| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > relfldext | Structured version Visualization version GIF version | ||
| Description: The field extension is a relation. (Contributed by Thierry Arnoux, 29-Jul-2023.) |
| Ref | Expression |
|---|---|
| relfldext | ⊢ Rel /FldExt |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fldext 33661 | . 2 ⊢ /FldExt = {〈𝑒, 𝑓〉 ∣ ((𝑒 ∈ Field ∧ 𝑓 ∈ Field) ∧ (𝑓 = (𝑒 ↾s (Base‘𝑓)) ∧ (Base‘𝑓) ∈ (SubRing‘𝑒)))} | |
| 2 | 1 | relopabiv 5765 | 1 ⊢ Rel /FldExt |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 ∈ wcel 2111 Rel wrel 5624 ‘cfv 6487 (class class class)co 7352 Basecbs 17126 ↾s cress 17147 SubRingcsubrg 20490 Fieldcfield 20651 /FldExtcfldext 33658 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-ss 3914 df-opab 5156 df-xp 5625 df-rel 5626 df-fldext 33661 |
| This theorem is referenced by: extdgval 33673 |
| Copyright terms: Public domain | W3C validator |