Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  relfldext Structured version   Visualization version   GIF version

Theorem relfldext 31623
Description: The field extension is a relation. (Contributed by Thierry Arnoux, 29-Jul-2023.)
Assertion
Ref Expression
relfldext Rel /FldExt

Proof of Theorem relfldext
Dummy variables 𝑒 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-fldext 31619 . 2 /FldExt = {⟨𝑒, 𝑓⟩ ∣ ((𝑒 ∈ Field ∧ 𝑓 ∈ Field) ∧ (𝑓 = (𝑒s (Base‘𝑓)) ∧ (Base‘𝑓) ∈ (SubRing‘𝑒)))}
21relopabiv 5719 1 Rel /FldExt
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1539  wcel 2108  Rel wrel 5585  cfv 6418  (class class class)co 7255  Basecbs 16840  s cress 16867  Fieldcfield 19907  SubRingcsubrg 19935  /FldExtcfldext 31615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424  df-in 3890  df-ss 3900  df-opab 5133  df-xp 5586  df-rel 5587  df-fldext 31619
This theorem is referenced by:  extdgval  31631
  Copyright terms: Public domain W3C validator