Step | Hyp | Ref
| Expression |
1 | | cascl 21406 |
. 2
class
algSc |
2 | | vw |
. . 3
setvar π€ |
3 | | cvv 3474 |
. . 3
class
V |
4 | | vx |
. . . 4
setvar π₯ |
5 | 2 | cv 1540 |
. . . . . 6
class π€ |
6 | | csca 17199 |
. . . . . 6
class
Scalar |
7 | 5, 6 | cfv 6543 |
. . . . 5
class
(Scalarβπ€) |
8 | | cbs 17143 |
. . . . 5
class
Base |
9 | 7, 8 | cfv 6543 |
. . . 4
class
(Baseβ(Scalarβπ€)) |
10 | 4 | cv 1540 |
. . . . 5
class π₯ |
11 | | cur 20003 |
. . . . . 6
class
1r |
12 | 5, 11 | cfv 6543 |
. . . . 5
class
(1rβπ€) |
13 | | cvsca 17200 |
. . . . . 6
class
Β·π |
14 | 5, 13 | cfv 6543 |
. . . . 5
class (
Β·π βπ€) |
15 | 10, 12, 14 | co 7408 |
. . . 4
class (π₯(
Β·π βπ€)(1rβπ€)) |
16 | 4, 9, 15 | cmpt 5231 |
. . 3
class (π₯ β
(Baseβ(Scalarβπ€)) β¦ (π₯( Β·π
βπ€)(1rβπ€))) |
17 | 2, 3, 16 | cmpt 5231 |
. 2
class (π€ β V β¦ (π₯ β
(Baseβ(Scalarβπ€)) β¦ (π₯( Β·π
βπ€)(1rβπ€)))) |
18 | 1, 17 | wceq 1541 |
1
wff algSc =
(π€ β V β¦ (π₯ β
(Baseβ(Scalarβπ€)) β¦ (π₯( Β·π
βπ€)(1rβπ€)))) |