Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-algext Structured version   Visualization version   GIF version

Definition df-algext 33688
Description: Definition of the algebraic extension relation. (Contributed by Thierry Arnoux, 29-Jul-2023.)
Assertion
Ref Expression
df-algext /AlgExt = {⟨𝑒, 𝑓⟩ ∣ (𝑒/FldExt𝑓 ∧ (𝑒 IntgRing 𝑓) = (Base‘𝑒))}
Distinct variable group:   𝑒,𝑓

Detailed syntax breakdown of Definition df-algext
StepHypRef Expression
1 calgext 33687 . 2 class /AlgExt
2 ve . . . . . 6 setvar 𝑒
32cv 1539 . . . . 5 class 𝑒
4 vf . . . . . 6 setvar 𝑓
54cv 1539 . . . . 5 class 𝑓
6 cfldext 33634 . . . . 5 class /FldExt
73, 5, 6wbr 5107 . . . 4 wff 𝑒/FldExt𝑓
8 cirng 33678 . . . . . 6 class IntgRing
93, 5, 8co 7387 . . . . 5 class (𝑒 IntgRing 𝑓)
10 cbs 17179 . . . . . 6 class Base
113, 10cfv 6511 . . . . 5 class (Base‘𝑒)
129, 11wceq 1540 . . . 4 wff (𝑒 IntgRing 𝑓) = (Base‘𝑒)
137, 12wa 395 . . 3 wff (𝑒/FldExt𝑓 ∧ (𝑒 IntgRing 𝑓) = (Base‘𝑒))
1413, 2, 4copab 5169 . 2 class {⟨𝑒, 𝑓⟩ ∣ (𝑒/FldExt𝑓 ∧ (𝑒 IntgRing 𝑓) = (Base‘𝑒))}
151, 14wceq 1540 1 wff /AlgExt = {⟨𝑒, 𝑓⟩ ∣ (𝑒/FldExt𝑓 ∧ (𝑒 IntgRing 𝑓) = (Base‘𝑒))}
Colors of variables: wff setvar class
This definition is referenced by: (None)
  Copyright terms: Public domain W3C validator