![]() |
Mathbox for BTernaryTau |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfacycgr1 | Structured version Visualization version GIF version |
Description: An alternate definition of the class of all acyclic graphs that requires all cycles to be trivial. (Contributed by BTernaryTau, 11-Oct-2023.) |
Ref | Expression |
---|---|
dfacycgr1 | ⊢ AcyclicGraph = {𝑔 ∣ ∀𝑓∀𝑝(𝑓(Cycles‘𝑔)𝑝 → 𝑓 = ∅)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-acycgr 35141 | . 2 ⊢ AcyclicGraph = {𝑔 ∣ ¬ ∃𝑓∃𝑝(𝑓(Cycles‘𝑔)𝑝 ∧ 𝑓 ≠ ∅)} | |
2 | 2exanali 1860 | . . . 4 ⊢ (¬ ∃𝑓∃𝑝(𝑓(Cycles‘𝑔)𝑝 ∧ ¬ 𝑓 = ∅) ↔ ∀𝑓∀𝑝(𝑓(Cycles‘𝑔)𝑝 → 𝑓 = ∅)) | |
3 | df-ne 2941 | . . . . . 6 ⊢ (𝑓 ≠ ∅ ↔ ¬ 𝑓 = ∅) | |
4 | 3 | anbi2i 623 | . . . . 5 ⊢ ((𝑓(Cycles‘𝑔)𝑝 ∧ 𝑓 ≠ ∅) ↔ (𝑓(Cycles‘𝑔)𝑝 ∧ ¬ 𝑓 = ∅)) |
5 | 4 | 2exbii 1848 | . . . 4 ⊢ (∃𝑓∃𝑝(𝑓(Cycles‘𝑔)𝑝 ∧ 𝑓 ≠ ∅) ↔ ∃𝑓∃𝑝(𝑓(Cycles‘𝑔)𝑝 ∧ ¬ 𝑓 = ∅)) |
6 | 2, 5 | xchnxbir 333 | . . 3 ⊢ (¬ ∃𝑓∃𝑝(𝑓(Cycles‘𝑔)𝑝 ∧ 𝑓 ≠ ∅) ↔ ∀𝑓∀𝑝(𝑓(Cycles‘𝑔)𝑝 → 𝑓 = ∅)) |
7 | 6 | abbii 2809 | . 2 ⊢ {𝑔 ∣ ¬ ∃𝑓∃𝑝(𝑓(Cycles‘𝑔)𝑝 ∧ 𝑓 ≠ ∅)} = {𝑔 ∣ ∀𝑓∀𝑝(𝑓(Cycles‘𝑔)𝑝 → 𝑓 = ∅)} |
8 | 1, 7 | eqtri 2765 | 1 ⊢ AcyclicGraph = {𝑔 ∣ ∀𝑓∀𝑝(𝑓(Cycles‘𝑔)𝑝 → 𝑓 = ∅)} |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∀wal 1537 = wceq 1539 ∃wex 1778 {cab 2714 ≠ wne 2940 ∅c0 4342 class class class wbr 5151 ‘cfv 6569 Cyclesccycls 29831 AcyclicGraphcacycgr 35140 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2708 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-sb 2065 df-clab 2715 df-cleq 2729 df-ne 2941 df-acycgr 35141 |
This theorem is referenced by: isacycgr1 35144 |
Copyright terms: Public domain | W3C validator |