| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > relfldext | Structured version Visualization version GIF version | ||
| Description: The field extension is a relation. (Contributed by Thierry Arnoux, 29-Jul-2023.) |
| Ref | Expression |
|---|---|
| relfldext | ⊢ Rel /FldExt |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fldext 33644 | . 2 ⊢ /FldExt = {〈𝑒, 𝑓〉 ∣ ((𝑒 ∈ Field ∧ 𝑓 ∈ Field) ∧ (𝑓 = (𝑒 ↾s (Base‘𝑓)) ∧ (Base‘𝑓) ∈ (SubRing‘𝑒)))} | |
| 2 | 1 | relopabiv 5786 | 1 ⊢ Rel /FldExt |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2109 Rel wrel 5646 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 ↾s cress 17207 SubRingcsubrg 20485 Fieldcfield 20646 /FldExtcfldext 33641 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-ss 3934 df-opab 5173 df-xp 5647 df-rel 5648 df-fldext 33644 |
| This theorem is referenced by: extdgval 33656 |
| Copyright terms: Public domain | W3C validator |