Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isacycgr Structured version   Visualization version   GIF version

Theorem isacycgr 35210
Description: The property of being an acyclic graph. (Contributed by BTernaryTau, 11-Oct-2023.)
Assertion
Ref Expression
isacycgr (𝐺𝑊 → (𝐺 ∈ AcyclicGraph ↔ ¬ ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝𝑓 ≠ ∅)))
Distinct variable group:   𝑓,𝐺,𝑝
Allowed substitution hints:   𝑊(𝑓,𝑝)

Proof of Theorem isacycgr
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6828 . . . . . 6 (𝑔 = 𝐺 → (Cycles‘𝑔) = (Cycles‘𝐺))
21breqd 5104 . . . . 5 (𝑔 = 𝐺 → (𝑓(Cycles‘𝑔)𝑝𝑓(Cycles‘𝐺)𝑝))
32anbi1d 631 . . . 4 (𝑔 = 𝐺 → ((𝑓(Cycles‘𝑔)𝑝𝑓 ≠ ∅) ↔ (𝑓(Cycles‘𝐺)𝑝𝑓 ≠ ∅)))
432exbidv 1925 . . 3 (𝑔 = 𝐺 → (∃𝑓𝑝(𝑓(Cycles‘𝑔)𝑝𝑓 ≠ ∅) ↔ ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝𝑓 ≠ ∅)))
54notbid 318 . 2 (𝑔 = 𝐺 → (¬ ∃𝑓𝑝(𝑓(Cycles‘𝑔)𝑝𝑓 ≠ ∅) ↔ ¬ ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝𝑓 ≠ ∅)))
6 df-acycgr 35208 . 2 AcyclicGraph = {𝑔 ∣ ¬ ∃𝑓𝑝(𝑓(Cycles‘𝑔)𝑝𝑓 ≠ ∅)}
75, 6elab2g 3632 1 (𝐺𝑊 → (𝐺 ∈ AcyclicGraph ↔ ¬ ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝𝑓 ≠ ∅)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wex 1780  wcel 2113  wne 2929  c0 4282   class class class wbr 5093  cfv 6486  Cyclesccycls 29765  AcyclicGraphcacycgr 35207
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-iota 6442  df-fv 6494  df-acycgr 35208
This theorem is referenced by:  acycgr0v  35213  acycgr2v  35215  acycgrislfgr  35217  umgracycusgr  35219  cusgracyclt3v  35221  acycgrsubgr  35223
  Copyright terms: Public domain W3C validator