|   | Mathbox for Anthony Hart | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > df-3nand | Structured version Visualization version GIF version | ||
| Description: The double nand. This definition allows to express the input of three variables only being false if all three are true. (Contributed by Anthony Hart, 2-Sep-2011.) | 
| Ref | Expression | 
|---|---|
| df-3nand | ⊢ ((𝜑 ⊼ 𝜓 ⊼ 𝜒) ↔ (𝜑 → (𝜓 → ¬ 𝜒))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | wph | . . 3 wff 𝜑 | |
| 2 | wps | . . 3 wff 𝜓 | |
| 3 | wch | . . 3 wff 𝜒 | |
| 4 | 1, 2, 3 | w3nand 36398 | . 2 wff (𝜑 ⊼ 𝜓 ⊼ 𝜒) | 
| 5 | 3 | wn 3 | . . . 4 wff ¬ 𝜒 | 
| 6 | 2, 5 | wi 4 | . . 3 wff (𝜓 → ¬ 𝜒) | 
| 7 | 1, 6 | wi 4 | . 2 wff (𝜑 → (𝜓 → ¬ 𝜒)) | 
| 8 | 4, 7 | wb 206 | 1 wff ((𝜑 ⊼ 𝜓 ⊼ 𝜒) ↔ (𝜑 → (𝜓 → ¬ 𝜒))) | 
| Colors of variables: wff setvar class | 
| This definition is referenced by: df3nandALT1 36400 df3nandALT2 36401 andnand1 36402 | 
| Copyright terms: Public domain | W3C validator |