![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > relfldext | Structured version Visualization version GIF version |
Description: The field extension is a relation. (Contributed by Thierry Arnoux, 29-Jul-2023.) |
Ref | Expression |
---|---|
relfldext | ⊢ Rel /FldExt |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fldext 33655 | . 2 ⊢ /FldExt = {〈𝑒, 𝑓〉 ∣ ((𝑒 ∈ Field ∧ 𝑓 ∈ Field) ∧ (𝑓 = (𝑒 ↾s (Base‘𝑓)) ∧ (Base‘𝑓) ∈ (SubRing‘𝑒)))} | |
2 | 1 | relopabiv 5844 | 1 ⊢ Rel /FldExt |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1537 ∈ wcel 2108 Rel wrel 5705 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 ↾s cress 17287 SubRingcsubrg 20595 Fieldcfield 20752 /FldExtcfldext 33651 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-ss 3993 df-opab 5229 df-xp 5706 df-rel 5707 df-fldext 33655 |
This theorem is referenced by: extdgval 33667 |
Copyright terms: Public domain | W3C validator |