Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-algext Structured version   Visualization version   GIF version

Definition df-algext 31622
Description: Definition of the algebraic extension relation. (Contributed by Thierry Arnoux, 29-Jul-2023.)
Assertion
Ref Expression
df-algext /AlgExt = {⟨𝑒, 𝑓⟩ ∣ (𝑒/FldExt𝑓 ∧ ∀𝑥 ∈ (Base‘𝑒)∃𝑝 ∈ (Poly1𝑓)(((eval1𝑓)‘𝑝)‘𝑥) = (0g𝑒))}
Distinct variable group:   𝑒,𝑓,𝑝,𝑥

Detailed syntax breakdown of Definition df-algext
StepHypRef Expression
1 calgext 31617 . 2 class /AlgExt
2 ve . . . . . 6 setvar 𝑒
32cv 1538 . . . . 5 class 𝑒
4 vf . . . . . 6 setvar 𝑓
54cv 1538 . . . . 5 class 𝑓
6 cfldext 31615 . . . . 5 class /FldExt
73, 5, 6wbr 5070 . . . 4 wff 𝑒/FldExt𝑓
8 vx . . . . . . . . 9 setvar 𝑥
98cv 1538 . . . . . . . 8 class 𝑥
10 vp . . . . . . . . . 10 setvar 𝑝
1110cv 1538 . . . . . . . . 9 class 𝑝
12 ce1 21390 . . . . . . . . . 10 class eval1
135, 12cfv 6418 . . . . . . . . 9 class (eval1𝑓)
1411, 13cfv 6418 . . . . . . . 8 class ((eval1𝑓)‘𝑝)
159, 14cfv 6418 . . . . . . 7 class (((eval1𝑓)‘𝑝)‘𝑥)
16 c0g 17067 . . . . . . . 8 class 0g
173, 16cfv 6418 . . . . . . 7 class (0g𝑒)
1815, 17wceq 1539 . . . . . 6 wff (((eval1𝑓)‘𝑝)‘𝑥) = (0g𝑒)
19 cpl1 21258 . . . . . . 7 class Poly1
205, 19cfv 6418 . . . . . 6 class (Poly1𝑓)
2118, 10, 20wrex 3064 . . . . 5 wff 𝑝 ∈ (Poly1𝑓)(((eval1𝑓)‘𝑝)‘𝑥) = (0g𝑒)
22 cbs 16840 . . . . . 6 class Base
233, 22cfv 6418 . . . . 5 class (Base‘𝑒)
2421, 8, 23wral 3063 . . . 4 wff 𝑥 ∈ (Base‘𝑒)∃𝑝 ∈ (Poly1𝑓)(((eval1𝑓)‘𝑝)‘𝑥) = (0g𝑒)
257, 24wa 395 . . 3 wff (𝑒/FldExt𝑓 ∧ ∀𝑥 ∈ (Base‘𝑒)∃𝑝 ∈ (Poly1𝑓)(((eval1𝑓)‘𝑝)‘𝑥) = (0g𝑒))
2625, 2, 4copab 5132 . 2 class {⟨𝑒, 𝑓⟩ ∣ (𝑒/FldExt𝑓 ∧ ∀𝑥 ∈ (Base‘𝑒)∃𝑝 ∈ (Poly1𝑓)(((eval1𝑓)‘𝑝)‘𝑥) = (0g𝑒))}
271, 26wceq 1539 1 wff /AlgExt = {⟨𝑒, 𝑓⟩ ∣ (𝑒/FldExt𝑓 ∧ ∀𝑥 ∈ (Base‘𝑒)∃𝑝 ∈ (Poly1𝑓)(((eval1𝑓)‘𝑝)‘𝑥) = (0g𝑒))}
Colors of variables: wff setvar class
This definition is referenced by: (None)
  Copyright terms: Public domain W3C validator