Mathbox for Anthony Hart |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > df-3nand | Structured version Visualization version GIF version |
Description: The double nand. This definition allows us to express the input of three variables only being false if all three are true. (Contributed by Anthony Hart, 2-Sep-2011.) |
Ref | Expression |
---|---|
df-3nand | ⊢ ((𝜑 ⊼ 𝜓 ⊼ 𝜒) ↔ (𝜑 → (𝜓 → ¬ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wph | . . 3 wff 𝜑 | |
2 | wps | . . 3 wff 𝜓 | |
3 | wch | . . 3 wff 𝜒 | |
4 | 1, 2, 3 | w3nand 34136 | . 2 wff (𝜑 ⊼ 𝜓 ⊼ 𝜒) |
5 | 3 | wn 3 | . . . 4 wff ¬ 𝜒 |
6 | 2, 5 | wi 4 | . . 3 wff (𝜓 → ¬ 𝜒) |
7 | 1, 6 | wi 4 | . 2 wff (𝜑 → (𝜓 → ¬ 𝜒)) |
8 | 4, 7 | wb 209 | 1 wff ((𝜑 ⊼ 𝜓 ⊼ 𝜒) ↔ (𝜑 → (𝜓 → ¬ 𝜒))) |
Colors of variables: wff setvar class |
This definition is referenced by: df3nandALT1 34138 df3nandALT2 34139 andnand1 34140 |
Copyright terms: Public domain | W3C validator |