Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  relfldext Structured version   Visualization version   GIF version

Theorem relfldext 32720
Description: The field extension is a relation. (Contributed by Thierry Arnoux, 29-Jul-2023.)
Assertion
Ref Expression
relfldext Rel /FldExt

Proof of Theorem relfldext
Dummy variables 𝑒 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-fldext 32716 . 2 /FldExt = {βŸ¨π‘’, π‘“βŸ© ∣ ((𝑒 ∈ Field ∧ 𝑓 ∈ Field) ∧ (𝑓 = (𝑒 β†Ύs (Baseβ€˜π‘“)) ∧ (Baseβ€˜π‘“) ∈ (SubRingβ€˜π‘’)))}
21relopabiv 5820 1 Rel /FldExt
Colors of variables: wff setvar class
Syntax hints:   ∧ wa 396   = wceq 1541   ∈ wcel 2106  Rel wrel 5681  β€˜cfv 6543  (class class class)co 7408  Basecbs 17143   β†Ύs cress 17172  SubRingcsubrg 20314  Fieldcfield 20357  /FldExtcfldext 32712
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1544  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-v 3476  df-in 3955  df-ss 3965  df-opab 5211  df-xp 5682  df-rel 5683  df-fldext 32716
This theorem is referenced by:  extdgval  32728
  Copyright terms: Public domain W3C validator