Detailed syntax breakdown of Definition df-algext
Step | Hyp | Ref
| Expression |
1 | | calgext 31617 |
. 2
class
/AlgExt |
2 | | ve |
. . . . . 6
setvar 𝑒 |
3 | 2 | cv 1538 |
. . . . 5
class 𝑒 |
4 | | vf |
. . . . . 6
setvar 𝑓 |
5 | 4 | cv 1538 |
. . . . 5
class 𝑓 |
6 | | cfldext 31615 |
. . . . 5
class
/FldExt |
7 | 3, 5, 6 | wbr 5070 |
. . . 4
wff 𝑒/FldExt𝑓 |
8 | | vx |
. . . . . . . . 9
setvar 𝑥 |
9 | 8 | cv 1538 |
. . . . . . . 8
class 𝑥 |
10 | | vp |
. . . . . . . . . 10
setvar 𝑝 |
11 | 10 | cv 1538 |
. . . . . . . . 9
class 𝑝 |
12 | | ce1 21390 |
. . . . . . . . . 10
class
eval1 |
13 | 5, 12 | cfv 6418 |
. . . . . . . . 9
class
(eval1‘𝑓) |
14 | 11, 13 | cfv 6418 |
. . . . . . . 8
class
((eval1‘𝑓)‘𝑝) |
15 | 9, 14 | cfv 6418 |
. . . . . . 7
class
(((eval1‘𝑓)‘𝑝)‘𝑥) |
16 | | c0g 17067 |
. . . . . . . 8
class
0g |
17 | 3, 16 | cfv 6418 |
. . . . . . 7
class
(0g‘𝑒) |
18 | 15, 17 | wceq 1539 |
. . . . . 6
wff
(((eval1‘𝑓)‘𝑝)‘𝑥) = (0g‘𝑒) |
19 | | cpl1 21258 |
. . . . . . 7
class
Poly1 |
20 | 5, 19 | cfv 6418 |
. . . . . 6
class
(Poly1‘𝑓) |
21 | 18, 10, 20 | wrex 3064 |
. . . . 5
wff
∃𝑝 ∈
(Poly1‘𝑓)(((eval1‘𝑓)‘𝑝)‘𝑥) = (0g‘𝑒) |
22 | | cbs 16840 |
. . . . . 6
class
Base |
23 | 3, 22 | cfv 6418 |
. . . . 5
class
(Base‘𝑒) |
24 | 21, 8, 23 | wral 3063 |
. . . 4
wff
∀𝑥 ∈
(Base‘𝑒)∃𝑝 ∈
(Poly1‘𝑓)(((eval1‘𝑓)‘𝑝)‘𝑥) = (0g‘𝑒) |
25 | 7, 24 | wa 395 |
. . 3
wff (𝑒/FldExt𝑓 ∧ ∀𝑥 ∈ (Base‘𝑒)∃𝑝 ∈ (Poly1‘𝑓)(((eval1‘𝑓)‘𝑝)‘𝑥) = (0g‘𝑒)) |
26 | 25, 2, 4 | copab 5132 |
. 2
class
{〈𝑒, 𝑓〉 ∣ (𝑒/FldExt𝑓 ∧ ∀𝑥 ∈ (Base‘𝑒)∃𝑝 ∈ (Poly1‘𝑓)(((eval1‘𝑓)‘𝑝)‘𝑥) = (0g‘𝑒))} |
27 | 1, 26 | wceq 1539 |
1
wff
/AlgExt = {〈𝑒, 𝑓〉 ∣ (𝑒/FldExt𝑓 ∧ ∀𝑥 ∈ (Base‘𝑒)∃𝑝 ∈ (Poly1‘𝑓)(((eval1‘𝑓)‘𝑝)‘𝑥) = (0g‘𝑒))} |