| Mathbox for BTernaryTau |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dfacycgr1 | Structured version Visualization version GIF version | ||
| Description: An alternate definition of the class of all acyclic graphs that requires all cycles to be trivial. (Contributed by BTernaryTau, 11-Oct-2023.) |
| Ref | Expression |
|---|---|
| dfacycgr1 | ⊢ AcyclicGraph = {𝑔 ∣ ∀𝑓∀𝑝(𝑓(Cycles‘𝑔)𝑝 → 𝑓 = ∅)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-acycgr 35137 | . 2 ⊢ AcyclicGraph = {𝑔 ∣ ¬ ∃𝑓∃𝑝(𝑓(Cycles‘𝑔)𝑝 ∧ 𝑓 ≠ ∅)} | |
| 2 | 2exanali 1860 | . . . 4 ⊢ (¬ ∃𝑓∃𝑝(𝑓(Cycles‘𝑔)𝑝 ∧ ¬ 𝑓 = ∅) ↔ ∀𝑓∀𝑝(𝑓(Cycles‘𝑔)𝑝 → 𝑓 = ∅)) | |
| 3 | df-ne 2927 | . . . . . 6 ⊢ (𝑓 ≠ ∅ ↔ ¬ 𝑓 = ∅) | |
| 4 | 3 | anbi2i 623 | . . . . 5 ⊢ ((𝑓(Cycles‘𝑔)𝑝 ∧ 𝑓 ≠ ∅) ↔ (𝑓(Cycles‘𝑔)𝑝 ∧ ¬ 𝑓 = ∅)) |
| 5 | 4 | 2exbii 1849 | . . . 4 ⊢ (∃𝑓∃𝑝(𝑓(Cycles‘𝑔)𝑝 ∧ 𝑓 ≠ ∅) ↔ ∃𝑓∃𝑝(𝑓(Cycles‘𝑔)𝑝 ∧ ¬ 𝑓 = ∅)) |
| 6 | 2, 5 | xchnxbir 333 | . . 3 ⊢ (¬ ∃𝑓∃𝑝(𝑓(Cycles‘𝑔)𝑝 ∧ 𝑓 ≠ ∅) ↔ ∀𝑓∀𝑝(𝑓(Cycles‘𝑔)𝑝 → 𝑓 = ∅)) |
| 7 | 6 | abbii 2797 | . 2 ⊢ {𝑔 ∣ ¬ ∃𝑓∃𝑝(𝑓(Cycles‘𝑔)𝑝 ∧ 𝑓 ≠ ∅)} = {𝑔 ∣ ∀𝑓∀𝑝(𝑓(Cycles‘𝑔)𝑝 → 𝑓 = ∅)} |
| 8 | 1, 7 | eqtri 2753 | 1 ⊢ AcyclicGraph = {𝑔 ∣ ∀𝑓∀𝑝(𝑓(Cycles‘𝑔)𝑝 → 𝑓 = ∅)} |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∀wal 1538 = wceq 1540 ∃wex 1779 {cab 2708 ≠ wne 2926 ∅c0 4299 class class class wbr 5110 ‘cfv 6514 Cyclesccycls 29722 AcyclicGraphcacycgr 35136 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-ne 2927 df-acycgr 35137 |
| This theorem is referenced by: isacycgr1 35140 |
| Copyright terms: Public domain | W3C validator |