Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > relfldext | Structured version Visualization version GIF version |
Description: The field extension is a relation. (Contributed by Thierry Arnoux, 29-Jul-2023.) |
Ref | Expression |
---|---|
relfldext | ⊢ Rel /FldExt |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fldext 31619 | . 2 ⊢ /FldExt = {〈𝑒, 𝑓〉 ∣ ((𝑒 ∈ Field ∧ 𝑓 ∈ Field) ∧ (𝑓 = (𝑒 ↾s (Base‘𝑓)) ∧ (Base‘𝑓) ∈ (SubRing‘𝑒)))} | |
2 | 1 | relopabiv 5719 | 1 ⊢ Rel /FldExt |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1539 ∈ wcel 2108 Rel wrel 5585 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 ↾s cress 16867 Fieldcfield 19907 SubRingcsubrg 19935 /FldExtcfldext 31615 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-ss 3900 df-opab 5133 df-xp 5586 df-rel 5587 df-fldext 31619 |
This theorem is referenced by: extdgval 31631 |
Copyright terms: Public domain | W3C validator |