MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1p1e2s Structured version   Visualization version   GIF version

Theorem 1p1e2s 28359
Description: One plus one is two. Surreal version. (Contributed by Scott Fenton, 27-May-2025.)
Assertion
Ref Expression
1p1e2s ( 1s +s 1s ) = 2s

Proof of Theorem 1p1e2s
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0sno 27795 . . . . . . . . . 10 0s No
21elexi 3487 . . . . . . . . 9 0s ∈ V
3 oveq1 7417 . . . . . . . . . 10 (𝑦 = 0s → (𝑦 +s 1s ) = ( 0s +s 1s ))
43eqeq2d 2747 . . . . . . . . 9 (𝑦 = 0s → (𝑥 = (𝑦 +s 1s ) ↔ 𝑥 = ( 0s +s 1s )))
52, 4rexsn 4663 . . . . . . . 8 (∃𝑦 ∈ { 0s }𝑥 = (𝑦 +s 1s ) ↔ 𝑥 = ( 0s +s 1s ))
6 1sno 27796 . . . . . . . . . 10 1s No
7 addslid 27932 . . . . . . . . . 10 ( 1s No → ( 0s +s 1s ) = 1s )
86, 7ax-mp 5 . . . . . . . . 9 ( 0s +s 1s ) = 1s
98eqeq2i 2749 . . . . . . . 8 (𝑥 = ( 0s +s 1s ) ↔ 𝑥 = 1s )
105, 9bitri 275 . . . . . . 7 (∃𝑦 ∈ { 0s }𝑥 = (𝑦 +s 1s ) ↔ 𝑥 = 1s )
1110abbii 2803 . . . . . 6 {𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = (𝑦 +s 1s )} = {𝑥𝑥 = 1s }
12 df-sn 4607 . . . . . 6 { 1s } = {𝑥𝑥 = 1s }
1311, 12eqtr4i 2762 . . . . 5 {𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = (𝑦 +s 1s )} = { 1s }
14 oveq2 7418 . . . . . . . . . 10 (𝑦 = 0s → ( 1s +s 𝑦) = ( 1s +s 0s ))
1514eqeq2d 2747 . . . . . . . . 9 (𝑦 = 0s → (𝑥 = ( 1s +s 𝑦) ↔ 𝑥 = ( 1s +s 0s )))
162, 15rexsn 4663 . . . . . . . 8 (∃𝑦 ∈ { 0s }𝑥 = ( 1s +s 𝑦) ↔ 𝑥 = ( 1s +s 0s ))
17 addsrid 27928 . . . . . . . . . 10 ( 1s No → ( 1s +s 0s ) = 1s )
186, 17ax-mp 5 . . . . . . . . 9 ( 1s +s 0s ) = 1s
1918eqeq2i 2749 . . . . . . . 8 (𝑥 = ( 1s +s 0s ) ↔ 𝑥 = 1s )
2016, 19bitri 275 . . . . . . 7 (∃𝑦 ∈ { 0s }𝑥 = ( 1s +s 𝑦) ↔ 𝑥 = 1s )
2120abbii 2803 . . . . . 6 {𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = ( 1s +s 𝑦)} = {𝑥𝑥 = 1s }
2221, 12eqtr4i 2762 . . . . 5 {𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = ( 1s +s 𝑦)} = { 1s }
2313, 22uneq12i 4146 . . . 4 ({𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = (𝑦 +s 1s )} ∪ {𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = ( 1s +s 𝑦)}) = ({ 1s } ∪ { 1s })
24 unidm 4137 . . . 4 ({ 1s } ∪ { 1s }) = { 1s }
2523, 24eqtri 2759 . . 3 ({𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = (𝑦 +s 1s )} ∪ {𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = ( 1s +s 𝑦)}) = { 1s }
26 rex0 4340 . . . . . 6 ¬ ∃𝑦 ∈ ∅ 𝑥 = (𝑦 +s 1s )
2726abf 4386 . . . . 5 {𝑥 ∣ ∃𝑦 ∈ ∅ 𝑥 = (𝑦 +s 1s )} = ∅
28 rex0 4340 . . . . . 6 ¬ ∃𝑦 ∈ ∅ 𝑥 = ( 1s +s 𝑦)
2928abf 4386 . . . . 5 {𝑥 ∣ ∃𝑦 ∈ ∅ 𝑥 = ( 1s +s 𝑦)} = ∅
3027, 29uneq12i 4146 . . . 4 ({𝑥 ∣ ∃𝑦 ∈ ∅ 𝑥 = (𝑦 +s 1s )} ∪ {𝑥 ∣ ∃𝑦 ∈ ∅ 𝑥 = ( 1s +s 𝑦)}) = (∅ ∪ ∅)
31 unidm 4137 . . . 4 (∅ ∪ ∅) = ∅
3230, 31eqtri 2759 . . 3 ({𝑥 ∣ ∃𝑦 ∈ ∅ 𝑥 = (𝑦 +s 1s )} ∪ {𝑥 ∣ ∃𝑦 ∈ ∅ 𝑥 = ( 1s +s 𝑦)}) = ∅
3325, 32oveq12i 7422 . 2 (({𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = (𝑦 +s 1s )} ∪ {𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = ( 1s +s 𝑦)}) |s ({𝑥 ∣ ∃𝑦 ∈ ∅ 𝑥 = (𝑦 +s 1s )} ∪ {𝑥 ∣ ∃𝑦 ∈ ∅ 𝑥 = ( 1s +s 𝑦)})) = ({ 1s } |s ∅)
34 snelpwi 5423 . . . . . . 7 ( 0s No → { 0s } ∈ 𝒫 No )
351, 34ax-mp 5 . . . . . 6 { 0s } ∈ 𝒫 No
36 nulssgt 27767 . . . . . 6 ({ 0s } ∈ 𝒫 No → { 0s } <<s ∅)
3735, 36ax-mp 5 . . . . 5 { 0s } <<s ∅
3837a1i 11 . . . 4 (⊤ → { 0s } <<s ∅)
39 df-1s 27794 . . . . 5 1s = ({ 0s } |s ∅)
4039a1i 11 . . . 4 (⊤ → 1s = ({ 0s } |s ∅))
4138, 38, 40, 40addsunif 27966 . . 3 (⊤ → ( 1s +s 1s ) = (({𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = (𝑦 +s 1s )} ∪ {𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = ( 1s +s 𝑦)}) |s ({𝑥 ∣ ∃𝑦 ∈ ∅ 𝑥 = (𝑦 +s 1s )} ∪ {𝑥 ∣ ∃𝑦 ∈ ∅ 𝑥 = ( 1s +s 𝑦)})))
4241mptru 1547 . 2 ( 1s +s 1s ) = (({𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = (𝑦 +s 1s )} ∪ {𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = ( 1s +s 𝑦)}) |s ({𝑥 ∣ ∃𝑦 ∈ ∅ 𝑥 = (𝑦 +s 1s )} ∪ {𝑥 ∣ ∃𝑦 ∈ ∅ 𝑥 = ( 1s +s 𝑦)}))
43 df-2s 28354 . 2 2s = ({ 1s } |s ∅)
4433, 42, 433eqtr4i 2769 1 ( 1s +s 1s ) = 2s
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wtru 1541  wcel 2109  {cab 2714  wrex 3061  cun 3929  c0 4313  𝒫 cpw 4580  {csn 4606   class class class wbr 5124  (class class class)co 7410   No csur 27608   <<s csslt 27749   |s cscut 27751   0s c0s 27791   1s c1s 27792   +s cadds 27923  2sc2s 28353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-ot 4615  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-1o 8485  df-2o 8486  df-nadd 8683  df-no 27611  df-slt 27612  df-bday 27613  df-sle 27714  df-sslt 27750  df-scut 27752  df-0s 27793  df-1s 27794  df-made 27812  df-old 27813  df-left 27815  df-right 27816  df-norec2 27913  df-adds 27924  df-2s 28354
This theorem is referenced by:  no2times  28360  2nns  28361  n0seo  28364  zseo  28365  addhalfcut  28391  pw2cutp1  28393  zs12bday  28400
  Copyright terms: Public domain W3C validator