|   | Mathbox for Anthony Hart | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > df3nandALT2 | Structured version Visualization version GIF version | ||
| Description: The double nand expressed in terms of negation and and not. (Contributed by Anthony Hart, 13-Sep-2011.) | 
| Ref | Expression | 
|---|---|
| df3nandALT2 | ⊢ ((𝜑 ⊼ 𝜓 ⊼ 𝜒) ↔ ¬ (𝜑 ∧ 𝜓 ∧ 𝜒)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-3nand 36399 | . 2 ⊢ ((𝜑 ⊼ 𝜓 ⊼ 𝜒) ↔ (𝜑 → (𝜓 → ¬ 𝜒))) | |
| 2 | imnan 399 | . . 3 ⊢ ((𝜓 → ¬ 𝜒) ↔ ¬ (𝜓 ∧ 𝜒)) | |
| 3 | 2 | imbi2i 336 | . 2 ⊢ ((𝜑 → (𝜓 → ¬ 𝜒)) ↔ (𝜑 → ¬ (𝜓 ∧ 𝜒))) | 
| 4 | imnan 399 | . . 3 ⊢ ((𝜑 → ¬ (𝜓 ∧ 𝜒)) ↔ ¬ (𝜑 ∧ (𝜓 ∧ 𝜒))) | |
| 5 | 3anass 1095 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜑 ∧ (𝜓 ∧ 𝜒))) | |
| 6 | 4, 5 | xchbinxr 335 | . 2 ⊢ ((𝜑 → ¬ (𝜓 ∧ 𝜒)) ↔ ¬ (𝜑 ∧ 𝜓 ∧ 𝜒)) | 
| 7 | 1, 3, 6 | 3bitri 297 | 1 ⊢ ((𝜑 ⊼ 𝜓 ⊼ 𝜒) ↔ ¬ (𝜑 ∧ 𝜓 ∧ 𝜒)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 ⊼ w3nand 36398 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 df-3nand 36399 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |