Mathbox for Anthony Hart |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > df3nandALT2 | Structured version Visualization version GIF version |
Description: The double nand expressed in terms of negation and and not. (Contributed by Anthony Hart, 13-Sep-2011.) |
Ref | Expression |
---|---|
df3nandALT2 | ⊢ ((𝜑 ⊼ 𝜓 ⊼ 𝜒) ↔ ¬ (𝜑 ∧ 𝜓 ∧ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3nand 34587 | . 2 ⊢ ((𝜑 ⊼ 𝜓 ⊼ 𝜒) ↔ (𝜑 → (𝜓 → ¬ 𝜒))) | |
2 | imnan 400 | . . 3 ⊢ ((𝜓 → ¬ 𝜒) ↔ ¬ (𝜓 ∧ 𝜒)) | |
3 | 2 | imbi2i 336 | . 2 ⊢ ((𝜑 → (𝜓 → ¬ 𝜒)) ↔ (𝜑 → ¬ (𝜓 ∧ 𝜒))) |
4 | imnan 400 | . . 3 ⊢ ((𝜑 → ¬ (𝜓 ∧ 𝜒)) ↔ ¬ (𝜑 ∧ (𝜓 ∧ 𝜒))) | |
5 | 3anass 1094 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜑 ∧ (𝜓 ∧ 𝜒))) | |
6 | 4, 5 | xchbinxr 335 | . 2 ⊢ ((𝜑 → ¬ (𝜓 ∧ 𝜒)) ↔ ¬ (𝜑 ∧ 𝜓 ∧ 𝜒)) |
7 | 1, 3, 6 | 3bitri 297 | 1 ⊢ ((𝜑 ⊼ 𝜓 ⊼ 𝜒) ↔ ¬ (𝜑 ∧ 𝜓 ∧ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 ⊼ w3nand 34586 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 df-3nand 34587 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |