| Mathbox for Anthony Hart |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > df-3nand | Structured version Visualization version GIF version | ||
| Description: The double nand. This definition allows to express the input of three variables only being false if all three are true. (Contributed by Anthony Hart, 2-Sep-2011.) |
| Ref | Expression |
|---|---|
| df-3nand | ⊢ ((𝜑 ⊼ 𝜓 ⊼ 𝜒) ↔ (𝜑 → (𝜓 → ¬ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wph | . . 3 wff 𝜑 | |
| 2 | wps | . . 3 wff 𝜓 | |
| 3 | wch | . . 3 wff 𝜒 | |
| 4 | 1, 2, 3 | w3nand 36420 | . 2 wff (𝜑 ⊼ 𝜓 ⊼ 𝜒) |
| 5 | 3 | wn 3 | . . . 4 wff ¬ 𝜒 |
| 6 | 2, 5 | wi 4 | . . 3 wff (𝜓 → ¬ 𝜒) |
| 7 | 1, 6 | wi 4 | . 2 wff (𝜑 → (𝜓 → ¬ 𝜒)) |
| 8 | 4, 7 | wb 206 | 1 wff ((𝜑 ⊼ 𝜓 ⊼ 𝜒) ↔ (𝜑 → (𝜓 → ¬ 𝜒))) |
| Colors of variables: wff setvar class |
| This definition is referenced by: df3nandALT1 36422 df3nandALT2 36423 andnand1 36424 |
| Copyright terms: Public domain | W3C validator |