MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isassa Structured version   Visualization version   GIF version

Theorem isassa 21794
Description: The properties of an associative algebra. (Contributed by Mario Carneiro, 29-Dec-2014.) (Revised by SN, 2-Mar-2025.)
Hypotheses
Ref Expression
isassa.v 𝑉 = (Base‘𝑊)
isassa.f 𝐹 = (Scalar‘𝑊)
isassa.b 𝐵 = (Base‘𝐹)
isassa.s · = ( ·𝑠𝑊)
isassa.t × = (.r𝑊)
Assertion
Ref Expression
isassa (𝑊 ∈ AssAlg ↔ ((𝑊 ∈ LMod ∧ 𝑊 ∈ Ring) ∧ ∀𝑟𝐵𝑥𝑉𝑦𝑉 (((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦)))))
Distinct variable groups:   𝑥,𝑟,𝑦   𝐵,𝑟   𝐹,𝑟   𝑉,𝑟,𝑥,𝑦   · ,𝑟,𝑥,𝑦   × ,𝑟,𝑥,𝑦   𝑊,𝑟,𝑥,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem isassa
Dummy variables 𝑓 𝑤 𝑠 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvexd 6837 . . . 4 (𝑤 = 𝑊 → (Scalar‘𝑤) ∈ V)
2 fveq2 6822 . . . . 5 (𝑤 = 𝑊 → (Scalar‘𝑤) = (Scalar‘𝑊))
3 isassa.f . . . . 5 𝐹 = (Scalar‘𝑊)
42, 3eqtr4di 2784 . . . 4 (𝑤 = 𝑊 → (Scalar‘𝑤) = 𝐹)
5 fveq2 6822 . . . . . . 7 (𝑓 = 𝐹 → (Base‘𝑓) = (Base‘𝐹))
6 isassa.b . . . . . . 7 𝐵 = (Base‘𝐹)
75, 6eqtr4di 2784 . . . . . 6 (𝑓 = 𝐹 → (Base‘𝑓) = 𝐵)
87adantl 481 . . . . 5 ((𝑤 = 𝑊𝑓 = 𝐹) → (Base‘𝑓) = 𝐵)
9 fveq2 6822 . . . . . . . 8 (𝑤 = 𝑊 → (Base‘𝑤) = (Base‘𝑊))
10 isassa.v . . . . . . . 8 𝑉 = (Base‘𝑊)
119, 10eqtr4di 2784 . . . . . . 7 (𝑤 = 𝑊 → (Base‘𝑤) = 𝑉)
12 isassa.s . . . . . . . . 9 · = ( ·𝑠𝑊)
13 isassa.t . . . . . . . . 9 × = (.r𝑊)
14 simpr 484 . . . . . . . . . . . 12 ((𝑠 = ·𝑡 = × ) → 𝑡 = × )
15 simpl 482 . . . . . . . . . . . . 13 ((𝑠 = ·𝑡 = × ) → 𝑠 = · )
1615oveqd 7363 . . . . . . . . . . . 12 ((𝑠 = ·𝑡 = × ) → (𝑟𝑠𝑥) = (𝑟 · 𝑥))
17 eqidd 2732 . . . . . . . . . . . 12 ((𝑠 = ·𝑡 = × ) → 𝑦 = 𝑦)
1814, 16, 17oveq123d 7367 . . . . . . . . . . 11 ((𝑠 = ·𝑡 = × ) → ((𝑟𝑠𝑥)𝑡𝑦) = ((𝑟 · 𝑥) × 𝑦))
19 eqidd 2732 . . . . . . . . . . . 12 ((𝑠 = ·𝑡 = × ) → 𝑟 = 𝑟)
2014oveqd 7363 . . . . . . . . . . . 12 ((𝑠 = ·𝑡 = × ) → (𝑥𝑡𝑦) = (𝑥 × 𝑦))
2115, 19, 20oveq123d 7367 . . . . . . . . . . 11 ((𝑠 = ·𝑡 = × ) → (𝑟𝑠(𝑥𝑡𝑦)) = (𝑟 · (𝑥 × 𝑦)))
2218, 21eqeq12d 2747 . . . . . . . . . 10 ((𝑠 = ·𝑡 = × ) → (((𝑟𝑠𝑥)𝑡𝑦) = (𝑟𝑠(𝑥𝑡𝑦)) ↔ ((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦))))
23 eqidd 2732 . . . . . . . . . . . 12 ((𝑠 = ·𝑡 = × ) → 𝑥 = 𝑥)
2415oveqd 7363 . . . . . . . . . . . 12 ((𝑠 = ·𝑡 = × ) → (𝑟𝑠𝑦) = (𝑟 · 𝑦))
2514, 23, 24oveq123d 7367 . . . . . . . . . . 11 ((𝑠 = ·𝑡 = × ) → (𝑥𝑡(𝑟𝑠𝑦)) = (𝑥 × (𝑟 · 𝑦)))
2625, 21eqeq12d 2747 . . . . . . . . . 10 ((𝑠 = ·𝑡 = × ) → ((𝑥𝑡(𝑟𝑠𝑦)) = (𝑟𝑠(𝑥𝑡𝑦)) ↔ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦))))
2722, 26anbi12d 632 . . . . . . . . 9 ((𝑠 = ·𝑡 = × ) → ((((𝑟𝑠𝑥)𝑡𝑦) = (𝑟𝑠(𝑥𝑡𝑦)) ∧ (𝑥𝑡(𝑟𝑠𝑦)) = (𝑟𝑠(𝑥𝑡𝑦))) ↔ (((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦)))))
2812, 13, 27sbcie2s 17072 . . . . . . . 8 (𝑤 = 𝑊 → ([( ·𝑠𝑤) / 𝑠][(.r𝑤) / 𝑡](((𝑟𝑠𝑥)𝑡𝑦) = (𝑟𝑠(𝑥𝑡𝑦)) ∧ (𝑥𝑡(𝑟𝑠𝑦)) = (𝑟𝑠(𝑥𝑡𝑦))) ↔ (((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦)))))
2911, 28raleqbidv 3312 . . . . . . 7 (𝑤 = 𝑊 → (∀𝑦 ∈ (Base‘𝑤)[( ·𝑠𝑤) / 𝑠][(.r𝑤) / 𝑡](((𝑟𝑠𝑥)𝑡𝑦) = (𝑟𝑠(𝑥𝑡𝑦)) ∧ (𝑥𝑡(𝑟𝑠𝑦)) = (𝑟𝑠(𝑥𝑡𝑦))) ↔ ∀𝑦𝑉 (((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦)))))
3011, 29raleqbidv 3312 . . . . . 6 (𝑤 = 𝑊 → (∀𝑥 ∈ (Base‘𝑤)∀𝑦 ∈ (Base‘𝑤)[( ·𝑠𝑤) / 𝑠][(.r𝑤) / 𝑡](((𝑟𝑠𝑥)𝑡𝑦) = (𝑟𝑠(𝑥𝑡𝑦)) ∧ (𝑥𝑡(𝑟𝑠𝑦)) = (𝑟𝑠(𝑥𝑡𝑦))) ↔ ∀𝑥𝑉𝑦𝑉 (((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦)))))
3130adantr 480 . . . . 5 ((𝑤 = 𝑊𝑓 = 𝐹) → (∀𝑥 ∈ (Base‘𝑤)∀𝑦 ∈ (Base‘𝑤)[( ·𝑠𝑤) / 𝑠][(.r𝑤) / 𝑡](((𝑟𝑠𝑥)𝑡𝑦) = (𝑟𝑠(𝑥𝑡𝑦)) ∧ (𝑥𝑡(𝑟𝑠𝑦)) = (𝑟𝑠(𝑥𝑡𝑦))) ↔ ∀𝑥𝑉𝑦𝑉 (((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦)))))
328, 31raleqbidv 3312 . . . 4 ((𝑤 = 𝑊𝑓 = 𝐹) → (∀𝑟 ∈ (Base‘𝑓)∀𝑥 ∈ (Base‘𝑤)∀𝑦 ∈ (Base‘𝑤)[( ·𝑠𝑤) / 𝑠][(.r𝑤) / 𝑡](((𝑟𝑠𝑥)𝑡𝑦) = (𝑟𝑠(𝑥𝑡𝑦)) ∧ (𝑥𝑡(𝑟𝑠𝑦)) = (𝑟𝑠(𝑥𝑡𝑦))) ↔ ∀𝑟𝐵𝑥𝑉𝑦𝑉 (((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦)))))
331, 4, 32sbcied2 3786 . . 3 (𝑤 = 𝑊 → ([(Scalar‘𝑤) / 𝑓]𝑟 ∈ (Base‘𝑓)∀𝑥 ∈ (Base‘𝑤)∀𝑦 ∈ (Base‘𝑤)[( ·𝑠𝑤) / 𝑠][(.r𝑤) / 𝑡](((𝑟𝑠𝑥)𝑡𝑦) = (𝑟𝑠(𝑥𝑡𝑦)) ∧ (𝑥𝑡(𝑟𝑠𝑦)) = (𝑟𝑠(𝑥𝑡𝑦))) ↔ ∀𝑟𝐵𝑥𝑉𝑦𝑉 (((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦)))))
34 df-assa 21791 . . 3 AssAlg = {𝑤 ∈ (LMod ∩ Ring) ∣ [(Scalar‘𝑤) / 𝑓]𝑟 ∈ (Base‘𝑓)∀𝑥 ∈ (Base‘𝑤)∀𝑦 ∈ (Base‘𝑤)[( ·𝑠𝑤) / 𝑠][(.r𝑤) / 𝑡](((𝑟𝑠𝑥)𝑡𝑦) = (𝑟𝑠(𝑥𝑡𝑦)) ∧ (𝑥𝑡(𝑟𝑠𝑦)) = (𝑟𝑠(𝑥𝑡𝑦)))}
3533, 34elrab2 3650 . 2 (𝑊 ∈ AssAlg ↔ (𝑊 ∈ (LMod ∩ Ring) ∧ ∀𝑟𝐵𝑥𝑉𝑦𝑉 (((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦)))))
36 elin 3918 . . 3 (𝑊 ∈ (LMod ∩ Ring) ↔ (𝑊 ∈ LMod ∧ 𝑊 ∈ Ring))
3736anbi1i 624 . 2 ((𝑊 ∈ (LMod ∩ Ring) ∧ ∀𝑟𝐵𝑥𝑉𝑦𝑉 (((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦)))) ↔ ((𝑊 ∈ LMod ∧ 𝑊 ∈ Ring) ∧ ∀𝑟𝐵𝑥𝑉𝑦𝑉 (((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦)))))
3835, 37bitri 275 1 (𝑊 ∈ AssAlg ↔ ((𝑊 ∈ LMod ∧ 𝑊 ∈ Ring) ∧ ∀𝑟𝐵𝑥𝑉𝑦𝑉 (((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦)))))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047  Vcvv 3436  [wsbc 3741  cin 3901  cfv 6481  (class class class)co 7346  Basecbs 17120  .rcmulr 17162  Scalarcsca 17164   ·𝑠 cvsca 17165  Ringcrg 20152  LModclmod 20794  AssAlgcasa 21788
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-nul 5244
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rab 3396  df-v 3438  df-sbc 3742  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-iota 6437  df-fv 6489  df-ov 7349  df-assa 21791
This theorem is referenced by:  assalem  21795  assalmod  21798  assaring  21799  isassad  21803  assapropd  21810
  Copyright terms: Public domain W3C validator