MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1p1e2s Structured version   Visualization version   GIF version

Theorem 1p1e2s 28345
Description: One plus one is two. Surreal version. (Contributed by Scott Fenton, 27-May-2025.)
Assertion
Ref Expression
1p1e2s ( 1s +s 1s ) = 2s

Proof of Theorem 1p1e2s
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0sno 27776 . . . . . . . . . 10 0s No
21elexi 3459 . . . . . . . . 9 0s ∈ V
3 oveq1 7359 . . . . . . . . . 10 (𝑦 = 0s → (𝑦 +s 1s ) = ( 0s +s 1s ))
43eqeq2d 2742 . . . . . . . . 9 (𝑦 = 0s → (𝑥 = (𝑦 +s 1s ) ↔ 𝑥 = ( 0s +s 1s )))
52, 4rexsn 4634 . . . . . . . 8 (∃𝑦 ∈ { 0s }𝑥 = (𝑦 +s 1s ) ↔ 𝑥 = ( 0s +s 1s ))
6 1sno 27777 . . . . . . . . . 10 1s No
7 addslid 27917 . . . . . . . . . 10 ( 1s No → ( 0s +s 1s ) = 1s )
86, 7ax-mp 5 . . . . . . . . 9 ( 0s +s 1s ) = 1s
98eqeq2i 2744 . . . . . . . 8 (𝑥 = ( 0s +s 1s ) ↔ 𝑥 = 1s )
105, 9bitri 275 . . . . . . 7 (∃𝑦 ∈ { 0s }𝑥 = (𝑦 +s 1s ) ↔ 𝑥 = 1s )
1110abbii 2798 . . . . . 6 {𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = (𝑦 +s 1s )} = {𝑥𝑥 = 1s }
12 df-sn 4576 . . . . . 6 { 1s } = {𝑥𝑥 = 1s }
1311, 12eqtr4i 2757 . . . . 5 {𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = (𝑦 +s 1s )} = { 1s }
14 oveq2 7360 . . . . . . . . . 10 (𝑦 = 0s → ( 1s +s 𝑦) = ( 1s +s 0s ))
1514eqeq2d 2742 . . . . . . . . 9 (𝑦 = 0s → (𝑥 = ( 1s +s 𝑦) ↔ 𝑥 = ( 1s +s 0s )))
162, 15rexsn 4634 . . . . . . . 8 (∃𝑦 ∈ { 0s }𝑥 = ( 1s +s 𝑦) ↔ 𝑥 = ( 1s +s 0s ))
17 addsrid 27913 . . . . . . . . . 10 ( 1s No → ( 1s +s 0s ) = 1s )
186, 17ax-mp 5 . . . . . . . . 9 ( 1s +s 0s ) = 1s
1918eqeq2i 2744 . . . . . . . 8 (𝑥 = ( 1s +s 0s ) ↔ 𝑥 = 1s )
2016, 19bitri 275 . . . . . . 7 (∃𝑦 ∈ { 0s }𝑥 = ( 1s +s 𝑦) ↔ 𝑥 = 1s )
2120abbii 2798 . . . . . 6 {𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = ( 1s +s 𝑦)} = {𝑥𝑥 = 1s }
2221, 12eqtr4i 2757 . . . . 5 {𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = ( 1s +s 𝑦)} = { 1s }
2313, 22uneq12i 4115 . . . 4 ({𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = (𝑦 +s 1s )} ∪ {𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = ( 1s +s 𝑦)}) = ({ 1s } ∪ { 1s })
24 unidm 4106 . . . 4 ({ 1s } ∪ { 1s }) = { 1s }
2523, 24eqtri 2754 . . 3 ({𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = (𝑦 +s 1s )} ∪ {𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = ( 1s +s 𝑦)}) = { 1s }
26 rex0 4309 . . . . . 6 ¬ ∃𝑦 ∈ ∅ 𝑥 = (𝑦 +s 1s )
2726abf 4355 . . . . 5 {𝑥 ∣ ∃𝑦 ∈ ∅ 𝑥 = (𝑦 +s 1s )} = ∅
28 rex0 4309 . . . . . 6 ¬ ∃𝑦 ∈ ∅ 𝑥 = ( 1s +s 𝑦)
2928abf 4355 . . . . 5 {𝑥 ∣ ∃𝑦 ∈ ∅ 𝑥 = ( 1s +s 𝑦)} = ∅
3027, 29uneq12i 4115 . . . 4 ({𝑥 ∣ ∃𝑦 ∈ ∅ 𝑥 = (𝑦 +s 1s )} ∪ {𝑥 ∣ ∃𝑦 ∈ ∅ 𝑥 = ( 1s +s 𝑦)}) = (∅ ∪ ∅)
31 unidm 4106 . . . 4 (∅ ∪ ∅) = ∅
3230, 31eqtri 2754 . . 3 ({𝑥 ∣ ∃𝑦 ∈ ∅ 𝑥 = (𝑦 +s 1s )} ∪ {𝑥 ∣ ∃𝑦 ∈ ∅ 𝑥 = ( 1s +s 𝑦)}) = ∅
3325, 32oveq12i 7364 . 2 (({𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = (𝑦 +s 1s )} ∪ {𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = ( 1s +s 𝑦)}) |s ({𝑥 ∣ ∃𝑦 ∈ ∅ 𝑥 = (𝑦 +s 1s )} ∪ {𝑥 ∣ ∃𝑦 ∈ ∅ 𝑥 = ( 1s +s 𝑦)})) = ({ 1s } |s ∅)
34 snelpwi 5387 . . . . . . 7 ( 0s No → { 0s } ∈ 𝒫 No )
351, 34ax-mp 5 . . . . . 6 { 0s } ∈ 𝒫 No
36 nulssgt 27745 . . . . . 6 ({ 0s } ∈ 𝒫 No → { 0s } <<s ∅)
3735, 36ax-mp 5 . . . . 5 { 0s } <<s ∅
3837a1i 11 . . . 4 (⊤ → { 0s } <<s ∅)
39 df-1s 27775 . . . . 5 1s = ({ 0s } |s ∅)
4039a1i 11 . . . 4 (⊤ → 1s = ({ 0s } |s ∅))
4138, 38, 40, 40addsunif 27951 . . 3 (⊤ → ( 1s +s 1s ) = (({𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = (𝑦 +s 1s )} ∪ {𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = ( 1s +s 𝑦)}) |s ({𝑥 ∣ ∃𝑦 ∈ ∅ 𝑥 = (𝑦 +s 1s )} ∪ {𝑥 ∣ ∃𝑦 ∈ ∅ 𝑥 = ( 1s +s 𝑦)})))
4241mptru 1548 . 2 ( 1s +s 1s ) = (({𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = (𝑦 +s 1s )} ∪ {𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = ( 1s +s 𝑦)}) |s ({𝑥 ∣ ∃𝑦 ∈ ∅ 𝑥 = (𝑦 +s 1s )} ∪ {𝑥 ∣ ∃𝑦 ∈ ∅ 𝑥 = ( 1s +s 𝑦)}))
43 df-2s 28340 . 2 2s = ({ 1s } |s ∅)
4433, 42, 433eqtr4i 2764 1 ( 1s +s 1s ) = 2s
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wtru 1542  wcel 2111  {cab 2709  wrex 3056  cun 3895  c0 4282  𝒫 cpw 4549  {csn 4575   class class class wbr 5093  (class class class)co 7352   No csur 27584   <<s csslt 27726   |s cscut 27728   0s c0s 27772   1s c1s 27773   +s cadds 27908  2sc2s 28339
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-ot 4584  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6254  df-ord 6315  df-on 6316  df-suc 6318  df-iota 6443  df-fun 6489  df-fn 6490  df-f 6491  df-f1 6492  df-fo 6493  df-f1o 6494  df-fv 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-1o 8391  df-2o 8392  df-nadd 8587  df-no 27587  df-slt 27588  df-bday 27589  df-sle 27690  df-sslt 27727  df-scut 27729  df-0s 27774  df-1s 27775  df-made 27794  df-old 27795  df-left 27797  df-right 27798  df-norec2 27898  df-adds 27909  df-2s 28340
This theorem is referenced by:  no2times  28346  2nns  28347  n0seo  28350  zseo  28351  addhalfcut  28385  pw2cutp1  28387  zs12bday  28400
  Copyright terms: Public domain W3C validator