| Mathbox for BTernaryTau |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dfacycgr1 | Structured version Visualization version GIF version | ||
| Description: An alternate definition of the class of all acyclic graphs that requires all cycles to be trivial. (Contributed by BTernaryTau, 11-Oct-2023.) |
| Ref | Expression |
|---|---|
| dfacycgr1 | ⊢ AcyclicGraph = {𝑔 ∣ ∀𝑓∀𝑝(𝑓(Cycles‘𝑔)𝑝 → 𝑓 = ∅)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-acycgr 35107 | . 2 ⊢ AcyclicGraph = {𝑔 ∣ ¬ ∃𝑓∃𝑝(𝑓(Cycles‘𝑔)𝑝 ∧ 𝑓 ≠ ∅)} | |
| 2 | 2exanali 1859 | . . . 4 ⊢ (¬ ∃𝑓∃𝑝(𝑓(Cycles‘𝑔)𝑝 ∧ ¬ 𝑓 = ∅) ↔ ∀𝑓∀𝑝(𝑓(Cycles‘𝑔)𝑝 → 𝑓 = ∅)) | |
| 3 | df-ne 2932 | . . . . . 6 ⊢ (𝑓 ≠ ∅ ↔ ¬ 𝑓 = ∅) | |
| 4 | 3 | anbi2i 623 | . . . . 5 ⊢ ((𝑓(Cycles‘𝑔)𝑝 ∧ 𝑓 ≠ ∅) ↔ (𝑓(Cycles‘𝑔)𝑝 ∧ ¬ 𝑓 = ∅)) |
| 5 | 4 | 2exbii 1848 | . . . 4 ⊢ (∃𝑓∃𝑝(𝑓(Cycles‘𝑔)𝑝 ∧ 𝑓 ≠ ∅) ↔ ∃𝑓∃𝑝(𝑓(Cycles‘𝑔)𝑝 ∧ ¬ 𝑓 = ∅)) |
| 6 | 2, 5 | xchnxbir 333 | . . 3 ⊢ (¬ ∃𝑓∃𝑝(𝑓(Cycles‘𝑔)𝑝 ∧ 𝑓 ≠ ∅) ↔ ∀𝑓∀𝑝(𝑓(Cycles‘𝑔)𝑝 → 𝑓 = ∅)) |
| 7 | 6 | abbii 2801 | . 2 ⊢ {𝑔 ∣ ¬ ∃𝑓∃𝑝(𝑓(Cycles‘𝑔)𝑝 ∧ 𝑓 ≠ ∅)} = {𝑔 ∣ ∀𝑓∀𝑝(𝑓(Cycles‘𝑔)𝑝 → 𝑓 = ∅)} |
| 8 | 1, 7 | eqtri 2757 | 1 ⊢ AcyclicGraph = {𝑔 ∣ ∀𝑓∀𝑝(𝑓(Cycles‘𝑔)𝑝 → 𝑓 = ∅)} |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∀wal 1537 = wceq 1539 ∃wex 1778 {cab 2712 ≠ wne 2931 ∅c0 4313 class class class wbr 5123 ‘cfv 6541 Cyclesccycls 29733 AcyclicGraphcacycgr 35106 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-ne 2932 df-acycgr 35107 |
| This theorem is referenced by: isacycgr1 35110 |
| Copyright terms: Public domain | W3C validator |