Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  relfldext Structured version   Visualization version   GIF version

Theorem relfldext 33664
Description: The field extension is a relation. (Contributed by Thierry Arnoux, 29-Jul-2023.)
Assertion
Ref Expression
relfldext Rel /FldExt

Proof of Theorem relfldext
Dummy variables 𝑒 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-fldext 33661 . 2 /FldExt = {⟨𝑒, 𝑓⟩ ∣ ((𝑒 ∈ Field ∧ 𝑓 ∈ Field) ∧ (𝑓 = (𝑒s (Base‘𝑓)) ∧ (Base‘𝑓) ∈ (SubRing‘𝑒)))}
21relopabiv 5765 1 Rel /FldExt
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1541  wcel 2111  Rel wrel 5624  cfv 6487  (class class class)co 7352  Basecbs 17126  s cress 17147  SubRingcsubrg 20490  Fieldcfield 20651  /FldExtcfldext 33658
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-v 3438  df-ss 3914  df-opab 5156  df-xp 5625  df-rel 5626  df-fldext 33661
This theorem is referenced by:  extdgval  33673
  Copyright terms: Public domain W3C validator