| Mathbox for BTernaryTau |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > isacycgr | Structured version Visualization version GIF version | ||
| Description: The property of being an acyclic graph. (Contributed by BTernaryTau, 11-Oct-2023.) |
| Ref | Expression |
|---|---|
| isacycgr | ⊢ (𝐺 ∈ 𝑊 → (𝐺 ∈ AcyclicGraph ↔ ¬ ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ 𝑓 ≠ ∅))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6858 | . . . . . 6 ⊢ (𝑔 = 𝐺 → (Cycles‘𝑔) = (Cycles‘𝐺)) | |
| 2 | 1 | breqd 5118 | . . . . 5 ⊢ (𝑔 = 𝐺 → (𝑓(Cycles‘𝑔)𝑝 ↔ 𝑓(Cycles‘𝐺)𝑝)) |
| 3 | 2 | anbi1d 631 | . . . 4 ⊢ (𝑔 = 𝐺 → ((𝑓(Cycles‘𝑔)𝑝 ∧ 𝑓 ≠ ∅) ↔ (𝑓(Cycles‘𝐺)𝑝 ∧ 𝑓 ≠ ∅))) |
| 4 | 3 | 2exbidv 1924 | . . 3 ⊢ (𝑔 = 𝐺 → (∃𝑓∃𝑝(𝑓(Cycles‘𝑔)𝑝 ∧ 𝑓 ≠ ∅) ↔ ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ 𝑓 ≠ ∅))) |
| 5 | 4 | notbid 318 | . 2 ⊢ (𝑔 = 𝐺 → (¬ ∃𝑓∃𝑝(𝑓(Cycles‘𝑔)𝑝 ∧ 𝑓 ≠ ∅) ↔ ¬ ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ 𝑓 ≠ ∅))) |
| 6 | df-acycgr 35130 | . 2 ⊢ AcyclicGraph = {𝑔 ∣ ¬ ∃𝑓∃𝑝(𝑓(Cycles‘𝑔)𝑝 ∧ 𝑓 ≠ ∅)} | |
| 7 | 5, 6 | elab2g 3647 | 1 ⊢ (𝐺 ∈ 𝑊 → (𝐺 ∈ AcyclicGraph ↔ ¬ ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ 𝑓 ≠ ∅))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ≠ wne 2925 ∅c0 4296 class class class wbr 5107 ‘cfv 6511 Cyclesccycls 29715 AcyclicGraphcacycgr 35129 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-iota 6464 df-fv 6519 df-acycgr 35130 |
| This theorem is referenced by: acycgr0v 35135 acycgr2v 35137 acycgrislfgr 35139 umgracycusgr 35141 cusgracyclt3v 35143 acycgrsubgr 35145 |
| Copyright terms: Public domain | W3C validator |