Mathbox for BTernaryTau |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > isacycgr | Structured version Visualization version GIF version |
Description: The property of being an acyclic graph. (Contributed by BTernaryTau, 11-Oct-2023.) |
Ref | Expression |
---|---|
isacycgr | ⊢ (𝐺 ∈ 𝑊 → (𝐺 ∈ AcyclicGraph ↔ ¬ ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ 𝑓 ≠ ∅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6753 | . . . . . 6 ⊢ (𝑔 = 𝐺 → (Cycles‘𝑔) = (Cycles‘𝐺)) | |
2 | 1 | breqd 5081 | . . . . 5 ⊢ (𝑔 = 𝐺 → (𝑓(Cycles‘𝑔)𝑝 ↔ 𝑓(Cycles‘𝐺)𝑝)) |
3 | 2 | anbi1d 633 | . . . 4 ⊢ (𝑔 = 𝐺 → ((𝑓(Cycles‘𝑔)𝑝 ∧ 𝑓 ≠ ∅) ↔ (𝑓(Cycles‘𝐺)𝑝 ∧ 𝑓 ≠ ∅))) |
4 | 3 | 2exbidv 1932 | . . 3 ⊢ (𝑔 = 𝐺 → (∃𝑓∃𝑝(𝑓(Cycles‘𝑔)𝑝 ∧ 𝑓 ≠ ∅) ↔ ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ 𝑓 ≠ ∅))) |
5 | 4 | notbid 321 | . 2 ⊢ (𝑔 = 𝐺 → (¬ ∃𝑓∃𝑝(𝑓(Cycles‘𝑔)𝑝 ∧ 𝑓 ≠ ∅) ↔ ¬ ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ 𝑓 ≠ ∅))) |
6 | df-acycgr 32980 | . 2 ⊢ AcyclicGraph = {𝑔 ∣ ¬ ∃𝑓∃𝑝(𝑓(Cycles‘𝑔)𝑝 ∧ 𝑓 ≠ ∅)} | |
7 | 5, 6 | elab2g 3605 | 1 ⊢ (𝐺 ∈ 𝑊 → (𝐺 ∈ AcyclicGraph ↔ ¬ ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ 𝑓 ≠ ∅))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1543 ∃wex 1787 ∈ wcel 2112 ≠ wne 2943 ∅c0 4254 class class class wbr 5070 ‘cfv 6415 Cyclesccycls 28029 AcyclicGraphcacycgr 32979 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-ext 2710 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-sb 2073 df-clab 2717 df-cleq 2731 df-clel 2818 df-rab 3073 df-v 3425 df-dif 3887 df-un 3889 df-in 3891 df-ss 3901 df-nul 4255 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-iota 6373 df-fv 6423 df-acycgr 32980 |
This theorem is referenced by: acycgr0v 32985 acycgr2v 32987 acycgrislfgr 32989 umgracycusgr 32991 cusgracyclt3v 32993 acycgrsubgr 32995 |
Copyright terms: Public domain | W3C validator |