MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1p1e2s Structured version   Visualization version   GIF version

Theorem 1p1e2s 28332
Description: One plus one is two. Surreal version. (Contributed by Scott Fenton, 27-May-2025.)
Assertion
Ref Expression
1p1e2s ( 1s +s 1s ) = 2s

Proof of Theorem 1p1e2s
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0sno 27763 . . . . . . . . . 10 0s No
21elexi 3457 . . . . . . . . 9 0s ∈ V
3 oveq1 7348 . . . . . . . . . 10 (𝑦 = 0s → (𝑦 +s 1s ) = ( 0s +s 1s ))
43eqeq2d 2741 . . . . . . . . 9 (𝑦 = 0s → (𝑥 = (𝑦 +s 1s ) ↔ 𝑥 = ( 0s +s 1s )))
52, 4rexsn 4633 . . . . . . . 8 (∃𝑦 ∈ { 0s }𝑥 = (𝑦 +s 1s ) ↔ 𝑥 = ( 0s +s 1s ))
6 1sno 27764 . . . . . . . . . 10 1s No
7 addslid 27904 . . . . . . . . . 10 ( 1s No → ( 0s +s 1s ) = 1s )
86, 7ax-mp 5 . . . . . . . . 9 ( 0s +s 1s ) = 1s
98eqeq2i 2743 . . . . . . . 8 (𝑥 = ( 0s +s 1s ) ↔ 𝑥 = 1s )
105, 9bitri 275 . . . . . . 7 (∃𝑦 ∈ { 0s }𝑥 = (𝑦 +s 1s ) ↔ 𝑥 = 1s )
1110abbii 2797 . . . . . 6 {𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = (𝑦 +s 1s )} = {𝑥𝑥 = 1s }
12 df-sn 4575 . . . . . 6 { 1s } = {𝑥𝑥 = 1s }
1311, 12eqtr4i 2756 . . . . 5 {𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = (𝑦 +s 1s )} = { 1s }
14 oveq2 7349 . . . . . . . . . 10 (𝑦 = 0s → ( 1s +s 𝑦) = ( 1s +s 0s ))
1514eqeq2d 2741 . . . . . . . . 9 (𝑦 = 0s → (𝑥 = ( 1s +s 𝑦) ↔ 𝑥 = ( 1s +s 0s )))
162, 15rexsn 4633 . . . . . . . 8 (∃𝑦 ∈ { 0s }𝑥 = ( 1s +s 𝑦) ↔ 𝑥 = ( 1s +s 0s ))
17 addsrid 27900 . . . . . . . . . 10 ( 1s No → ( 1s +s 0s ) = 1s )
186, 17ax-mp 5 . . . . . . . . 9 ( 1s +s 0s ) = 1s
1918eqeq2i 2743 . . . . . . . 8 (𝑥 = ( 1s +s 0s ) ↔ 𝑥 = 1s )
2016, 19bitri 275 . . . . . . 7 (∃𝑦 ∈ { 0s }𝑥 = ( 1s +s 𝑦) ↔ 𝑥 = 1s )
2120abbii 2797 . . . . . 6 {𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = ( 1s +s 𝑦)} = {𝑥𝑥 = 1s }
2221, 12eqtr4i 2756 . . . . 5 {𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = ( 1s +s 𝑦)} = { 1s }
2313, 22uneq12i 4114 . . . 4 ({𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = (𝑦 +s 1s )} ∪ {𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = ( 1s +s 𝑦)}) = ({ 1s } ∪ { 1s })
24 unidm 4105 . . . 4 ({ 1s } ∪ { 1s }) = { 1s }
2523, 24eqtri 2753 . . 3 ({𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = (𝑦 +s 1s )} ∪ {𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = ( 1s +s 𝑦)}) = { 1s }
26 rex0 4308 . . . . . 6 ¬ ∃𝑦 ∈ ∅ 𝑥 = (𝑦 +s 1s )
2726abf 4354 . . . . 5 {𝑥 ∣ ∃𝑦 ∈ ∅ 𝑥 = (𝑦 +s 1s )} = ∅
28 rex0 4308 . . . . . 6 ¬ ∃𝑦 ∈ ∅ 𝑥 = ( 1s +s 𝑦)
2928abf 4354 . . . . 5 {𝑥 ∣ ∃𝑦 ∈ ∅ 𝑥 = ( 1s +s 𝑦)} = ∅
3027, 29uneq12i 4114 . . . 4 ({𝑥 ∣ ∃𝑦 ∈ ∅ 𝑥 = (𝑦 +s 1s )} ∪ {𝑥 ∣ ∃𝑦 ∈ ∅ 𝑥 = ( 1s +s 𝑦)}) = (∅ ∪ ∅)
31 unidm 4105 . . . 4 (∅ ∪ ∅) = ∅
3230, 31eqtri 2753 . . 3 ({𝑥 ∣ ∃𝑦 ∈ ∅ 𝑥 = (𝑦 +s 1s )} ∪ {𝑥 ∣ ∃𝑦 ∈ ∅ 𝑥 = ( 1s +s 𝑦)}) = ∅
3325, 32oveq12i 7353 . 2 (({𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = (𝑦 +s 1s )} ∪ {𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = ( 1s +s 𝑦)}) |s ({𝑥 ∣ ∃𝑦 ∈ ∅ 𝑥 = (𝑦 +s 1s )} ∪ {𝑥 ∣ ∃𝑦 ∈ ∅ 𝑥 = ( 1s +s 𝑦)})) = ({ 1s } |s ∅)
34 snelpwi 5383 . . . . . . 7 ( 0s No → { 0s } ∈ 𝒫 No )
351, 34ax-mp 5 . . . . . 6 { 0s } ∈ 𝒫 No
36 nulssgt 27732 . . . . . 6 ({ 0s } ∈ 𝒫 No → { 0s } <<s ∅)
3735, 36ax-mp 5 . . . . 5 { 0s } <<s ∅
3837a1i 11 . . . 4 (⊤ → { 0s } <<s ∅)
39 df-1s 27762 . . . . 5 1s = ({ 0s } |s ∅)
4039a1i 11 . . . 4 (⊤ → 1s = ({ 0s } |s ∅))
4138, 38, 40, 40addsunif 27938 . . 3 (⊤ → ( 1s +s 1s ) = (({𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = (𝑦 +s 1s )} ∪ {𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = ( 1s +s 𝑦)}) |s ({𝑥 ∣ ∃𝑦 ∈ ∅ 𝑥 = (𝑦 +s 1s )} ∪ {𝑥 ∣ ∃𝑦 ∈ ∅ 𝑥 = ( 1s +s 𝑦)})))
4241mptru 1548 . 2 ( 1s +s 1s ) = (({𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = (𝑦 +s 1s )} ∪ {𝑥 ∣ ∃𝑦 ∈ { 0s }𝑥 = ( 1s +s 𝑦)}) |s ({𝑥 ∣ ∃𝑦 ∈ ∅ 𝑥 = (𝑦 +s 1s )} ∪ {𝑥 ∣ ∃𝑦 ∈ ∅ 𝑥 = ( 1s +s 𝑦)}))
43 df-2s 28327 . 2 2s = ({ 1s } |s ∅)
4433, 42, 433eqtr4i 2763 1 ( 1s +s 1s ) = 2s
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wtru 1542  wcel 2110  {cab 2708  wrex 3054  cun 3898  c0 4281  𝒫 cpw 4548  {csn 4574   class class class wbr 5089  (class class class)co 7341   No csur 27571   <<s csslt 27713   |s cscut 27715   0s c0s 27759   1s c1s 27760   +s cadds 27895  2sc2s 28326
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-tp 4579  df-op 4581  df-ot 4583  df-uni 4858  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-1o 8380  df-2o 8381  df-nadd 8576  df-no 27574  df-slt 27575  df-bday 27576  df-sle 27677  df-sslt 27714  df-scut 27716  df-0s 27761  df-1s 27762  df-made 27781  df-old 27782  df-left 27784  df-right 27785  df-norec2 27885  df-adds 27896  df-2s 28327
This theorem is referenced by:  no2times  28333  2nns  28334  n0seo  28337  zseo  28338  addhalfcut  28372  pw2cutp1  28374  zs12bday  28387
  Copyright terms: Public domain W3C validator