Detailed syntax breakdown of Definition df-algext
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | calgext 33691 | . 2
class
/AlgExt | 
| 2 |  | ve | . . . . . 6
setvar 𝑒 | 
| 3 | 2 | cv 1539 | . . . . 5
class 𝑒 | 
| 4 |  | vf | . . . . . 6
setvar 𝑓 | 
| 5 | 4 | cv 1539 | . . . . 5
class 𝑓 | 
| 6 |  | cfldext 33689 | . . . . 5
class
/FldExt | 
| 7 | 3, 5, 6 | wbr 5143 | . . . 4
wff 𝑒/FldExt𝑓 | 
| 8 |  | vx | . . . . . . . . 9
setvar 𝑥 | 
| 9 | 8 | cv 1539 | . . . . . . . 8
class 𝑥 | 
| 10 |  | vp | . . . . . . . . . 10
setvar 𝑝 | 
| 11 | 10 | cv 1539 | . . . . . . . . 9
class 𝑝 | 
| 12 |  | ce1 22318 | . . . . . . . . . 10
class
eval1 | 
| 13 | 5, 12 | cfv 6561 | . . . . . . . . 9
class
(eval1‘𝑓) | 
| 14 | 11, 13 | cfv 6561 | . . . . . . . 8
class
((eval1‘𝑓)‘𝑝) | 
| 15 | 9, 14 | cfv 6561 | . . . . . . 7
class
(((eval1‘𝑓)‘𝑝)‘𝑥) | 
| 16 |  | c0g 17484 | . . . . . . . 8
class
0g | 
| 17 | 3, 16 | cfv 6561 | . . . . . . 7
class
(0g‘𝑒) | 
| 18 | 15, 17 | wceq 1540 | . . . . . 6
wff
(((eval1‘𝑓)‘𝑝)‘𝑥) = (0g‘𝑒) | 
| 19 |  | cpl1 22178 | . . . . . . 7
class
Poly1 | 
| 20 | 5, 19 | cfv 6561 | . . . . . 6
class
(Poly1‘𝑓) | 
| 21 | 18, 10, 20 | wrex 3070 | . . . . 5
wff
∃𝑝 ∈
(Poly1‘𝑓)(((eval1‘𝑓)‘𝑝)‘𝑥) = (0g‘𝑒) | 
| 22 |  | cbs 17247 | . . . . . 6
class
Base | 
| 23 | 3, 22 | cfv 6561 | . . . . 5
class
(Base‘𝑒) | 
| 24 | 21, 8, 23 | wral 3061 | . . . 4
wff
∀𝑥 ∈
(Base‘𝑒)∃𝑝 ∈
(Poly1‘𝑓)(((eval1‘𝑓)‘𝑝)‘𝑥) = (0g‘𝑒) | 
| 25 | 7, 24 | wa 395 | . . 3
wff (𝑒/FldExt𝑓 ∧ ∀𝑥 ∈ (Base‘𝑒)∃𝑝 ∈ (Poly1‘𝑓)(((eval1‘𝑓)‘𝑝)‘𝑥) = (0g‘𝑒)) | 
| 26 | 25, 2, 4 | copab 5205 | . 2
class
{〈𝑒, 𝑓〉 ∣ (𝑒/FldExt𝑓 ∧ ∀𝑥 ∈ (Base‘𝑒)∃𝑝 ∈ (Poly1‘𝑓)(((eval1‘𝑓)‘𝑝)‘𝑥) = (0g‘𝑒))} | 
| 27 | 1, 26 | wceq 1540 | 1
wff
/AlgExt = {〈𝑒, 𝑓〉 ∣ (𝑒/FldExt𝑓 ∧ ∀𝑥 ∈ (Base‘𝑒)∃𝑝 ∈ (Poly1‘𝑓)(((eval1‘𝑓)‘𝑝)‘𝑥) = (0g‘𝑒))} |