| Metamath
Proof Explorer Theorem List (p. 353 of 495) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30866) |
(30867-32389) |
(32390-49419) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Definition | df-pconn 35201* | Define the class of path-connected topologies. A topology is path-connected if there is a path (a continuous function from the closed unit interval) that goes from 𝑥 to 𝑦 for any points 𝑥, 𝑦 in the space. (Contributed by Mario Carneiro, 11-Feb-2015.) |
| ⊢ PConn = {𝑗 ∈ Top ∣ ∀𝑥 ∈ ∪ 𝑗∀𝑦 ∈ ∪ 𝑗∃𝑓 ∈ (II Cn 𝑗)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)} | ||
| Definition | df-sconn 35202* | Define the class of simply connected topologies. A topology is simply connected if it is path-connected and every loop (continuous path with identical start and endpoint) is contractible to a point (path-homotopic to a constant function). (Contributed by Mario Carneiro, 11-Feb-2015.) |
| ⊢ SConn = {𝑗 ∈ PConn ∣ ∀𝑓 ∈ (II Cn 𝑗)((𝑓‘0) = (𝑓‘1) → 𝑓( ≃ph‘𝑗)((0[,]1) × {(𝑓‘0)}))} | ||
| Theorem | ispconn 35203* | The property of being a path-connected topological space. (Contributed by Mario Carneiro, 11-Feb-2015.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ PConn ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦))) | ||
| Theorem | pconncn 35204* | The property of being a path-connected topological space. (Contributed by Mario Carneiro, 11-Feb-2015.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ PConn ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝐵)) | ||
| Theorem | pconntop 35205 | A simply connected space is a topology. (Contributed by Mario Carneiro, 11-Feb-2015.) |
| ⊢ (𝐽 ∈ PConn → 𝐽 ∈ Top) | ||
| Theorem | issconn 35206* | The property of being a simply connected topological space. (Contributed by Mario Carneiro, 11-Feb-2015.) |
| ⊢ (𝐽 ∈ SConn ↔ (𝐽 ∈ PConn ∧ ∀𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = (𝑓‘1) → 𝑓( ≃ph‘𝐽)((0[,]1) × {(𝑓‘0)})))) | ||
| Theorem | sconnpconn 35207 | A simply connected space is path-connected. (Contributed by Mario Carneiro, 11-Feb-2015.) |
| ⊢ (𝐽 ∈ SConn → 𝐽 ∈ PConn) | ||
| Theorem | sconntop 35208 | A simply connected space is a topology. (Contributed by Mario Carneiro, 11-Feb-2015.) |
| ⊢ (𝐽 ∈ SConn → 𝐽 ∈ Top) | ||
| Theorem | sconnpht 35209 | A closed path in a simply connected space is contractible to a point. (Contributed by Mario Carneiro, 11-Feb-2015.) |
| ⊢ ((𝐽 ∈ SConn ∧ 𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = (𝐹‘1)) → 𝐹( ≃ph‘𝐽)((0[,]1) × {(𝐹‘0)})) | ||
| Theorem | cnpconn 35210 | An image of a path-connected space is path-connected. (Contributed by Mario Carneiro, 24-Mar-2015.) |
| ⊢ 𝑌 = ∪ 𝐾 ⇒ ⊢ ((𝐽 ∈ PConn ∧ 𝐹:𝑋–onto→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐾 ∈ PConn) | ||
| Theorem | pconnconn 35211 | A path-connected space is connected. (Contributed by Mario Carneiro, 11-Feb-2015.) |
| ⊢ (𝐽 ∈ PConn → 𝐽 ∈ Conn) | ||
| Theorem | txpconn 35212 | The topological product of two path-connected spaces is path-connected. (Contributed by Mario Carneiro, 12-Feb-2015.) |
| ⊢ ((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) → (𝑅 ×t 𝑆) ∈ PConn) | ||
| Theorem | ptpconn 35213 | The topological product of a collection of path-connected spaces is path-connected. The proof uses the axiom of choice. (Contributed by Mario Carneiro, 17-Feb-2015.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶PConn) → (∏t‘𝐹) ∈ PConn) | ||
| Theorem | indispconn 35214 | The indiscrete topology (or trivial topology) on any set is path-connected. (Contributed by Mario Carneiro, 7-Jul-2015.) (Revised by Mario Carneiro, 14-Aug-2015.) |
| ⊢ {∅, 𝐴} ∈ PConn | ||
| Theorem | connpconn 35215 | A connected and locally path-connected space is path-connected. (Contributed by Mario Carneiro, 7-Jul-2015.) |
| ⊢ ((𝐽 ∈ Conn ∧ 𝐽 ∈ 𝑛-Locally PConn) → 𝐽 ∈ PConn) | ||
| Theorem | qtoppconn 35216 | A quotient of a path-connected space is path-connected. (Contributed by Mario Carneiro, 24-Mar-2015.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ PConn ∧ 𝐹 Fn 𝑋) → (𝐽 qTop 𝐹) ∈ PConn) | ||
| Theorem | pconnpi1 35217 | All fundamental groups in a path-connected space are isomorphic. (Contributed by Mario Carneiro, 12-Feb-2015.) |
| ⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝑃 = (𝐽 π1 𝐴) & ⊢ 𝑄 = (𝐽 π1 𝐵) & ⊢ 𝑆 = (Base‘𝑃) & ⊢ 𝑇 = (Base‘𝑄) ⇒ ⊢ ((𝐽 ∈ PConn ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 𝑃 ≃𝑔 𝑄) | ||
| Theorem | sconnpht2 35218 | Any two paths in a simply connected space with the same start and end point are path-homotopic. (Contributed by Mario Carneiro, 12-Feb-2015.) |
| ⊢ (𝜑 → 𝐽 ∈ SConn) & ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → (𝐹‘0) = (𝐺‘0)) & ⊢ (𝜑 → (𝐹‘1) = (𝐺‘1)) ⇒ ⊢ (𝜑 → 𝐹( ≃ph‘𝐽)𝐺) | ||
| Theorem | sconnpi1 35219 | A path-connected topological space is simply connected iff its fundamental group is trivial. (Contributed by Mario Carneiro, 12-Feb-2015.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ PConn ∧ 𝑌 ∈ 𝑋) → (𝐽 ∈ SConn ↔ (Base‘(𝐽 π1 𝑌)) ≈ 1o)) | ||
| Theorem | txsconnlem 35220 | Lemma for txsconn 35221. (Contributed by Mario Carneiro, 9-Mar-2015.) |
| ⊢ (𝜑 → 𝑅 ∈ Top) & ⊢ (𝜑 → 𝑆 ∈ Top) & ⊢ (𝜑 → 𝐹 ∈ (II Cn (𝑅 ×t 𝑆))) & ⊢ 𝐴 = ((1st ↾ (∪ 𝑅 × ∪ 𝑆)) ∘ 𝐹) & ⊢ 𝐵 = ((2nd ↾ (∪ 𝑅 × ∪ 𝑆)) ∘ 𝐹) & ⊢ (𝜑 → 𝐺 ∈ (𝐴(PHtpy‘𝑅)((0[,]1) × {(𝐴‘0)}))) & ⊢ (𝜑 → 𝐻 ∈ (𝐵(PHtpy‘𝑆)((0[,]1) × {(𝐵‘0)}))) ⇒ ⊢ (𝜑 → 𝐹( ≃ph‘(𝑅 ×t 𝑆))((0[,]1) × {(𝐹‘0)})) | ||
| Theorem | txsconn 35221 | The topological product of two simply connected spaces is simply connected. (Contributed by Mario Carneiro, 12-Feb-2015.) |
| ⊢ ((𝑅 ∈ SConn ∧ 𝑆 ∈ SConn) → (𝑅 ×t 𝑆) ∈ SConn) | ||
| Theorem | cvxpconn 35222* | A convex subset of the complex numbers is path-connected. (Contributed by Mario Carneiro, 12-Feb-2015.) Avoid ax-mulf 11217. (Revised by GG, 19-Apr-2025.) |
| ⊢ (𝜑 → 𝑆 ⊆ ℂ) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑡 ∈ (0[,]1))) → ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ 𝑆) & ⊢ 𝐽 = (TopOpen‘ℂfld) & ⊢ 𝐾 = (𝐽 ↾t 𝑆) ⇒ ⊢ (𝜑 → 𝐾 ∈ PConn) | ||
| Theorem | cvxsconn 35223* | A convex subset of the complex numbers is simply connected. (Contributed by Mario Carneiro, 12-Feb-2015.) Avoid ax-mulf 11217. (Revised by GG, 19-Apr-2025.) |
| ⊢ (𝜑 → 𝑆 ⊆ ℂ) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑡 ∈ (0[,]1))) → ((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦)) ∈ 𝑆) & ⊢ 𝐽 = (TopOpen‘ℂfld) & ⊢ 𝐾 = (𝐽 ↾t 𝑆) ⇒ ⊢ (𝜑 → 𝐾 ∈ SConn) | ||
| Theorem | blsconn 35224 | An open ball in the complex numbers is simply connected. (Contributed by Mario Carneiro, 12-Feb-2015.) |
| ⊢ 𝐽 = (TopOpen‘ℂfld) & ⊢ 𝑆 = (𝑃(ball‘(abs ∘ − ))𝑅) & ⊢ 𝐾 = (𝐽 ↾t 𝑆) ⇒ ⊢ ((𝑃 ∈ ℂ ∧ 𝑅 ∈ ℝ*) → 𝐾 ∈ SConn) | ||
| Theorem | cnllysconn 35225 | The topology of the complex numbers is locally simply connected. (Contributed by Mario Carneiro, 2-Mar-2015.) |
| ⊢ 𝐽 = (TopOpen‘ℂfld) ⇒ ⊢ 𝐽 ∈ Locally SConn | ||
| Theorem | resconn 35226 | A subset of ℝ is simply connected iff it is connected. (Contributed by Mario Carneiro, 9-Mar-2015.) |
| ⊢ 𝐽 = ((topGen‘ran (,)) ↾t 𝐴) ⇒ ⊢ (𝐴 ⊆ ℝ → (𝐽 ∈ SConn ↔ 𝐽 ∈ Conn)) | ||
| Theorem | ioosconn 35227 | An open interval is simply connected. (Contributed by Mario Carneiro, 9-Mar-2015.) |
| ⊢ ((topGen‘ran (,)) ↾t (𝐴(,)𝐵)) ∈ SConn | ||
| Theorem | iccsconn 35228 | A closed interval is simply connected. (Contributed by Mario Carneiro, 9-Mar-2015.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) ∈ SConn) | ||
| Theorem | retopsconn 35229 | The real numbers are simply connected. (Contributed by Mario Carneiro, 9-Mar-2015.) |
| ⊢ (topGen‘ran (,)) ∈ SConn | ||
| Theorem | iccllysconn 35230 | A closed interval is locally simply connected. (Contributed by Mario Carneiro, 10-Mar-2015.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) ∈ Locally SConn) | ||
| Theorem | rellysconn 35231 | The real numbers are locally simply connected. (Contributed by Mario Carneiro, 10-Mar-2015.) |
| ⊢ (topGen‘ran (,)) ∈ Locally SConn | ||
| Theorem | iisconn 35232 | The unit interval is simply connected. (Contributed by Mario Carneiro, 9-Mar-2015.) |
| ⊢ II ∈ SConn | ||
| Theorem | iillysconn 35233 | The unit interval is locally simply connected. (Contributed by Mario Carneiro, 10-Mar-2015.) |
| ⊢ II ∈ Locally SConn | ||
| Theorem | iinllyconn 35234 | The unit interval is locally connected. (Contributed by Mario Carneiro, 6-Jul-2015.) |
| ⊢ II ∈ 𝑛-Locally Conn | ||
| Syntax | ccvm 35235 | Extend class notation with the class of covering maps. |
| class CovMap | ||
| Definition | df-cvm 35236* | Define the class of covering maps on two topological spaces. A function 𝑓:𝑐⟶𝑗 is a covering map if it is continuous and for every point 𝑥 in the target space there is a neighborhood 𝑘 of 𝑥 and a decomposition 𝑠 of the preimage of 𝑘 as a disjoint union such that 𝑓 is a homeomorphism of each set 𝑢 ∈ 𝑠 onto 𝑘. (Contributed by Mario Carneiro, 13-Feb-2015.) |
| ⊢ CovMap = (𝑐 ∈ Top, 𝑗 ∈ Top ↦ {𝑓 ∈ (𝑐 Cn 𝑗) ∣ ∀𝑥 ∈ ∪ 𝑗∃𝑘 ∈ 𝑗 (𝑥 ∈ 𝑘 ∧ ∃𝑠 ∈ (𝒫 𝑐 ∖ {∅})(∪ 𝑠 = (◡𝑓 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝑓 ↾ 𝑢) ∈ ((𝑐 ↾t 𝑢)Homeo(𝑗 ↾t 𝑘)))))}) | ||
| Theorem | fncvm 35237 | Lemma for covering maps. (Contributed by Mario Carneiro, 13-Feb-2015.) |
| ⊢ CovMap Fn (Top × Top) | ||
| Theorem | cvmscbv 35238* | Change bound variables in the set of even coverings. (Contributed by Mario Carneiro, 17-Feb-2015.) |
| ⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) ⇒ ⊢ 𝑆 = (𝑎 ∈ 𝐽 ↦ {𝑏 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑏 = (◡𝐹 “ 𝑎) ∧ ∀𝑐 ∈ 𝑏 (∀𝑑 ∈ (𝑏 ∖ {𝑐})(𝑐 ∩ 𝑑) = ∅ ∧ (𝐹 ↾ 𝑐) ∈ ((𝐶 ↾t 𝑐)Homeo(𝐽 ↾t 𝑎))))}) | ||
| Theorem | iscvm 35239* | The property of being a covering map. (Contributed by Mario Carneiro, 13-Feb-2015.) |
| ⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) & ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐹 ∈ (𝐶 CovMap 𝐽) ↔ ((𝐶 ∈ Top ∧ 𝐽 ∈ Top ∧ 𝐹 ∈ (𝐶 Cn 𝐽)) ∧ ∀𝑥 ∈ 𝑋 ∃𝑘 ∈ 𝐽 (𝑥 ∈ 𝑘 ∧ (𝑆‘𝑘) ≠ ∅))) | ||
| Theorem | cvmtop1 35240 | Reverse closure for a covering map. (Contributed by Mario Carneiro, 11-Feb-2015.) |
| ⊢ (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐶 ∈ Top) | ||
| Theorem | cvmtop2 35241 | Reverse closure for a covering map. (Contributed by Mario Carneiro, 13-Feb-2015.) |
| ⊢ (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐽 ∈ Top) | ||
| Theorem | cvmcn 35242 | A covering map is a continuous function. (Contributed by Mario Carneiro, 13-Feb-2015.) |
| ⊢ (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐹 ∈ (𝐶 Cn 𝐽)) | ||
| Theorem | cvmcov 35243* | Property of a covering map. In order to make the covering property more manageable, we define here the set 𝑆(𝑘) of all even coverings of an open set 𝑘 in the range. Then the covering property states that every point has a neighborhood which has an even covering. (Contributed by Mario Carneiro, 13-Feb-2015.) |
| ⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) & ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑃 ∈ 𝑋) → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝑆‘𝑥) ≠ ∅)) | ||
| Theorem | cvmsrcl 35244* | Reverse closure for an even covering. (Contributed by Mario Carneiro, 11-Feb-2015.) |
| ⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) ⇒ ⊢ (𝑇 ∈ (𝑆‘𝑈) → 𝑈 ∈ 𝐽) | ||
| Theorem | cvmsi 35245* | One direction of cvmsval 35246. (Contributed by Mario Carneiro, 13-Feb-2015.) |
| ⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) ⇒ ⊢ (𝑇 ∈ (𝑆‘𝑈) → (𝑈 ∈ 𝐽 ∧ (𝑇 ⊆ 𝐶 ∧ 𝑇 ≠ ∅) ∧ (∪ 𝑇 = (◡𝐹 “ 𝑈) ∧ ∀𝑢 ∈ 𝑇 (∀𝑣 ∈ (𝑇 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑈)))))) | ||
| Theorem | cvmsval 35246* | Elementhood in the set 𝑆 of all even coverings of an open set in 𝐽. 𝑆 is an even covering of 𝑈 if it is a nonempty collection of disjoint open sets in 𝐶 whose union is the preimage of 𝑈, such that each set 𝑢 ∈ 𝑆 is homeomorphic under 𝐹 to 𝑈. (Contributed by Mario Carneiro, 13-Feb-2015.) |
| ⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) ⇒ ⊢ (𝐶 ∈ 𝑉 → (𝑇 ∈ (𝑆‘𝑈) ↔ (𝑈 ∈ 𝐽 ∧ (𝑇 ⊆ 𝐶 ∧ 𝑇 ≠ ∅) ∧ (∪ 𝑇 = (◡𝐹 “ 𝑈) ∧ ∀𝑢 ∈ 𝑇 (∀𝑣 ∈ (𝑇 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑈))))))) | ||
| Theorem | cvmsss 35247* | An even covering is a subset of the topology of the domain (i.e. a collection of open sets). (Contributed by Mario Carneiro, 11-Feb-2015.) |
| ⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) ⇒ ⊢ (𝑇 ∈ (𝑆‘𝑈) → 𝑇 ⊆ 𝐶) | ||
| Theorem | cvmsn0 35248* | An even covering is nonempty. (Contributed by Mario Carneiro, 11-Feb-2015.) |
| ⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) ⇒ ⊢ (𝑇 ∈ (𝑆‘𝑈) → 𝑇 ≠ ∅) | ||
| Theorem | cvmsuni 35249* | An even covering of 𝑈 has union equal to the preimage of 𝑈 by 𝐹. (Contributed by Mario Carneiro, 11-Feb-2015.) |
| ⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) ⇒ ⊢ (𝑇 ∈ (𝑆‘𝑈) → ∪ 𝑇 = (◡𝐹 “ 𝑈)) | ||
| Theorem | cvmsdisj 35250* | An even covering of 𝑈 is a disjoint union. (Contributed by Mario Carneiro, 13-Feb-2015.) |
| ⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) ⇒ ⊢ ((𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇 ∧ 𝐵 ∈ 𝑇) → (𝐴 = 𝐵 ∨ (𝐴 ∩ 𝐵) = ∅)) | ||
| Theorem | cvmshmeo 35251* | Every element of an even covering of 𝑈 is homeomorphic to 𝑈 via 𝐹. (Contributed by Mario Carneiro, 13-Feb-2015.) |
| ⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) ⇒ ⊢ ((𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) → (𝐹 ↾ 𝐴) ∈ ((𝐶 ↾t 𝐴)Homeo(𝐽 ↾t 𝑈))) | ||
| Theorem | cvmsf1o 35252* | 𝐹, localized to an element of an even covering of 𝑈, is a bijection. (Contributed by Mario Carneiro, 14-Feb-2015.) |
| ⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) ⇒ ⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) → (𝐹 ↾ 𝐴):𝐴–1-1-onto→𝑈) | ||
| Theorem | cvmscld 35253* | The sets of an even covering are clopen in the subspace topology on 𝑇. (Contributed by Mario Carneiro, 14-Feb-2015.) |
| ⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) ⇒ ⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝑇) → 𝐴 ∈ (Clsd‘(𝐶 ↾t (◡𝐹 “ 𝑈)))) | ||
| Theorem | cvmsss2 35254* | An open subset of an evenly covered set is evenly covered. (Contributed by Mario Carneiro, 7-Jul-2015.) |
| ⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) ⇒ ⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑉 ∈ 𝐽 ∧ 𝑉 ⊆ 𝑈) → ((𝑆‘𝑈) ≠ ∅ → (𝑆‘𝑉) ≠ ∅)) | ||
| Theorem | cvmcov2 35255* | The covering map property can be restricted to an open subset. (Contributed by Mario Carneiro, 7-Jul-2015.) |
| ⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) ⇒ ⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑈 ∈ 𝐽 ∧ 𝑃 ∈ 𝑈) → ∃𝑥 ∈ 𝒫 𝑈(𝑃 ∈ 𝑥 ∧ (𝑆‘𝑥) ≠ ∅)) | ||
| Theorem | cvmseu 35256* | Every element in ∪ 𝑇 is a member of a unique element of 𝑇. (Contributed by Mario Carneiro, 14-Feb-2015.) |
| ⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) & ⊢ 𝐵 = ∪ 𝐶 ⇒ ⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝐵 ∧ (𝐹‘𝐴) ∈ 𝑈)) → ∃!𝑥 ∈ 𝑇 𝐴 ∈ 𝑥) | ||
| Theorem | cvmsiota 35257* | Identify the unique element of 𝑇 containing 𝐴. (Contributed by Mario Carneiro, 14-Feb-2015.) |
| ⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) & ⊢ 𝐵 = ∪ 𝐶 & ⊢ 𝑊 = (℩𝑥 ∈ 𝑇 𝐴 ∈ 𝑥) ⇒ ⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝐵 ∧ (𝐹‘𝐴) ∈ 𝑈)) → (𝑊 ∈ 𝑇 ∧ 𝐴 ∈ 𝑊)) | ||
| Theorem | cvmopnlem 35258* | Lemma for cvmopn 35260. (Contributed by Mario Carneiro, 7-May-2015.) |
| ⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) & ⊢ 𝐵 = ∪ 𝐶 ⇒ ⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴 ∈ 𝐶) → (𝐹 “ 𝐴) ∈ 𝐽) | ||
| Theorem | cvmfolem 35259* | Lemma for cvmfo 35280. (Contributed by Mario Carneiro, 13-Feb-2015.) |
| ⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) & ⊢ 𝐵 = ∪ 𝐶 & ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐹:𝐵–onto→𝑋) | ||
| Theorem | cvmopn 35260 | A covering map is an open map. (Contributed by Mario Carneiro, 7-May-2015.) |
| ⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐴 ∈ 𝐶) → (𝐹 “ 𝐴) ∈ 𝐽) | ||
| Theorem | cvmliftmolem1 35261* | Lemma for cvmliftmo 35264. (Contributed by Mario Carneiro, 10-Mar-2015.) |
| ⊢ 𝐵 = ∪ 𝐶 & ⊢ 𝑌 = ∪ 𝐾 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐾 ∈ Conn) & ⊢ (𝜑 → 𝐾 ∈ 𝑛-Locally Conn) & ⊢ (𝜑 → 𝑂 ∈ 𝑌) & ⊢ (𝜑 → 𝑀 ∈ (𝐾 Cn 𝐶)) & ⊢ (𝜑 → 𝑁 ∈ (𝐾 Cn 𝐶)) & ⊢ (𝜑 → (𝐹 ∘ 𝑀) = (𝐹 ∘ 𝑁)) & ⊢ (𝜑 → (𝑀‘𝑂) = (𝑁‘𝑂)) & ⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) & ⊢ ((𝜑 ∧ 𝜓) → 𝑇 ∈ (𝑆‘𝑈)) & ⊢ ((𝜑 ∧ 𝜓) → 𝑊 ∈ 𝑇) & ⊢ ((𝜑 ∧ 𝜓) → 𝐼 ⊆ (◡𝑀 “ 𝑊)) & ⊢ ((𝜑 ∧ 𝜓) → (𝐾 ↾t 𝐼) ∈ Conn) & ⊢ ((𝜑 ∧ 𝜓) → 𝑋 ∈ 𝐼) & ⊢ ((𝜑 ∧ 𝜓) → 𝑄 ∈ 𝐼) & ⊢ ((𝜑 ∧ 𝜓) → 𝑅 ∈ 𝐼) & ⊢ ((𝜑 ∧ 𝜓) → (𝐹‘(𝑀‘𝑋)) ∈ 𝑈) ⇒ ⊢ ((𝜑 ∧ 𝜓) → (𝑄 ∈ dom (𝑀 ∩ 𝑁) → 𝑅 ∈ dom (𝑀 ∩ 𝑁))) | ||
| Theorem | cvmliftmolem2 35262* | Lemma for cvmliftmo 35264. (Contributed by Mario Carneiro, 10-Mar-2015.) |
| ⊢ 𝐵 = ∪ 𝐶 & ⊢ 𝑌 = ∪ 𝐾 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐾 ∈ Conn) & ⊢ (𝜑 → 𝐾 ∈ 𝑛-Locally Conn) & ⊢ (𝜑 → 𝑂 ∈ 𝑌) & ⊢ (𝜑 → 𝑀 ∈ (𝐾 Cn 𝐶)) & ⊢ (𝜑 → 𝑁 ∈ (𝐾 Cn 𝐶)) & ⊢ (𝜑 → (𝐹 ∘ 𝑀) = (𝐹 ∘ 𝑁)) & ⊢ (𝜑 → (𝑀‘𝑂) = (𝑁‘𝑂)) & ⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) ⇒ ⊢ (𝜑 → 𝑀 = 𝑁) | ||
| Theorem | cvmliftmoi 35263 | A lift of a continuous function from a connected and locally connected space over a covering map is unique when it exists. (Contributed by Mario Carneiro, 10-Mar-2015.) |
| ⊢ 𝐵 = ∪ 𝐶 & ⊢ 𝑌 = ∪ 𝐾 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐾 ∈ Conn) & ⊢ (𝜑 → 𝐾 ∈ 𝑛-Locally Conn) & ⊢ (𝜑 → 𝑂 ∈ 𝑌) & ⊢ (𝜑 → 𝑀 ∈ (𝐾 Cn 𝐶)) & ⊢ (𝜑 → 𝑁 ∈ (𝐾 Cn 𝐶)) & ⊢ (𝜑 → (𝐹 ∘ 𝑀) = (𝐹 ∘ 𝑁)) & ⊢ (𝜑 → (𝑀‘𝑂) = (𝑁‘𝑂)) ⇒ ⊢ (𝜑 → 𝑀 = 𝑁) | ||
| Theorem | cvmliftmo 35264* | A lift of a continuous function from a connected and locally connected space over a covering map is unique when it exists. (Contributed by Mario Carneiro, 10-Mar-2015.) (Revised by NM, 17-Jun-2017.) |
| ⊢ 𝐵 = ∪ 𝐶 & ⊢ 𝑌 = ∪ 𝐾 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐾 ∈ Conn) & ⊢ (𝜑 → 𝐾 ∈ 𝑛-Locally Conn) & ⊢ (𝜑 → 𝑂 ∈ 𝑌) & ⊢ (𝜑 → 𝐺 ∈ (𝐾 Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘𝑂)) ⇒ ⊢ (𝜑 → ∃*𝑓 ∈ (𝐾 Cn 𝐶)((𝐹 ∘ 𝑓) = 𝐺 ∧ (𝑓‘𝑂) = 𝑃)) | ||
| Theorem | cvmliftlem1 35265* | Lemma for cvmlift 35279. In cvmliftlem15 35278, we picked an 𝑁 large enough so that the sections (𝐺 “ [(𝑘 − 1) / 𝑁, 𝑘 / 𝑁]) are all contained in an even covering, and the function 𝑇 enumerates these even coverings. So 1st ‘(𝑇‘𝑀) is a neighborhood of (𝐺 “ [(𝑀 − 1) / 𝑁, 𝑀 / 𝑁]), and 2nd ‘(𝑇‘𝑀) is an even covering of 1st ‘(𝑇‘𝑀), which is to say a disjoint union of open sets in 𝐶 whose image is 1st ‘(𝑇‘𝑀). (Contributed by Mario Carneiro, 14-Feb-2015.) |
| ⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) & ⊢ 𝐵 = ∪ 𝐶 & ⊢ 𝑋 = ∪ 𝐽 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘0)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑇:(1...𝑁)⟶∪ 𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗))) & ⊢ (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇‘𝑘))) & ⊢ 𝐿 = (topGen‘ran (,)) & ⊢ ((𝜑 ∧ 𝜓) → 𝑀 ∈ (1...𝑁)) ⇒ ⊢ ((𝜑 ∧ 𝜓) → (2nd ‘(𝑇‘𝑀)) ∈ (𝑆‘(1st ‘(𝑇‘𝑀)))) | ||
| Theorem | cvmliftlem2 35266* | Lemma for cvmlift 35279. 𝑊 = [(𝑘 − 1) / 𝑁, 𝑘 / 𝑁] is a subset of [0, 1] for each 𝑀 ∈ (1...𝑁). (Contributed by Mario Carneiro, 16-Feb-2015.) |
| ⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) & ⊢ 𝐵 = ∪ 𝐶 & ⊢ 𝑋 = ∪ 𝐽 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘0)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑇:(1...𝑁)⟶∪ 𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗))) & ⊢ (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇‘𝑘))) & ⊢ 𝐿 = (topGen‘ran (,)) & ⊢ ((𝜑 ∧ 𝜓) → 𝑀 ∈ (1...𝑁)) & ⊢ 𝑊 = (((𝑀 − 1) / 𝑁)[,](𝑀 / 𝑁)) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 𝑊 ⊆ (0[,]1)) | ||
| Theorem | cvmliftlem3 35267* | Lemma for cvmlift 35279. Since 1st ‘(𝑇‘𝑀) is a neighborhood of (𝐺 “ 𝑊), every element 𝐴 ∈ 𝑊 satisfies (𝐺‘𝐴) ∈ (1st ‘(𝑇‘𝑀)). (Contributed by Mario Carneiro, 16-Feb-2015.) |
| ⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) & ⊢ 𝐵 = ∪ 𝐶 & ⊢ 𝑋 = ∪ 𝐽 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘0)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑇:(1...𝑁)⟶∪ 𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗))) & ⊢ (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇‘𝑘))) & ⊢ 𝐿 = (topGen‘ran (,)) & ⊢ ((𝜑 ∧ 𝜓) → 𝑀 ∈ (1...𝑁)) & ⊢ 𝑊 = (((𝑀 − 1) / 𝑁)[,](𝑀 / 𝑁)) & ⊢ ((𝜑 ∧ 𝜓) → 𝐴 ∈ 𝑊) ⇒ ⊢ ((𝜑 ∧ 𝜓) → (𝐺‘𝐴) ∈ (1st ‘(𝑇‘𝑀))) | ||
| Theorem | cvmliftlem4 35268* | Lemma for cvmlift 35279. The function 𝑄 will be our lifted path, defined piecewise on each section [(𝑀 − 1) / 𝑁, 𝑀 / 𝑁] for 𝑀 ∈ (1...𝑁). For 𝑀 = 0, it is a "seed" value which makes the rest of the recursion work, a singleton function mapping 0 to 𝑃. (Contributed by Mario Carneiro, 15-Feb-2015.) |
| ⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) & ⊢ 𝐵 = ∪ 𝐶 & ⊢ 𝑋 = ∪ 𝐽 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘0)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑇:(1...𝑁)⟶∪ 𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗))) & ⊢ (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇‘𝑘))) & ⊢ 𝐿 = (topGen‘ran (,)) & ⊢ 𝑄 = seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ (◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺‘𝑧)))), (( I ↾ ℕ) ∪ {〈0, {〈0, 𝑃〉}〉})) ⇒ ⊢ (𝑄‘0) = {〈0, 𝑃〉} | ||
| Theorem | cvmliftlem5 35269* | Lemma for cvmlift 35279. Definition of 𝑄 at a successor. This is a function defined on 𝑊 as ◡(𝑇 ↾ 𝐼) ∘ 𝐺 where 𝐼 is the unique covering set of 2nd ‘(𝑇‘𝑀) that contains 𝑄(𝑀 − 1) evaluated at the last defined point, namely (𝑀 − 1) / 𝑁 (note that for 𝑀 = 1 this is using the seed value 𝑄(0)(0) = 𝑃). (Contributed by Mario Carneiro, 15-Feb-2015.) |
| ⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) & ⊢ 𝐵 = ∪ 𝐶 & ⊢ 𝑋 = ∪ 𝐽 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘0)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑇:(1...𝑁)⟶∪ 𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗))) & ⊢ (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇‘𝑘))) & ⊢ 𝐿 = (topGen‘ran (,)) & ⊢ 𝑄 = seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ (◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺‘𝑧)))), (( I ↾ ℕ) ∪ {〈0, {〈0, 𝑃〉}〉})) & ⊢ 𝑊 = (((𝑀 − 1) / 𝑁)[,](𝑀 / 𝑁)) ⇒ ⊢ ((𝜑 ∧ 𝑀 ∈ ℕ) → (𝑄‘𝑀) = (𝑧 ∈ 𝑊 ↦ (◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺‘𝑧)))) | ||
| Theorem | cvmliftlem6 35270* | Lemma for cvmlift 35279. Induction step for cvmliftlem7 35271. Assuming that 𝑄(𝑀 − 1) is defined at (𝑀 − 1) / 𝑁 and is a preimage of 𝐺((𝑀 − 1) / 𝑁), the next segment 𝑄(𝑀) is also defined and is a function on 𝑊 which is a lift 𝐺 for this segment. This follows explicitly from the definition 𝑄(𝑀) = ◡(𝐹 ↾ 𝐼) ∘ 𝐺 since 𝐺 is in 1st ‘(𝐹‘𝑀) for the entire interval so that ◡(𝐹 ↾ 𝐼) maps this into 𝐼 and 𝐹 ∘ 𝑄 maps back to 𝐺. (Contributed by Mario Carneiro, 16-Feb-2015.) |
| ⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) & ⊢ 𝐵 = ∪ 𝐶 & ⊢ 𝑋 = ∪ 𝐽 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘0)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑇:(1...𝑁)⟶∪ 𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗))) & ⊢ (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇‘𝑘))) & ⊢ 𝐿 = (topGen‘ran (,)) & ⊢ 𝑄 = seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ (◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺‘𝑧)))), (( I ↾ ℕ) ∪ {〈0, {〈0, 𝑃〉}〉})) & ⊢ 𝑊 = (((𝑀 − 1) / 𝑁)[,](𝑀 / 𝑁)) & ⊢ ((𝜑 ∧ 𝜓) → 𝑀 ∈ (1...𝑁)) & ⊢ ((𝜑 ∧ 𝜓) → ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ (◡𝐹 “ {(𝐺‘((𝑀 − 1) / 𝑁))})) ⇒ ⊢ ((𝜑 ∧ 𝜓) → ((𝑄‘𝑀):𝑊⟶𝐵 ∧ (𝐹 ∘ (𝑄‘𝑀)) = (𝐺 ↾ 𝑊))) | ||
| Theorem | cvmliftlem7 35271* | Lemma for cvmlift 35279. Prove by induction that every 𝑄 function is well-defined (we can immediately follow this theorem with cvmliftlem6 35270 to show functionality and lifting of 𝑄). (Contributed by Mario Carneiro, 14-Feb-2015.) |
| ⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) & ⊢ 𝐵 = ∪ 𝐶 & ⊢ 𝑋 = ∪ 𝐽 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘0)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑇:(1...𝑁)⟶∪ 𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗))) & ⊢ (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇‘𝑘))) & ⊢ 𝐿 = (topGen‘ran (,)) & ⊢ 𝑄 = seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ (◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺‘𝑧)))), (( I ↾ ℕ) ∪ {〈0, {〈0, 𝑃〉}〉})) & ⊢ 𝑊 = (((𝑀 − 1) / 𝑁)[,](𝑀 / 𝑁)) ⇒ ⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ (◡𝐹 “ {(𝐺‘((𝑀 − 1) / 𝑁))})) | ||
| Theorem | cvmliftlem8 35272* | Lemma for cvmlift 35279. The functions 𝑄 are continuous functions because they are defined as ◡(𝐹 ↾ 𝐼) ∘ 𝐺 where 𝐺 is continuous and (𝐹 ↾ 𝐼) is a homeomorphism. (Contributed by Mario Carneiro, 16-Feb-2015.) |
| ⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) & ⊢ 𝐵 = ∪ 𝐶 & ⊢ 𝑋 = ∪ 𝐽 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘0)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑇:(1...𝑁)⟶∪ 𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗))) & ⊢ (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇‘𝑘))) & ⊢ 𝐿 = (topGen‘ran (,)) & ⊢ 𝑄 = seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ (◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺‘𝑧)))), (( I ↾ ℕ) ∪ {〈0, {〈0, 𝑃〉}〉})) & ⊢ 𝑊 = (((𝑀 − 1) / 𝑁)[,](𝑀 / 𝑁)) ⇒ ⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → (𝑄‘𝑀) ∈ ((𝐿 ↾t 𝑊) Cn 𝐶)) | ||
| Theorem | cvmliftlem9 35273* | Lemma for cvmlift 35279. The 𝑄(𝑀) functions are defined on almost disjoint intervals, but they overlap at the edges. Here we show that at these points the 𝑄 functions agree on their common domain. (Contributed by Mario Carneiro, 14-Feb-2015.) |
| ⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) & ⊢ 𝐵 = ∪ 𝐶 & ⊢ 𝑋 = ∪ 𝐽 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘0)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑇:(1...𝑁)⟶∪ 𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗))) & ⊢ (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇‘𝑘))) & ⊢ 𝐿 = (topGen‘ran (,)) & ⊢ 𝑄 = seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ (◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺‘𝑧)))), (( I ↾ ℕ) ∪ {〈0, {〈0, 𝑃〉}〉})) ⇒ ⊢ ((𝜑 ∧ 𝑀 ∈ (1...𝑁)) → ((𝑄‘𝑀)‘((𝑀 − 1) / 𝑁)) = ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁))) | ||
| Theorem | cvmliftlem10 35274* | Lemma for cvmlift 35279. The function 𝐾 is going to be our complete lifted path, formed by unioning together all the 𝑄 functions (each of which is defined on one segment [(𝑀 − 1) / 𝑁, 𝑀 / 𝑁] of the interval). Here we prove by induction that 𝐾 is a continuous function and a lift of 𝐺 by applying cvmliftlem6 35270, cvmliftlem7 35271 (to show it is a function and a lift), cvmliftlem8 35272 (to show it is continuous), and cvmliftlem9 35273 (to show that different 𝑄 functions agree on the intersection of their domains, so that the pasting lemma paste 23249 gives that 𝐾 is well-defined and continuous). (Contributed by Mario Carneiro, 14-Feb-2015.) |
| ⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) & ⊢ 𝐵 = ∪ 𝐶 & ⊢ 𝑋 = ∪ 𝐽 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘0)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑇:(1...𝑁)⟶∪ 𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗))) & ⊢ (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇‘𝑘))) & ⊢ 𝐿 = (topGen‘ran (,)) & ⊢ 𝑄 = seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ (◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺‘𝑧)))), (( I ↾ ℕ) ∪ {〈0, {〈0, 𝑃〉}〉})) & ⊢ 𝐾 = ∪ 𝑘 ∈ (1...𝑁)(𝑄‘𝑘) & ⊢ (𝜒 ↔ ((𝑛 ∈ ℕ ∧ (𝑛 + 1) ∈ (1...𝑁)) ∧ (∪ 𝑘 ∈ (1...𝑛)(𝑄‘𝑘) ∈ ((𝐿 ↾t (0[,](𝑛 / 𝑁))) Cn 𝐶) ∧ (𝐹 ∘ ∪ 𝑘 ∈ (1...𝑛)(𝑄‘𝑘)) = (𝐺 ↾ (0[,](𝑛 / 𝑁)))))) ⇒ ⊢ (𝜑 → (𝐾 ∈ ((𝐿 ↾t (0[,](𝑁 / 𝑁))) Cn 𝐶) ∧ (𝐹 ∘ 𝐾) = (𝐺 ↾ (0[,](𝑁 / 𝑁))))) | ||
| Theorem | cvmliftlem11 35275* | Lemma for cvmlift 35279. (Contributed by Mario Carneiro, 14-Feb-2015.) |
| ⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) & ⊢ 𝐵 = ∪ 𝐶 & ⊢ 𝑋 = ∪ 𝐽 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘0)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑇:(1...𝑁)⟶∪ 𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗))) & ⊢ (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇‘𝑘))) & ⊢ 𝐿 = (topGen‘ran (,)) & ⊢ 𝑄 = seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ (◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺‘𝑧)))), (( I ↾ ℕ) ∪ {〈0, {〈0, 𝑃〉}〉})) & ⊢ 𝐾 = ∪ 𝑘 ∈ (1...𝑁)(𝑄‘𝑘) ⇒ ⊢ (𝜑 → (𝐾 ∈ (II Cn 𝐶) ∧ (𝐹 ∘ 𝐾) = 𝐺)) | ||
| Theorem | cvmliftlem13 35276* | Lemma for cvmlift 35279. The initial value of 𝐾 is 𝑃 because 𝑄(1) is a subset of 𝐾 which takes value 𝑃 at 0. (Contributed by Mario Carneiro, 16-Feb-2015.) |
| ⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) & ⊢ 𝐵 = ∪ 𝐶 & ⊢ 𝑋 = ∪ 𝐽 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘0)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑇:(1...𝑁)⟶∪ 𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗))) & ⊢ (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇‘𝑘))) & ⊢ 𝐿 = (topGen‘ran (,)) & ⊢ 𝑄 = seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ (◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺‘𝑧)))), (( I ↾ ℕ) ∪ {〈0, {〈0, 𝑃〉}〉})) & ⊢ 𝐾 = ∪ 𝑘 ∈ (1...𝑁)(𝑄‘𝑘) ⇒ ⊢ (𝜑 → (𝐾‘0) = 𝑃) | ||
| Theorem | cvmliftlem14 35277* | Lemma for cvmlift 35279. Putting the results of cvmliftlem11 35275, cvmliftlem13 35276 and cvmliftmo 35264 together, we have that 𝐾 is a continuous function, satisfies 𝐹 ∘ 𝐾 = 𝐺 and 𝐾(0) = 𝑃, and is equal to any other function which also has these properties, so it follows that 𝐾 is the unique lift of 𝐺. (Contributed by Mario Carneiro, 16-Feb-2015.) |
| ⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) & ⊢ 𝐵 = ∪ 𝐶 & ⊢ 𝑋 = ∪ 𝐽 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘0)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑇:(1...𝑁)⟶∪ 𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗))) & ⊢ (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇‘𝑘))) & ⊢ 𝐿 = (topGen‘ran (,)) & ⊢ 𝑄 = seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ (◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺‘𝑧)))), (( I ↾ ℕ) ∪ {〈0, {〈0, 𝑃〉}〉})) & ⊢ 𝐾 = ∪ 𝑘 ∈ (1...𝑁)(𝑄‘𝑘) ⇒ ⊢ (𝜑 → ∃!𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = 𝐺 ∧ (𝑓‘0) = 𝑃)) | ||
| Theorem | cvmliftlem15 35278* | Lemma for cvmlift 35279. Discharge the assumptions of cvmliftlem14 35277. The set of all open subsets 𝑢 of the unit interval such that 𝐺 “ 𝑢 is contained in an even covering of some open set in 𝐽 is a cover of II by the definition of a covering map, so by the Lebesgue number lemma lebnumii 24935, there is a subdivision of the closed unit interval into 𝑁 equal parts such that each part is entirely contained within one such open set of 𝐽. Then using finite choice ac6sfi 9302 to uniformly select one such subset and one even covering of each subset, we are ready to finish the proof with cvmliftlem14 35277. (Contributed by Mario Carneiro, 14-Feb-2015.) |
| ⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) & ⊢ 𝐵 = ∪ 𝐶 & ⊢ 𝑋 = ∪ 𝐽 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘0)) ⇒ ⊢ (𝜑 → ∃!𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = 𝐺 ∧ (𝑓‘0) = 𝑃)) | ||
| Theorem | cvmlift 35279* | One of the important properties of covering maps is that any path 𝐺 in the base space "lifts" to a path 𝑓 in the covering space such that 𝐹 ∘ 𝑓 = 𝐺, and given a starting point 𝑃 in the covering space this lift is unique. The proof is contained in cvmliftlem1 35265 thru cvmliftlem15 35278. (Contributed by Mario Carneiro, 16-Feb-2015.) |
| ⊢ 𝐵 = ∪ 𝐶 ⇒ ⊢ (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝐺 ∈ (II Cn 𝐽)) ∧ (𝑃 ∈ 𝐵 ∧ (𝐹‘𝑃) = (𝐺‘0))) → ∃!𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = 𝐺 ∧ (𝑓‘0) = 𝑃)) | ||
| Theorem | cvmfo 35280 | A covering map is an onto function. (Contributed by Mario Carneiro, 13-Feb-2015.) |
| ⊢ 𝐵 = ∪ 𝐶 & ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐹:𝐵–onto→𝑋) | ||
| Theorem | cvmliftiota 35281* | Write out a function 𝐻 that is the unique lift of 𝐹. (Contributed by Mario Carneiro, 16-Feb-2015.) |
| ⊢ 𝐵 = ∪ 𝐶 & ⊢ 𝐻 = (℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = 𝐺 ∧ (𝑓‘0) = 𝑃)) & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘0)) ⇒ ⊢ (𝜑 → (𝐻 ∈ (II Cn 𝐶) ∧ (𝐹 ∘ 𝐻) = 𝐺 ∧ (𝐻‘0) = 𝑃)) | ||
| Theorem | cvmlift2lem1 35282* | Lemma for cvmlift2 35296. (Contributed by Mario Carneiro, 1-Jun-2015.) |
| ⊢ (∀𝑦 ∈ (0[,]1)∃𝑢 ∈ ((nei‘II)‘{𝑦})((𝑢 × {𝑥}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀) → (((0[,]1) × {𝑥}) ⊆ 𝑀 → ((0[,]1) × {𝑡}) ⊆ 𝑀)) | ||
| Theorem | cvmlift2lem9a 35283* | Lemma for cvmlift2 35296 and cvmlift3 35308. (Contributed by Mario Carneiro, 9-Jul-2015.) |
| ⊢ 𝐵 = ∪ 𝐶 & ⊢ 𝑌 = ∪ 𝐾 & ⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑐 ∈ 𝑠 (∀𝑑 ∈ (𝑠 ∖ {𝑐})(𝑐 ∩ 𝑑) = ∅ ∧ (𝐹 ↾ 𝑐) ∈ ((𝐶 ↾t 𝑐)Homeo(𝐽 ↾t 𝑘))))}) & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐻:𝑌⟶𝐵) & ⊢ (𝜑 → (𝐹 ∘ 𝐻) ∈ (𝐾 Cn 𝐽)) & ⊢ (𝜑 → 𝐾 ∈ Top) & ⊢ (𝜑 → 𝑋 ∈ 𝑌) & ⊢ (𝜑 → 𝑇 ∈ (𝑆‘𝐴)) & ⊢ (𝜑 → (𝑊 ∈ 𝑇 ∧ (𝐻‘𝑋) ∈ 𝑊)) & ⊢ (𝜑 → 𝑀 ⊆ 𝑌) & ⊢ (𝜑 → (𝐻 “ 𝑀) ⊆ 𝑊) ⇒ ⊢ (𝜑 → (𝐻 ↾ 𝑀) ∈ ((𝐾 ↾t 𝑀) Cn 𝐶)) | ||
| Theorem | cvmlift2lem2 35284* | Lemma for cvmlift2 35296. (Contributed by Mario Carneiro, 7-May-2015.) |
| ⊢ 𝐵 = ∪ 𝐶 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ ((II ×t II) Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (0𝐺0)) & ⊢ 𝐻 = (℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝑓‘0) = 𝑃)) ⇒ ⊢ (𝜑 → (𝐻 ∈ (II Cn 𝐶) ∧ (𝐹 ∘ 𝐻) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝐻‘0) = 𝑃)) | ||
| Theorem | cvmlift2lem3 35285* | Lemma for cvmlift2 35296. (Contributed by Mario Carneiro, 7-May-2015.) |
| ⊢ 𝐵 = ∪ 𝐶 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ ((II ×t II) Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (0𝐺0)) & ⊢ 𝐻 = (℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝑓‘0) = 𝑃)) & ⊢ 𝐾 = (℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧)) ∧ (𝑓‘0) = (𝐻‘𝑋))) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ (0[,]1)) → (𝐾 ∈ (II Cn 𝐶) ∧ (𝐹 ∘ 𝐾) = (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧)) ∧ (𝐾‘0) = (𝐻‘𝑋))) | ||
| Theorem | cvmlift2lem4 35286* | Lemma for cvmlift2 35296. (Contributed by Mario Carneiro, 1-Jun-2015.) |
| ⊢ 𝐵 = ∪ 𝐶 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ ((II ×t II) Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (0𝐺0)) & ⊢ 𝐻 = (℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝑓‘0) = 𝑃)) & ⊢ 𝐾 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ ((℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑓‘0) = (𝐻‘𝑥)))‘𝑦)) ⇒ ⊢ ((𝑋 ∈ (0[,]1) ∧ 𝑌 ∈ (0[,]1)) → (𝑋𝐾𝑌) = ((℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧)) ∧ (𝑓‘0) = (𝐻‘𝑋)))‘𝑌)) | ||
| Theorem | cvmlift2lem5 35287* | Lemma for cvmlift2 35296. (Contributed by Mario Carneiro, 7-May-2015.) |
| ⊢ 𝐵 = ∪ 𝐶 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ ((II ×t II) Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (0𝐺0)) & ⊢ 𝐻 = (℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝑓‘0) = 𝑃)) & ⊢ 𝐾 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ ((℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑓‘0) = (𝐻‘𝑥)))‘𝑦)) ⇒ ⊢ (𝜑 → 𝐾:((0[,]1) × (0[,]1))⟶𝐵) | ||
| Theorem | cvmlift2lem6 35288* | Lemma for cvmlift2 35296. (Contributed by Mario Carneiro, 7-May-2015.) |
| ⊢ 𝐵 = ∪ 𝐶 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ ((II ×t II) Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (0𝐺0)) & ⊢ 𝐻 = (℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝑓‘0) = 𝑃)) & ⊢ 𝐾 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ ((℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑓‘0) = (𝐻‘𝑥)))‘𝑦)) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ (0[,]1)) → (𝐾 ↾ ({𝑋} × (0[,]1))) ∈ (((II ×t II) ↾t ({𝑋} × (0[,]1))) Cn 𝐶)) | ||
| Theorem | cvmlift2lem7 35289* | Lemma for cvmlift2 35296. (Contributed by Mario Carneiro, 7-May-2015.) |
| ⊢ 𝐵 = ∪ 𝐶 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ ((II ×t II) Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (0𝐺0)) & ⊢ 𝐻 = (℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝑓‘0) = 𝑃)) & ⊢ 𝐾 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ ((℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑓‘0) = (𝐻‘𝑥)))‘𝑦)) ⇒ ⊢ (𝜑 → (𝐹 ∘ 𝐾) = 𝐺) | ||
| Theorem | cvmlift2lem8 35290* | Lemma for cvmlift2 35296. (Contributed by Mario Carneiro, 9-Mar-2015.) |
| ⊢ 𝐵 = ∪ 𝐶 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ ((II ×t II) Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (0𝐺0)) & ⊢ 𝐻 = (℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝑓‘0) = 𝑃)) & ⊢ 𝐾 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ ((℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑓‘0) = (𝐻‘𝑥)))‘𝑦)) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ (0[,]1)) → (𝑋𝐾0) = (𝐻‘𝑋)) | ||
| Theorem | cvmlift2lem9 35291* | Lemma for cvmlift2 35296. (Contributed by Mario Carneiro, 1-Jun-2015.) |
| ⊢ 𝐵 = ∪ 𝐶 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ ((II ×t II) Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (0𝐺0)) & ⊢ 𝐻 = (℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝑓‘0) = 𝑃)) & ⊢ 𝐾 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ ((℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑓‘0) = (𝐻‘𝑥)))‘𝑦)) & ⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑐 ∈ 𝑠 (∀𝑑 ∈ (𝑠 ∖ {𝑐})(𝑐 ∩ 𝑑) = ∅ ∧ (𝐹 ↾ 𝑐) ∈ ((𝐶 ↾t 𝑐)Homeo(𝐽 ↾t 𝑘))))}) & ⊢ (𝜑 → (𝑋𝐺𝑌) ∈ 𝑀) & ⊢ (𝜑 → 𝑇 ∈ (𝑆‘𝑀)) & ⊢ (𝜑 → 𝑈 ∈ II) & ⊢ (𝜑 → 𝑉 ∈ II) & ⊢ (𝜑 → (II ↾t 𝑈) ∈ Conn) & ⊢ (𝜑 → (II ↾t 𝑉) ∈ Conn) & ⊢ (𝜑 → 𝑋 ∈ 𝑈) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → (𝑈 × 𝑉) ⊆ (◡𝐺 “ 𝑀)) & ⊢ (𝜑 → 𝑍 ∈ 𝑉) & ⊢ (𝜑 → (𝐾 ↾ (𝑈 × {𝑍})) ∈ (((II ×t II) ↾t (𝑈 × {𝑍})) Cn 𝐶)) & ⊢ 𝑊 = (℩𝑏 ∈ 𝑇 (𝑋𝐾𝑌) ∈ 𝑏) ⇒ ⊢ (𝜑 → (𝐾 ↾ (𝑈 × 𝑉)) ∈ (((II ×t II) ↾t (𝑈 × 𝑉)) Cn 𝐶)) | ||
| Theorem | cvmlift2lem10 35292* | Lemma for cvmlift2 35296. (Contributed by Mario Carneiro, 1-Jun-2015.) |
| ⊢ 𝐵 = ∪ 𝐶 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ ((II ×t II) Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (0𝐺0)) & ⊢ 𝐻 = (℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝑓‘0) = 𝑃)) & ⊢ 𝐾 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ ((℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑓‘0) = (𝐻‘𝑥)))‘𝑦)) & ⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑐 ∈ 𝑠 (∀𝑑 ∈ (𝑠 ∖ {𝑐})(𝑐 ∩ 𝑑) = ∅ ∧ (𝐹 ↾ 𝑐) ∈ ((𝐶 ↾t 𝑐)Homeo(𝐽 ↾t 𝑘))))}) & ⊢ (𝜑 → 𝑋 ∈ (0[,]1)) & ⊢ (𝜑 → 𝑌 ∈ (0[,]1)) ⇒ ⊢ (𝜑 → ∃𝑢 ∈ II ∃𝑣 ∈ II (𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ (∃𝑤 ∈ 𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))) | ||
| Theorem | cvmlift2lem11 35293* | Lemma for cvmlift2 35296. (Contributed by Mario Carneiro, 1-Jun-2015.) |
| ⊢ 𝐵 = ∪ 𝐶 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ ((II ×t II) Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (0𝐺0)) & ⊢ 𝐻 = (℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝑓‘0) = 𝑃)) & ⊢ 𝐾 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ ((℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑓‘0) = (𝐻‘𝑥)))‘𝑦)) & ⊢ 𝑀 = {𝑧 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑧)} & ⊢ (𝜑 → 𝑈 ∈ II) & ⊢ (𝜑 → 𝑉 ∈ II) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → 𝑍 ∈ 𝑉) & ⊢ (𝜑 → (∃𝑤 ∈ 𝑉 (𝐾 ↾ (𝑈 × {𝑤})) ∈ (((II ×t II) ↾t (𝑈 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑈 × 𝑉)) ∈ (((II ×t II) ↾t (𝑈 × 𝑉)) Cn 𝐶))) ⇒ ⊢ (𝜑 → ((𝑈 × {𝑌}) ⊆ 𝑀 → (𝑈 × {𝑍}) ⊆ 𝑀)) | ||
| Theorem | cvmlift2lem12 35294* | Lemma for cvmlift2 35296. (Contributed by Mario Carneiro, 1-Jun-2015.) |
| ⊢ 𝐵 = ∪ 𝐶 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ ((II ×t II) Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (0𝐺0)) & ⊢ 𝐻 = (℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝑓‘0) = 𝑃)) & ⊢ 𝐾 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ ((℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑓‘0) = (𝐻‘𝑥)))‘𝑦)) & ⊢ 𝑀 = {𝑧 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑧)} & ⊢ 𝐴 = {𝑎 ∈ (0[,]1) ∣ ((0[,]1) × {𝑎}) ⊆ 𝑀} & ⊢ 𝑆 = {〈𝑟, 𝑡〉 ∣ (𝑡 ∈ (0[,]1) ∧ ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀))} ⇒ ⊢ (𝜑 → 𝐾 ∈ ((II ×t II) Cn 𝐶)) | ||
| Theorem | cvmlift2lem13 35295* | Lemma for cvmlift2 35296. (Contributed by Mario Carneiro, 7-May-2015.) |
| ⊢ 𝐵 = ∪ 𝐶 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ ((II ×t II) Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (0𝐺0)) & ⊢ 𝐻 = (℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝑓‘0) = 𝑃)) & ⊢ 𝐾 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ ((℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑓‘0) = (𝐻‘𝑥)))‘𝑦)) ⇒ ⊢ (𝜑 → ∃!𝑔 ∈ ((II ×t II) Cn 𝐶)((𝐹 ∘ 𝑔) = 𝐺 ∧ (0𝑔0) = 𝑃)) | ||
| Theorem | cvmlift2 35296* | A two-dimensional version of cvmlift 35279. There is a unique lift of functions on the unit square II ×t II which commutes with the covering map. (Contributed by Mario Carneiro, 1-Jun-2015.) |
| ⊢ 𝐵 = ∪ 𝐶 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ ((II ×t II) Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (0𝐺0)) ⇒ ⊢ (𝜑 → ∃!𝑓 ∈ ((II ×t II) Cn 𝐶)((𝐹 ∘ 𝑓) = 𝐺 ∧ (0𝑓0) = 𝑃)) | ||
| Theorem | cvmliftphtlem 35297* | Lemma for cvmliftpht 35298. (Contributed by Mario Carneiro, 6-Jul-2015.) |
| ⊢ 𝐵 = ∪ 𝐶 & ⊢ 𝑀 = (℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = 𝐺 ∧ (𝑓‘0) = 𝑃)) & ⊢ 𝑁 = (℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = 𝐻 ∧ (𝑓‘0) = 𝑃)) & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘0)) & ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝐻 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝐾 ∈ (𝐺(PHtpy‘𝐽)𝐻)) & ⊢ (𝜑 → 𝐴 ∈ ((II ×t II) Cn 𝐶)) & ⊢ (𝜑 → (𝐹 ∘ 𝐴) = 𝐾) & ⊢ (𝜑 → (0𝐴0) = 𝑃) ⇒ ⊢ (𝜑 → 𝐴 ∈ (𝑀(PHtpy‘𝐶)𝑁)) | ||
| Theorem | cvmliftpht 35298* | If 𝐺 and 𝐻 are path-homotopic, then their lifts 𝑀 and 𝑁 are also path-homotopic. (Contributed by Mario Carneiro, 6-Jul-2015.) |
| ⊢ 𝐵 = ∪ 𝐶 & ⊢ 𝑀 = (℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = 𝐺 ∧ (𝑓‘0) = 𝑃)) & ⊢ 𝑁 = (℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = 𝐻 ∧ (𝑓‘0) = 𝑃)) & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘0)) & ⊢ (𝜑 → 𝐺( ≃ph‘𝐽)𝐻) ⇒ ⊢ (𝜑 → 𝑀( ≃ph‘𝐶)𝑁) | ||
| Theorem | cvmlift3lem1 35299* | Lemma for cvmlift3 35308. (Contributed by Mario Carneiro, 6-Jul-2015.) |
| ⊢ 𝐵 = ∪ 𝐶 & ⊢ 𝑌 = ∪ 𝐾 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐾 ∈ SConn) & ⊢ (𝜑 → 𝐾 ∈ 𝑛-Locally PConn) & ⊢ (𝜑 → 𝑂 ∈ 𝑌) & ⊢ (𝜑 → 𝐺 ∈ (𝐾 Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘𝑂)) & ⊢ (𝜑 → 𝑀 ∈ (II Cn 𝐾)) & ⊢ (𝜑 → (𝑀‘0) = 𝑂) & ⊢ (𝜑 → 𝑁 ∈ (II Cn 𝐾)) & ⊢ (𝜑 → (𝑁‘0) = 𝑂) & ⊢ (𝜑 → (𝑀‘1) = (𝑁‘1)) ⇒ ⊢ (𝜑 → ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑀) ∧ (𝑔‘0) = 𝑃))‘1) = ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑁) ∧ (𝑔‘0) = 𝑃))‘1)) | ||
| Theorem | cvmlift3lem2 35300* | Lemma for cvmlift2 35296. (Contributed by Mario Carneiro, 6-Jul-2015.) |
| ⊢ 𝐵 = ∪ 𝐶 & ⊢ 𝑌 = ∪ 𝐾 & ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) & ⊢ (𝜑 → 𝐾 ∈ SConn) & ⊢ (𝜑 → 𝐾 ∈ 𝑛-Locally PConn) & ⊢ (𝜑 → 𝑂 ∈ 𝑌) & ⊢ (𝜑 → 𝐺 ∈ (𝐾 Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ 𝐵) & ⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘𝑂)) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ 𝑌) → ∃!𝑧 ∈ 𝐵 ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑋 ∧ ((℩𝑔 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑔) = (𝐺 ∘ 𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |