Detailed syntax breakdown of Definition df-acycgr
| Step | Hyp | Ref
| Expression |
| 1 | | cacycgr 35147 |
. 2
class
AcyclicGraph |
| 2 | | vf |
. . . . . . . . 9
setvar 𝑓 |
| 3 | 2 | cv 1539 |
. . . . . . . 8
class 𝑓 |
| 4 | | vp |
. . . . . . . . 9
setvar 𝑝 |
| 5 | 4 | cv 1539 |
. . . . . . . 8
class 𝑝 |
| 6 | | vg |
. . . . . . . . . 10
setvar 𝑔 |
| 7 | 6 | cv 1539 |
. . . . . . . . 9
class 𝑔 |
| 8 | | ccycls 29805 |
. . . . . . . . 9
class
Cycles |
| 9 | 7, 8 | cfv 6561 |
. . . . . . . 8
class
(Cycles‘𝑔) |
| 10 | 3, 5, 9 | wbr 5143 |
. . . . . . 7
wff 𝑓(Cycles‘𝑔)𝑝 |
| 11 | | c0 4333 |
. . . . . . . 8
class
∅ |
| 12 | 3, 11 | wne 2940 |
. . . . . . 7
wff 𝑓 ≠ ∅ |
| 13 | 10, 12 | wa 395 |
. . . . . 6
wff (𝑓(Cycles‘𝑔)𝑝 ∧ 𝑓 ≠ ∅) |
| 14 | 13, 4 | wex 1779 |
. . . . 5
wff
∃𝑝(𝑓(Cycles‘𝑔)𝑝 ∧ 𝑓 ≠ ∅) |
| 15 | 14, 2 | wex 1779 |
. . . 4
wff
∃𝑓∃𝑝(𝑓(Cycles‘𝑔)𝑝 ∧ 𝑓 ≠ ∅) |
| 16 | 15 | wn 3 |
. . 3
wff ¬
∃𝑓∃𝑝(𝑓(Cycles‘𝑔)𝑝 ∧ 𝑓 ≠ ∅) |
| 17 | 16, 6 | cab 2714 |
. 2
class {𝑔 ∣ ¬ ∃𝑓∃𝑝(𝑓(Cycles‘𝑔)𝑝 ∧ 𝑓 ≠ ∅)} |
| 18 | 1, 17 | wceq 1540 |
1
wff
AcyclicGraph = {𝑔
∣ ¬ ∃𝑓∃𝑝(𝑓(Cycles‘𝑔)𝑝 ∧ 𝑓 ≠ ∅)} |