Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-algext Structured version   Visualization version   GIF version

Definition df-algext 33699
Description: Definition of the algebraic extension relation. (Contributed by Thierry Arnoux, 29-Jul-2023.)
Assertion
Ref Expression
df-algext /AlgExt = {⟨𝑒, 𝑓⟩ ∣ (𝑒/FldExt𝑓 ∧ (𝑒 IntgRing (Base‘𝑓)) = (Base‘𝑒))}
Distinct variable group:   𝑒,𝑓

Detailed syntax breakdown of Definition df-algext
StepHypRef Expression
1 calgext 33698 . 2 class /AlgExt
2 ve . . . . . 6 setvar 𝑒
32cv 1540 . . . . 5 class 𝑒
4 vf . . . . . 6 setvar 𝑓
54cv 1540 . . . . 5 class 𝑓
6 cfldext 33641 . . . . 5 class /FldExt
73, 5, 6wbr 5089 . . . 4 wff 𝑒/FldExt𝑓
8 cbs 17112 . . . . . . 7 class Base
95, 8cfv 6477 . . . . . 6 class (Base‘𝑓)
10 cirng 33686 . . . . . 6 class IntgRing
113, 9, 10co 7341 . . . . 5 class (𝑒 IntgRing (Base‘𝑓))
123, 8cfv 6477 . . . . 5 class (Base‘𝑒)
1311, 12wceq 1541 . . . 4 wff (𝑒 IntgRing (Base‘𝑓)) = (Base‘𝑒)
147, 13wa 395 . . 3 wff (𝑒/FldExt𝑓 ∧ (𝑒 IntgRing (Base‘𝑓)) = (Base‘𝑒))
1514, 2, 4copab 5151 . 2 class {⟨𝑒, 𝑓⟩ ∣ (𝑒/FldExt𝑓 ∧ (𝑒 IntgRing (Base‘𝑓)) = (Base‘𝑒))}
161, 15wceq 1541 1 wff /AlgExt = {⟨𝑒, 𝑓⟩ ∣ (𝑒/FldExt𝑓 ∧ (𝑒 IntgRing (Base‘𝑓)) = (Base‘𝑒))}
Colors of variables: wff setvar class
This definition is referenced by:  bralgext  33700
  Copyright terms: Public domain W3C validator