Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isacycgr Structured version   Visualization version   GIF version

Theorem isacycgr 32982
Description: The property of being an acyclic graph. (Contributed by BTernaryTau, 11-Oct-2023.)
Assertion
Ref Expression
isacycgr (𝐺𝑊 → (𝐺 ∈ AcyclicGraph ↔ ¬ ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝𝑓 ≠ ∅)))
Distinct variable group:   𝑓,𝐺,𝑝
Allowed substitution hints:   𝑊(𝑓,𝑝)

Proof of Theorem isacycgr
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6753 . . . . . 6 (𝑔 = 𝐺 → (Cycles‘𝑔) = (Cycles‘𝐺))
21breqd 5081 . . . . 5 (𝑔 = 𝐺 → (𝑓(Cycles‘𝑔)𝑝𝑓(Cycles‘𝐺)𝑝))
32anbi1d 633 . . . 4 (𝑔 = 𝐺 → ((𝑓(Cycles‘𝑔)𝑝𝑓 ≠ ∅) ↔ (𝑓(Cycles‘𝐺)𝑝𝑓 ≠ ∅)))
432exbidv 1932 . . 3 (𝑔 = 𝐺 → (∃𝑓𝑝(𝑓(Cycles‘𝑔)𝑝𝑓 ≠ ∅) ↔ ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝𝑓 ≠ ∅)))
54notbid 321 . 2 (𝑔 = 𝐺 → (¬ ∃𝑓𝑝(𝑓(Cycles‘𝑔)𝑝𝑓 ≠ ∅) ↔ ¬ ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝𝑓 ≠ ∅)))
6 df-acycgr 32980 . 2 AcyclicGraph = {𝑔 ∣ ¬ ∃𝑓𝑝(𝑓(Cycles‘𝑔)𝑝𝑓 ≠ ∅)}
75, 6elab2g 3605 1 (𝐺𝑊 → (𝐺 ∈ AcyclicGraph ↔ ¬ ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝𝑓 ≠ ∅)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1543  wex 1787  wcel 2112  wne 2943  c0 4254   class class class wbr 5070  cfv 6415  Cyclesccycls 28029  AcyclicGraphcacycgr 32979
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2114  ax-9 2122  ax-ext 2710
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-sb 2073  df-clab 2717  df-cleq 2731  df-clel 2818  df-rab 3073  df-v 3425  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4255  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-iota 6373  df-fv 6423  df-acycgr 32980
This theorem is referenced by:  acycgr0v  32985  acycgr2v  32987  acycgrislfgr  32989  umgracycusgr  32991  cusgracyclt3v  32993  acycgrsubgr  32995
  Copyright terms: Public domain W3C validator