Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  relfldext Structured version   Visualization version   GIF version

Theorem relfldext 33659
Description: The field extension is a relation. (Contributed by Thierry Arnoux, 29-Jul-2023.)
Assertion
Ref Expression
relfldext Rel /FldExt

Proof of Theorem relfldext
Dummy variables 𝑒 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-fldext 33655 . 2 /FldExt = {⟨𝑒, 𝑓⟩ ∣ ((𝑒 ∈ Field ∧ 𝑓 ∈ Field) ∧ (𝑓 = (𝑒s (Base‘𝑓)) ∧ (Base‘𝑓) ∈ (SubRing‘𝑒)))}
21relopabiv 5844 1 Rel /FldExt
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1537  wcel 2108  Rel wrel 5705  cfv 6573  (class class class)co 7448  Basecbs 17258  s cress 17287  SubRingcsubrg 20595  Fieldcfield 20752  /FldExtcfldext 33651
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-v 3490  df-ss 3993  df-opab 5229  df-xp 5706  df-rel 5707  df-fldext 33655
This theorem is referenced by:  extdgval  33667
  Copyright terms: Public domain W3C validator