Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isacycgr Structured version   Visualization version   GIF version

Theorem isacycgr 34205
Description: The property of being an acyclic graph. (Contributed by BTernaryTau, 11-Oct-2023.)
Assertion
Ref Expression
isacycgr (𝐺 ∈ π‘Š β†’ (𝐺 ∈ AcyclicGraph ↔ Β¬ βˆƒπ‘“βˆƒπ‘(𝑓(Cyclesβ€˜πΊ)𝑝 ∧ 𝑓 β‰  βˆ…)))
Distinct variable group:   𝑓,𝐺,𝑝
Allowed substitution hints:   π‘Š(𝑓,𝑝)

Proof of Theorem isacycgr
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6891 . . . . . 6 (𝑔 = 𝐺 β†’ (Cyclesβ€˜π‘”) = (Cyclesβ€˜πΊ))
21breqd 5159 . . . . 5 (𝑔 = 𝐺 β†’ (𝑓(Cyclesβ€˜π‘”)𝑝 ↔ 𝑓(Cyclesβ€˜πΊ)𝑝))
32anbi1d 630 . . . 4 (𝑔 = 𝐺 β†’ ((𝑓(Cyclesβ€˜π‘”)𝑝 ∧ 𝑓 β‰  βˆ…) ↔ (𝑓(Cyclesβ€˜πΊ)𝑝 ∧ 𝑓 β‰  βˆ…)))
432exbidv 1927 . . 3 (𝑔 = 𝐺 β†’ (βˆƒπ‘“βˆƒπ‘(𝑓(Cyclesβ€˜π‘”)𝑝 ∧ 𝑓 β‰  βˆ…) ↔ βˆƒπ‘“βˆƒπ‘(𝑓(Cyclesβ€˜πΊ)𝑝 ∧ 𝑓 β‰  βˆ…)))
54notbid 317 . 2 (𝑔 = 𝐺 β†’ (Β¬ βˆƒπ‘“βˆƒπ‘(𝑓(Cyclesβ€˜π‘”)𝑝 ∧ 𝑓 β‰  βˆ…) ↔ Β¬ βˆƒπ‘“βˆƒπ‘(𝑓(Cyclesβ€˜πΊ)𝑝 ∧ 𝑓 β‰  βˆ…)))
6 df-acycgr 34203 . 2 AcyclicGraph = {𝑔 ∣ Β¬ βˆƒπ‘“βˆƒπ‘(𝑓(Cyclesβ€˜π‘”)𝑝 ∧ 𝑓 β‰  βˆ…)}
75, 6elab2g 3670 1 (𝐺 ∈ π‘Š β†’ (𝐺 ∈ AcyclicGraph ↔ Β¬ βˆƒπ‘“βˆƒπ‘(𝑓(Cyclesβ€˜πΊ)𝑝 ∧ 𝑓 β‰  βˆ…)))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 396   = wceq 1541  βˆƒwex 1781   ∈ wcel 2106   β‰  wne 2940  βˆ…c0 4322   class class class wbr 5148  β€˜cfv 6543  Cyclesccycls 29080  AcyclicGraphcacycgr 34202
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-iota 6495  df-fv 6551  df-acycgr 34203
This theorem is referenced by:  acycgr0v  34208  acycgr2v  34210  acycgrislfgr  34212  umgracycusgr  34214  cusgracyclt3v  34216  acycgrsubgr  34218
  Copyright terms: Public domain W3C validator