Step | Hyp | Ref
| Expression |
1 | | fvexd 6771 |
. . . 4
⊢ (𝑤 = 𝑊 → (Scalar‘𝑤) ∈ V) |
2 | | fveq2 6756 |
. . . . 5
⊢ (𝑤 = 𝑊 → (Scalar‘𝑤) = (Scalar‘𝑊)) |
3 | | isassa.f |
. . . . 5
⊢ 𝐹 = (Scalar‘𝑊) |
4 | 2, 3 | eqtr4di 2797 |
. . . 4
⊢ (𝑤 = 𝑊 → (Scalar‘𝑤) = 𝐹) |
5 | | simpr 484 |
. . . . . 6
⊢ ((𝑤 = 𝑊 ∧ 𝑓 = 𝐹) → 𝑓 = 𝐹) |
6 | 5 | eleq1d 2823 |
. . . . 5
⊢ ((𝑤 = 𝑊 ∧ 𝑓 = 𝐹) → (𝑓 ∈ CRing ↔ 𝐹 ∈ CRing)) |
7 | 5 | fveq2d 6760 |
. . . . . . 7
⊢ ((𝑤 = 𝑊 ∧ 𝑓 = 𝐹) → (Base‘𝑓) = (Base‘𝐹)) |
8 | | isassa.b |
. . . . . . 7
⊢ 𝐵 = (Base‘𝐹) |
9 | 7, 8 | eqtr4di 2797 |
. . . . . 6
⊢ ((𝑤 = 𝑊 ∧ 𝑓 = 𝐹) → (Base‘𝑓) = 𝐵) |
10 | | fveq2 6756 |
. . . . . . . . 9
⊢ (𝑤 = 𝑊 → (Base‘𝑤) = (Base‘𝑊)) |
11 | | isassa.v |
. . . . . . . . 9
⊢ 𝑉 = (Base‘𝑊) |
12 | 10, 11 | eqtr4di 2797 |
. . . . . . . 8
⊢ (𝑤 = 𝑊 → (Base‘𝑤) = 𝑉) |
13 | | fvexd 6771 |
. . . . . . . . . 10
⊢ (𝑤 = 𝑊 → (
·𝑠 ‘𝑤) ∈ V) |
14 | | fvexd 6771 |
. . . . . . . . . . 11
⊢ ((𝑤 = 𝑊 ∧ 𝑠 = ( ·𝑠
‘𝑤)) →
(.r‘𝑤)
∈ V) |
15 | | simpr 484 |
. . . . . . . . . . . . . . 15
⊢ (((𝑤 = 𝑊 ∧ 𝑠 = ( ·𝑠
‘𝑤)) ∧ 𝑡 = (.r‘𝑤)) → 𝑡 = (.r‘𝑤)) |
16 | | fveq2 6756 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑤 = 𝑊 → (.r‘𝑤) = (.r‘𝑊)) |
17 | 16 | ad2antrr 722 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑤 = 𝑊 ∧ 𝑠 = ( ·𝑠
‘𝑤)) ∧ 𝑡 = (.r‘𝑤)) →
(.r‘𝑤) =
(.r‘𝑊)) |
18 | | isassa.t |
. . . . . . . . . . . . . . . 16
⊢ × =
(.r‘𝑊) |
19 | 17, 18 | eqtr4di 2797 |
. . . . . . . . . . . . . . 15
⊢ (((𝑤 = 𝑊 ∧ 𝑠 = ( ·𝑠
‘𝑤)) ∧ 𝑡 = (.r‘𝑤)) →
(.r‘𝑤) =
×
) |
20 | 15, 19 | eqtrd 2778 |
. . . . . . . . . . . . . 14
⊢ (((𝑤 = 𝑊 ∧ 𝑠 = ( ·𝑠
‘𝑤)) ∧ 𝑡 = (.r‘𝑤)) → 𝑡 = × ) |
21 | | simplr 765 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑤 = 𝑊 ∧ 𝑠 = ( ·𝑠
‘𝑤)) ∧ 𝑡 = (.r‘𝑤)) → 𝑠 = ( ·𝑠
‘𝑤)) |
22 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑤 = 𝑊 → (
·𝑠 ‘𝑤) = ( ·𝑠
‘𝑊)) |
23 | 22 | ad2antrr 722 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑤 = 𝑊 ∧ 𝑠 = ( ·𝑠
‘𝑤)) ∧ 𝑡 = (.r‘𝑤)) → (
·𝑠 ‘𝑤) = ( ·𝑠
‘𝑊)) |
24 | | isassa.s |
. . . . . . . . . . . . . . . . 17
⊢ · = (
·𝑠 ‘𝑊) |
25 | 23, 24 | eqtr4di 2797 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑤 = 𝑊 ∧ 𝑠 = ( ·𝑠
‘𝑤)) ∧ 𝑡 = (.r‘𝑤)) → (
·𝑠 ‘𝑤) = · ) |
26 | 21, 25 | eqtrd 2778 |
. . . . . . . . . . . . . . 15
⊢ (((𝑤 = 𝑊 ∧ 𝑠 = ( ·𝑠
‘𝑤)) ∧ 𝑡 = (.r‘𝑤)) → 𝑠 = · ) |
27 | 26 | oveqd 7272 |
. . . . . . . . . . . . . 14
⊢ (((𝑤 = 𝑊 ∧ 𝑠 = ( ·𝑠
‘𝑤)) ∧ 𝑡 = (.r‘𝑤)) → (𝑟𝑠𝑥) = (𝑟 · 𝑥)) |
28 | | eqidd 2739 |
. . . . . . . . . . . . . 14
⊢ (((𝑤 = 𝑊 ∧ 𝑠 = ( ·𝑠
‘𝑤)) ∧ 𝑡 = (.r‘𝑤)) → 𝑦 = 𝑦) |
29 | 20, 27, 28 | oveq123d 7276 |
. . . . . . . . . . . . 13
⊢ (((𝑤 = 𝑊 ∧ 𝑠 = ( ·𝑠
‘𝑤)) ∧ 𝑡 = (.r‘𝑤)) → ((𝑟𝑠𝑥)𝑡𝑦) = ((𝑟 · 𝑥) × 𝑦)) |
30 | | eqidd 2739 |
. . . . . . . . . . . . . 14
⊢ (((𝑤 = 𝑊 ∧ 𝑠 = ( ·𝑠
‘𝑤)) ∧ 𝑡 = (.r‘𝑤)) → 𝑟 = 𝑟) |
31 | 20 | oveqd 7272 |
. . . . . . . . . . . . . 14
⊢ (((𝑤 = 𝑊 ∧ 𝑠 = ( ·𝑠
‘𝑤)) ∧ 𝑡 = (.r‘𝑤)) → (𝑥𝑡𝑦) = (𝑥 × 𝑦)) |
32 | 26, 30, 31 | oveq123d 7276 |
. . . . . . . . . . . . 13
⊢ (((𝑤 = 𝑊 ∧ 𝑠 = ( ·𝑠
‘𝑤)) ∧ 𝑡 = (.r‘𝑤)) → (𝑟𝑠(𝑥𝑡𝑦)) = (𝑟 · (𝑥 × 𝑦))) |
33 | 29, 32 | eqeq12d 2754 |
. . . . . . . . . . . 12
⊢ (((𝑤 = 𝑊 ∧ 𝑠 = ( ·𝑠
‘𝑤)) ∧ 𝑡 = (.r‘𝑤)) → (((𝑟𝑠𝑥)𝑡𝑦) = (𝑟𝑠(𝑥𝑡𝑦)) ↔ ((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)))) |
34 | | eqidd 2739 |
. . . . . . . . . . . . . 14
⊢ (((𝑤 = 𝑊 ∧ 𝑠 = ( ·𝑠
‘𝑤)) ∧ 𝑡 = (.r‘𝑤)) → 𝑥 = 𝑥) |
35 | 26 | oveqd 7272 |
. . . . . . . . . . . . . 14
⊢ (((𝑤 = 𝑊 ∧ 𝑠 = ( ·𝑠
‘𝑤)) ∧ 𝑡 = (.r‘𝑤)) → (𝑟𝑠𝑦) = (𝑟 · 𝑦)) |
36 | 20, 34, 35 | oveq123d 7276 |
. . . . . . . . . . . . 13
⊢ (((𝑤 = 𝑊 ∧ 𝑠 = ( ·𝑠
‘𝑤)) ∧ 𝑡 = (.r‘𝑤)) → (𝑥𝑡(𝑟𝑠𝑦)) = (𝑥 × (𝑟 · 𝑦))) |
37 | 36, 32 | eqeq12d 2754 |
. . . . . . . . . . . 12
⊢ (((𝑤 = 𝑊 ∧ 𝑠 = ( ·𝑠
‘𝑤)) ∧ 𝑡 = (.r‘𝑤)) → ((𝑥𝑡(𝑟𝑠𝑦)) = (𝑟𝑠(𝑥𝑡𝑦)) ↔ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦)))) |
38 | 33, 37 | anbi12d 630 |
. . . . . . . . . . 11
⊢ (((𝑤 = 𝑊 ∧ 𝑠 = ( ·𝑠
‘𝑤)) ∧ 𝑡 = (.r‘𝑤)) → ((((𝑟𝑠𝑥)𝑡𝑦) = (𝑟𝑠(𝑥𝑡𝑦)) ∧ (𝑥𝑡(𝑟𝑠𝑦)) = (𝑟𝑠(𝑥𝑡𝑦))) ↔ (((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦))))) |
39 | 14, 38 | sbcied 3756 |
. . . . . . . . . 10
⊢ ((𝑤 = 𝑊 ∧ 𝑠 = ( ·𝑠
‘𝑤)) →
([(.r‘𝑤) / 𝑡](((𝑟𝑠𝑥)𝑡𝑦) = (𝑟𝑠(𝑥𝑡𝑦)) ∧ (𝑥𝑡(𝑟𝑠𝑦)) = (𝑟𝑠(𝑥𝑡𝑦))) ↔ (((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦))))) |
40 | 13, 39 | sbcied 3756 |
. . . . . . . . 9
⊢ (𝑤 = 𝑊 → ([(
·𝑠 ‘𝑤) / 𝑠][(.r‘𝑤) / 𝑡](((𝑟𝑠𝑥)𝑡𝑦) = (𝑟𝑠(𝑥𝑡𝑦)) ∧ (𝑥𝑡(𝑟𝑠𝑦)) = (𝑟𝑠(𝑥𝑡𝑦))) ↔ (((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦))))) |
41 | 12, 40 | raleqbidv 3327 |
. . . . . . . 8
⊢ (𝑤 = 𝑊 → (∀𝑦 ∈ (Base‘𝑤)[(
·𝑠 ‘𝑤) / 𝑠][(.r‘𝑤) / 𝑡](((𝑟𝑠𝑥)𝑡𝑦) = (𝑟𝑠(𝑥𝑡𝑦)) ∧ (𝑥𝑡(𝑟𝑠𝑦)) = (𝑟𝑠(𝑥𝑡𝑦))) ↔ ∀𝑦 ∈ 𝑉 (((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦))))) |
42 | 12, 41 | raleqbidv 3327 |
. . . . . . 7
⊢ (𝑤 = 𝑊 → (∀𝑥 ∈ (Base‘𝑤)∀𝑦 ∈ (Base‘𝑤)[(
·𝑠 ‘𝑤) / 𝑠][(.r‘𝑤) / 𝑡](((𝑟𝑠𝑥)𝑡𝑦) = (𝑟𝑠(𝑥𝑡𝑦)) ∧ (𝑥𝑡(𝑟𝑠𝑦)) = (𝑟𝑠(𝑥𝑡𝑦))) ↔ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦))))) |
43 | 42 | adantr 480 |
. . . . . 6
⊢ ((𝑤 = 𝑊 ∧ 𝑓 = 𝐹) → (∀𝑥 ∈ (Base‘𝑤)∀𝑦 ∈ (Base‘𝑤)[(
·𝑠 ‘𝑤) / 𝑠][(.r‘𝑤) / 𝑡](((𝑟𝑠𝑥)𝑡𝑦) = (𝑟𝑠(𝑥𝑡𝑦)) ∧ (𝑥𝑡(𝑟𝑠𝑦)) = (𝑟𝑠(𝑥𝑡𝑦))) ↔ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦))))) |
44 | 9, 43 | raleqbidv 3327 |
. . . . 5
⊢ ((𝑤 = 𝑊 ∧ 𝑓 = 𝐹) → (∀𝑟 ∈ (Base‘𝑓)∀𝑥 ∈ (Base‘𝑤)∀𝑦 ∈ (Base‘𝑤)[(
·𝑠 ‘𝑤) / 𝑠][(.r‘𝑤) / 𝑡](((𝑟𝑠𝑥)𝑡𝑦) = (𝑟𝑠(𝑥𝑡𝑦)) ∧ (𝑥𝑡(𝑟𝑠𝑦)) = (𝑟𝑠(𝑥𝑡𝑦))) ↔ ∀𝑟 ∈ 𝐵 ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦))))) |
45 | 6, 44 | anbi12d 630 |
. . . 4
⊢ ((𝑤 = 𝑊 ∧ 𝑓 = 𝐹) → ((𝑓 ∈ CRing ∧ ∀𝑟 ∈ (Base‘𝑓)∀𝑥 ∈ (Base‘𝑤)∀𝑦 ∈ (Base‘𝑤)[(
·𝑠 ‘𝑤) / 𝑠][(.r‘𝑤) / 𝑡](((𝑟𝑠𝑥)𝑡𝑦) = (𝑟𝑠(𝑥𝑡𝑦)) ∧ (𝑥𝑡(𝑟𝑠𝑦)) = (𝑟𝑠(𝑥𝑡𝑦)))) ↔ (𝐹 ∈ CRing ∧ ∀𝑟 ∈ 𝐵 ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦)))))) |
46 | 1, 4, 45 | sbcied2 3758 |
. . 3
⊢ (𝑤 = 𝑊 → ([(Scalar‘𝑤) / 𝑓](𝑓 ∈ CRing ∧ ∀𝑟 ∈ (Base‘𝑓)∀𝑥 ∈ (Base‘𝑤)∀𝑦 ∈ (Base‘𝑤)[(
·𝑠 ‘𝑤) / 𝑠][(.r‘𝑤) / 𝑡](((𝑟𝑠𝑥)𝑡𝑦) = (𝑟𝑠(𝑥𝑡𝑦)) ∧ (𝑥𝑡(𝑟𝑠𝑦)) = (𝑟𝑠(𝑥𝑡𝑦)))) ↔ (𝐹 ∈ CRing ∧ ∀𝑟 ∈ 𝐵 ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦)))))) |
47 | | df-assa 20970 |
. . 3
⊢ AssAlg =
{𝑤 ∈ (LMod ∩ Ring)
∣ [(Scalar‘𝑤) / 𝑓](𝑓 ∈ CRing ∧ ∀𝑟 ∈ (Base‘𝑓)∀𝑥 ∈ (Base‘𝑤)∀𝑦 ∈ (Base‘𝑤)[(
·𝑠 ‘𝑤) / 𝑠][(.r‘𝑤) / 𝑡](((𝑟𝑠𝑥)𝑡𝑦) = (𝑟𝑠(𝑥𝑡𝑦)) ∧ (𝑥𝑡(𝑟𝑠𝑦)) = (𝑟𝑠(𝑥𝑡𝑦))))} |
48 | 46, 47 | elrab2 3620 |
. 2
⊢ (𝑊 ∈ AssAlg ↔ (𝑊 ∈ (LMod ∩ Ring) ∧
(𝐹 ∈ CRing ∧
∀𝑟 ∈ 𝐵 ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦)))))) |
49 | | anass 468 |
. 2
⊢ (((𝑊 ∈ (LMod ∩ Ring) ∧
𝐹 ∈ CRing) ∧
∀𝑟 ∈ 𝐵 ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦)))) ↔ (𝑊 ∈ (LMod ∩ Ring) ∧ (𝐹 ∈ CRing ∧
∀𝑟 ∈ 𝐵 ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦)))))) |
50 | | elin 3899 |
. . . . 5
⊢ (𝑊 ∈ (LMod ∩ Ring) ↔
(𝑊 ∈ LMod ∧ 𝑊 ∈ Ring)) |
51 | 50 | anbi1i 623 |
. . . 4
⊢ ((𝑊 ∈ (LMod ∩ Ring) ∧
𝐹 ∈ CRing) ↔
((𝑊 ∈ LMod ∧ 𝑊 ∈ Ring) ∧ 𝐹 ∈ CRing)) |
52 | | df-3an 1087 |
. . . 4
⊢ ((𝑊 ∈ LMod ∧ 𝑊 ∈ Ring ∧ 𝐹 ∈ CRing) ↔ ((𝑊 ∈ LMod ∧ 𝑊 ∈ Ring) ∧ 𝐹 ∈ CRing)) |
53 | 51, 52 | bitr4i 277 |
. . 3
⊢ ((𝑊 ∈ (LMod ∩ Ring) ∧
𝐹 ∈ CRing) ↔
(𝑊 ∈ LMod ∧ 𝑊 ∈ Ring ∧ 𝐹 ∈ CRing)) |
54 | 53 | anbi1i 623 |
. 2
⊢ (((𝑊 ∈ (LMod ∩ Ring) ∧
𝐹 ∈ CRing) ∧
∀𝑟 ∈ 𝐵 ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦)))) ↔ ((𝑊 ∈ LMod ∧ 𝑊 ∈ Ring ∧ 𝐹 ∈ CRing) ∧ ∀𝑟 ∈ 𝐵 ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦))))) |
55 | 48, 49, 54 | 3bitr2i 298 |
1
⊢ (𝑊 ∈ AssAlg ↔ ((𝑊 ∈ LMod ∧ 𝑊 ∈ Ring ∧ 𝐹 ∈ CRing) ∧
∀𝑟 ∈ 𝐵 ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦))))) |