7 addslid 27898 . . . . . . . . . 10 ( 1s No → ( 0s +s 1s ) = 1s )
86, 7ax-mp 5 . . . . . . . . 9 ( 0s +s 1s ) = 1s
98eqeq2i 2742 . . . . . . . 8 (𝑥 = ( 0s +s 1s ) ↔ 𝑥 = 1s )
105, 9bitri 275 . . . . . . 7 (∃𝑦 ∈ { 0s }𝑥 = (𝑦 +s 1s ) ↔ 𝑥 = 1s )
1110abbii 2796 . . . . . 6 {𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = (𝑦 +s 1s )} = {𝑥𝑥 = 1s }
12 df-sn 4580 . . . . . 6 { 1s } = {𝑥𝑥 = 1s }
1311, 12eqtr4i 2755 . . . . 5 {𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = (𝑦 +s 1s )} = { 1s }
14 oveq2 7361 . . . . . . . . . 10 (𝑦 = 0s → ( 1s +s 𝑦) = ( 1s +s 0s ))
1514eqeq2d 2740 . . . . . . . . 9 (𝑦 = 0s → (𝑥 = ( 1s +s 𝑦) ↔ 𝑥 = ( 1s +s 0s )))
162, 15rexsn 4636 . . . . . . . 8 (∃𝑦 ∈ { 0s }𝑥 = ( 1s +s 𝑦) ↔ 𝑥 = ( 1s +s 0s ))
17 addsrid 27894 . . . . . . . . . 10 ( 1s No → ( 1s +s 0s ) = 1s )
186, 17ax-mp 5 . . . . . . . . 9 ( 1s +s 0s ) = 1s
1918eqeq2i 2742 . . . . . . . 8 (𝑥 = ( 1s +s 0s ) ↔ 𝑥 = 1s )
2016, 19bitri 275 . . . . . . 7 (∃𝑦 ∈ { 0s }𝑥 = ( 1s +s 𝑦) ↔ 𝑥 = 1s )
2120abbii 2796 . . . . . 6 {𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = ( 1s +s 𝑦)} = {𝑥𝑥 = 1s }
2221, 12eqtr4i 2755 . . . . 5 {𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = ( 1s +s 𝑦)} = { 1s }
2313, 22uneq12i 4119 . . . 4 ({𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = (𝑦 +s 1s )} ∪ {𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = ( 1s +s 𝑦)}) = ({ 1s } ∪ { 1s })
24 unidm 4110 . . . 4 ({ 1s } ∪ { 1s }) = { 1s }
2523, 24eqtri 2752 . . 3 ({𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = (𝑦 +s 1s )} ∪ {𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = ( 1s +s 𝑦)}) = { 1s }
26 rex0 4313 . . . . . 6 ¬ ∃𝑦 ∈ ∅ 𝑥 = (𝑦 +s 1s )
2726abf 4359 . . . . 5 {𝑥 ∣ ∃𝑦 ∈ ∅ 𝑥 = (𝑦 +s 1s )} = ∅
28 rex0 4313 . . . . . 6 ¬ ∃𝑦 ∈ ∅ 𝑥 = ( 1s +s 𝑦)
2928abf 4359 . . . . 5 {𝑥 ∣ ∃𝑦 ∈ ∅ 𝑥 = ( 1s +s 𝑦)} = ∅
3027, 29uneq12i 4119 . . . 4 ({𝑥 ∣ ∃𝑦 ∈ ∅ 𝑥 = (𝑦 +s 1s )} ∪ {𝑥 ∣ ∃𝑦 ∈ ∅ 𝑥 = ( 1s +s 𝑦)}) = (∅ ∪ ∅)
31 unidm 4110 . . . 4 (∅ ∪ ∅) = ∅
3230, 31eqtri 2752 . . 3 ({𝑥 ∣ ∃𝑦 ∈ ∅ 𝑥 = (𝑦 +s 1s )} ∪ {𝑥 ∣ ∃𝑦 ∈ ∅ 𝑥 = ( 1s +s 𝑦)}) = ∅
3325, 32oveq12i 7365 . 2 (({𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = (𝑦 +s 1s )} ∪ {𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = ( 1s +s 𝑦)}) |s ({𝑥 ∣ ∃𝑦 ∈ ∅ 𝑥 = (𝑦 +s 1s )} ∪ {𝑥 ∣ ∃𝑦 ∈ ∅ 𝑥 = ( 1s +s 𝑦)})) = ({ 1s } |s ∅)
34 snelpwi 5390 . . . . . . 7 ( 0s No → { 0s } ∈ 𝒫 No )
351, 34ax-mp 5 . . . . . 6 { 0s } ∈ 𝒫 No
36 nulssgt 27727 . . . . . 6 ({ 0s } ∈ 𝒫 No → { 0s } <<s ∅)
3735, 36ax-mp 5 . . . . 5 { 0s } <<s ∅
3837a1i 11 . . . 4 (⊤ → { 0s } <<s ∅)
39 df-1s 27757 . . . . 5 1s = ({ 0s } |s ∅)
4039a1i 11 . . . 4 (⊤ → 1s = ({ 0s } |s ∅))
4138, 38, 40, 40addsunif 27932 . . 3 (⊤ → ( 1s +s 1s ) = (({𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = (𝑦 +s 1s )} ∪ {𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = ( 1s +s 𝑦)}) |s ({𝑥 ∣ ∃𝑦 ∈ ∅ 𝑥 = (𝑦 +s 1s )} ∪ {𝑥 ∣ ∃𝑦 ∈ ∅ 𝑥 = ( 1s +s 𝑦)})))
4241mptru 1547 . 2 ( 1s +s 1s ) = (({𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = (𝑦 +s 1s )} ∪ {𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = ( 1s +s 𝑦)}) |s ({𝑥 ∣ ∃𝑦 ∈ ∅ 𝑥 = (𝑦 +s 1s )} ∪ {𝑥 ∣ ∃𝑦 ∈ ∅ 𝑥 = ( 1s +s 𝑦)}))
43 df-2s 28321 . 2 2s = ({ 1s } |s ∅)
4433, 42, 433eqtr4i 2762 1 ( 1s +s 1s ) = 2s
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wtru 1541  wcel 2109  {cab 2707  wrex 3053  cun 3903  c0 4286  𝒫 cpw 4553  {csn 4579   class class class wbr 5095  (class class class)co 7353   No csur 27567   <<s csslt 27709   |s cscut 27711   0s c0s 27754   1s c1s 27755   +s cadds 27889  2sc2s 28320
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-ot 4588  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-1o 8395  df-2o 8396  df-nadd 8591  df-no 27570  df-slt 27571  df-bday 27572  df-sle 27673  df-sslt 27710  df-scut 27712  df-0s 27756  df-1s 27757  df-made 27775  df-old 27776  df-left 27778  df-right 27779  df-norec2 27879  df-adds 27890  df-2s 28321
This theorem is referenced by:  no2times  28327  2nns  28328  n0seo  28331  zseo  28332  addhalfcut  28365  pw2cutp1  28367  zs12bday  28379
  Copyright terms: Public domain W3C validator