Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isacycgr Structured version   Visualization version   GIF version

Theorem isacycgr 33107
Description: The property of being an acyclic graph. (Contributed by BTernaryTau, 11-Oct-2023.)
Assertion
Ref Expression
isacycgr (𝐺𝑊 → (𝐺 ∈ AcyclicGraph ↔ ¬ ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝𝑓 ≠ ∅)))
Distinct variable group:   𝑓,𝐺,𝑝
Allowed substitution hints:   𝑊(𝑓,𝑝)

Proof of Theorem isacycgr
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6774 . . . . . 6 (𝑔 = 𝐺 → (Cycles‘𝑔) = (Cycles‘𝐺))
21breqd 5085 . . . . 5 (𝑔 = 𝐺 → (𝑓(Cycles‘𝑔)𝑝𝑓(Cycles‘𝐺)𝑝))
32anbi1d 630 . . . 4 (𝑔 = 𝐺 → ((𝑓(Cycles‘𝑔)𝑝𝑓 ≠ ∅) ↔ (𝑓(Cycles‘𝐺)𝑝𝑓 ≠ ∅)))
432exbidv 1927 . . 3 (𝑔 = 𝐺 → (∃𝑓𝑝(𝑓(Cycles‘𝑔)𝑝𝑓 ≠ ∅) ↔ ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝𝑓 ≠ ∅)))
54notbid 318 . 2 (𝑔 = 𝐺 → (¬ ∃𝑓𝑝(𝑓(Cycles‘𝑔)𝑝𝑓 ≠ ∅) ↔ ¬ ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝𝑓 ≠ ∅)))
6 df-acycgr 33105 . 2 AcyclicGraph = {𝑔 ∣ ¬ ∃𝑓𝑝(𝑓(Cycles‘𝑔)𝑝𝑓 ≠ ∅)}
75, 6elab2g 3611 1 (𝐺𝑊 → (𝐺 ∈ AcyclicGraph ↔ ¬ ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝𝑓 ≠ ∅)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1539  wex 1782  wcel 2106  wne 2943  c0 4256   class class class wbr 5074  cfv 6433  Cyclesccycls 28153  AcyclicGraphcacycgr 33104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-iota 6391  df-fv 6441  df-acycgr 33105
This theorem is referenced by:  acycgr0v  33110  acycgr2v  33112  acycgrislfgr  33114  umgracycusgr  33116  cusgracyclt3v  33118  acycgrsubgr  33120
  Copyright terms: Public domain W3C validator