MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isassa Structured version   Visualization version   GIF version

Theorem isassa 20973
Description: The properties of an associative algebra. (Contributed by Mario Carneiro, 29-Dec-2014.)
Hypotheses
Ref Expression
isassa.v 𝑉 = (Base‘𝑊)
isassa.f 𝐹 = (Scalar‘𝑊)
isassa.b 𝐵 = (Base‘𝐹)
isassa.s · = ( ·𝑠𝑊)
isassa.t × = (.r𝑊)
Assertion
Ref Expression
isassa (𝑊 ∈ AssAlg ↔ ((𝑊 ∈ LMod ∧ 𝑊 ∈ Ring ∧ 𝐹 ∈ CRing) ∧ ∀𝑟𝐵𝑥𝑉𝑦𝑉 (((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦)))))
Distinct variable groups:   𝑥,𝑟,𝑦   𝐵,𝑟   𝐹,𝑟   𝑉,𝑟,𝑥,𝑦   · ,𝑟,𝑥,𝑦   × ,𝑟,𝑥,𝑦   𝑊,𝑟,𝑥,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem isassa
Dummy variables 𝑓 𝑤 𝑠 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvexd 6771 . . . 4 (𝑤 = 𝑊 → (Scalar‘𝑤) ∈ V)
2 fveq2 6756 . . . . 5 (𝑤 = 𝑊 → (Scalar‘𝑤) = (Scalar‘𝑊))
3 isassa.f . . . . 5 𝐹 = (Scalar‘𝑊)
42, 3eqtr4di 2797 . . . 4 (𝑤 = 𝑊 → (Scalar‘𝑤) = 𝐹)
5 simpr 484 . . . . . 6 ((𝑤 = 𝑊𝑓 = 𝐹) → 𝑓 = 𝐹)
65eleq1d 2823 . . . . 5 ((𝑤 = 𝑊𝑓 = 𝐹) → (𝑓 ∈ CRing ↔ 𝐹 ∈ CRing))
75fveq2d 6760 . . . . . . 7 ((𝑤 = 𝑊𝑓 = 𝐹) → (Base‘𝑓) = (Base‘𝐹))
8 isassa.b . . . . . . 7 𝐵 = (Base‘𝐹)
97, 8eqtr4di 2797 . . . . . 6 ((𝑤 = 𝑊𝑓 = 𝐹) → (Base‘𝑓) = 𝐵)
10 fveq2 6756 . . . . . . . . 9 (𝑤 = 𝑊 → (Base‘𝑤) = (Base‘𝑊))
11 isassa.v . . . . . . . . 9 𝑉 = (Base‘𝑊)
1210, 11eqtr4di 2797 . . . . . . . 8 (𝑤 = 𝑊 → (Base‘𝑤) = 𝑉)
13 fvexd 6771 . . . . . . . . . 10 (𝑤 = 𝑊 → ( ·𝑠𝑤) ∈ V)
14 fvexd 6771 . . . . . . . . . . 11 ((𝑤 = 𝑊𝑠 = ( ·𝑠𝑤)) → (.r𝑤) ∈ V)
15 simpr 484 . . . . . . . . . . . . . . 15 (((𝑤 = 𝑊𝑠 = ( ·𝑠𝑤)) ∧ 𝑡 = (.r𝑤)) → 𝑡 = (.r𝑤))
16 fveq2 6756 . . . . . . . . . . . . . . . . 17 (𝑤 = 𝑊 → (.r𝑤) = (.r𝑊))
1716ad2antrr 722 . . . . . . . . . . . . . . . 16 (((𝑤 = 𝑊𝑠 = ( ·𝑠𝑤)) ∧ 𝑡 = (.r𝑤)) → (.r𝑤) = (.r𝑊))
18 isassa.t . . . . . . . . . . . . . . . 16 × = (.r𝑊)
1917, 18eqtr4di 2797 . . . . . . . . . . . . . . 15 (((𝑤 = 𝑊𝑠 = ( ·𝑠𝑤)) ∧ 𝑡 = (.r𝑤)) → (.r𝑤) = × )
2015, 19eqtrd 2778 . . . . . . . . . . . . . 14 (((𝑤 = 𝑊𝑠 = ( ·𝑠𝑤)) ∧ 𝑡 = (.r𝑤)) → 𝑡 = × )
21 simplr 765 . . . . . . . . . . . . . . . 16 (((𝑤 = 𝑊𝑠 = ( ·𝑠𝑤)) ∧ 𝑡 = (.r𝑤)) → 𝑠 = ( ·𝑠𝑤))
22 fveq2 6756 . . . . . . . . . . . . . . . . . 18 (𝑤 = 𝑊 → ( ·𝑠𝑤) = ( ·𝑠𝑊))
2322ad2antrr 722 . . . . . . . . . . . . . . . . 17 (((𝑤 = 𝑊𝑠 = ( ·𝑠𝑤)) ∧ 𝑡 = (.r𝑤)) → ( ·𝑠𝑤) = ( ·𝑠𝑊))
24 isassa.s . . . . . . . . . . . . . . . . 17 · = ( ·𝑠𝑊)
2523, 24eqtr4di 2797 . . . . . . . . . . . . . . . 16 (((𝑤 = 𝑊𝑠 = ( ·𝑠𝑤)) ∧ 𝑡 = (.r𝑤)) → ( ·𝑠𝑤) = · )
2621, 25eqtrd 2778 . . . . . . . . . . . . . . 15 (((𝑤 = 𝑊𝑠 = ( ·𝑠𝑤)) ∧ 𝑡 = (.r𝑤)) → 𝑠 = · )
2726oveqd 7272 . . . . . . . . . . . . . 14 (((𝑤 = 𝑊𝑠 = ( ·𝑠𝑤)) ∧ 𝑡 = (.r𝑤)) → (𝑟𝑠𝑥) = (𝑟 · 𝑥))
28 eqidd 2739 . . . . . . . . . . . . . 14 (((𝑤 = 𝑊𝑠 = ( ·𝑠𝑤)) ∧ 𝑡 = (.r𝑤)) → 𝑦 = 𝑦)
2920, 27, 28oveq123d 7276 . . . . . . . . . . . . 13 (((𝑤 = 𝑊𝑠 = ( ·𝑠𝑤)) ∧ 𝑡 = (.r𝑤)) → ((𝑟𝑠𝑥)𝑡𝑦) = ((𝑟 · 𝑥) × 𝑦))
30 eqidd 2739 . . . . . . . . . . . . . 14 (((𝑤 = 𝑊𝑠 = ( ·𝑠𝑤)) ∧ 𝑡 = (.r𝑤)) → 𝑟 = 𝑟)
3120oveqd 7272 . . . . . . . . . . . . . 14 (((𝑤 = 𝑊𝑠 = ( ·𝑠𝑤)) ∧ 𝑡 = (.r𝑤)) → (𝑥𝑡𝑦) = (𝑥 × 𝑦))
3226, 30, 31oveq123d 7276 . . . . . . . . . . . . 13 (((𝑤 = 𝑊𝑠 = ( ·𝑠𝑤)) ∧ 𝑡 = (.r𝑤)) → (𝑟𝑠(𝑥𝑡𝑦)) = (𝑟 · (𝑥 × 𝑦)))
3329, 32eqeq12d 2754 . . . . . . . . . . . 12 (((𝑤 = 𝑊𝑠 = ( ·𝑠𝑤)) ∧ 𝑡 = (.r𝑤)) → (((𝑟𝑠𝑥)𝑡𝑦) = (𝑟𝑠(𝑥𝑡𝑦)) ↔ ((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦))))
34 eqidd 2739 . . . . . . . . . . . . . 14 (((𝑤 = 𝑊𝑠 = ( ·𝑠𝑤)) ∧ 𝑡 = (.r𝑤)) → 𝑥 = 𝑥)
3526oveqd 7272 . . . . . . . . . . . . . 14 (((𝑤 = 𝑊𝑠 = ( ·𝑠𝑤)) ∧ 𝑡 = (.r𝑤)) → (𝑟𝑠𝑦) = (𝑟 · 𝑦))
3620, 34, 35oveq123d 7276 . . . . . . . . . . . . 13 (((𝑤 = 𝑊𝑠 = ( ·𝑠𝑤)) ∧ 𝑡 = (.r𝑤)) → (𝑥𝑡(𝑟𝑠𝑦)) = (𝑥 × (𝑟 · 𝑦)))
3736, 32eqeq12d 2754 . . . . . . . . . . . 12 (((𝑤 = 𝑊𝑠 = ( ·𝑠𝑤)) ∧ 𝑡 = (.r𝑤)) → ((𝑥𝑡(𝑟𝑠𝑦)) = (𝑟𝑠(𝑥𝑡𝑦)) ↔ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦))))
3833, 37anbi12d 630 . . . . . . . . . . 11 (((𝑤 = 𝑊𝑠 = ( ·𝑠𝑤)) ∧ 𝑡 = (.r𝑤)) → ((((𝑟𝑠𝑥)𝑡𝑦) = (𝑟𝑠(𝑥𝑡𝑦)) ∧ (𝑥𝑡(𝑟𝑠𝑦)) = (𝑟𝑠(𝑥𝑡𝑦))) ↔ (((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦)))))
3914, 38sbcied 3756 . . . . . . . . . 10 ((𝑤 = 𝑊𝑠 = ( ·𝑠𝑤)) → ([(.r𝑤) / 𝑡](((𝑟𝑠𝑥)𝑡𝑦) = (𝑟𝑠(𝑥𝑡𝑦)) ∧ (𝑥𝑡(𝑟𝑠𝑦)) = (𝑟𝑠(𝑥𝑡𝑦))) ↔ (((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦)))))
4013, 39sbcied 3756 . . . . . . . . 9 (𝑤 = 𝑊 → ([( ·𝑠𝑤) / 𝑠][(.r𝑤) / 𝑡](((𝑟𝑠𝑥)𝑡𝑦) = (𝑟𝑠(𝑥𝑡𝑦)) ∧ (𝑥𝑡(𝑟𝑠𝑦)) = (𝑟𝑠(𝑥𝑡𝑦))) ↔ (((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦)))))
4112, 40raleqbidv 3327 . . . . . . . 8 (𝑤 = 𝑊 → (∀𝑦 ∈ (Base‘𝑤)[( ·𝑠𝑤) / 𝑠][(.r𝑤) / 𝑡](((𝑟𝑠𝑥)𝑡𝑦) = (𝑟𝑠(𝑥𝑡𝑦)) ∧ (𝑥𝑡(𝑟𝑠𝑦)) = (𝑟𝑠(𝑥𝑡𝑦))) ↔ ∀𝑦𝑉 (((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦)))))
4212, 41raleqbidv 3327 . . . . . . 7 (𝑤 = 𝑊 → (∀𝑥 ∈ (Base‘𝑤)∀𝑦 ∈ (Base‘𝑤)[( ·𝑠𝑤) / 𝑠][(.r𝑤) / 𝑡](((𝑟𝑠𝑥)𝑡𝑦) = (𝑟𝑠(𝑥𝑡𝑦)) ∧ (𝑥𝑡(𝑟𝑠𝑦)) = (𝑟𝑠(𝑥𝑡𝑦))) ↔ ∀𝑥𝑉𝑦𝑉 (((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦)))))
4342adantr 480 . . . . . 6 ((𝑤 = 𝑊𝑓 = 𝐹) → (∀𝑥 ∈ (Base‘𝑤)∀𝑦 ∈ (Base‘𝑤)[( ·𝑠𝑤) / 𝑠][(.r𝑤) / 𝑡](((𝑟𝑠𝑥)𝑡𝑦) = (𝑟𝑠(𝑥𝑡𝑦)) ∧ (𝑥𝑡(𝑟𝑠𝑦)) = (𝑟𝑠(𝑥𝑡𝑦))) ↔ ∀𝑥𝑉𝑦𝑉 (((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦)))))
449, 43raleqbidv 3327 . . . . 5 ((𝑤 = 𝑊𝑓 = 𝐹) → (∀𝑟 ∈ (Base‘𝑓)∀𝑥 ∈ (Base‘𝑤)∀𝑦 ∈ (Base‘𝑤)[( ·𝑠𝑤) / 𝑠][(.r𝑤) / 𝑡](((𝑟𝑠𝑥)𝑡𝑦) = (𝑟𝑠(𝑥𝑡𝑦)) ∧ (𝑥𝑡(𝑟𝑠𝑦)) = (𝑟𝑠(𝑥𝑡𝑦))) ↔ ∀𝑟𝐵𝑥𝑉𝑦𝑉 (((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦)))))
456, 44anbi12d 630 . . . 4 ((𝑤 = 𝑊𝑓 = 𝐹) → ((𝑓 ∈ CRing ∧ ∀𝑟 ∈ (Base‘𝑓)∀𝑥 ∈ (Base‘𝑤)∀𝑦 ∈ (Base‘𝑤)[( ·𝑠𝑤) / 𝑠][(.r𝑤) / 𝑡](((𝑟𝑠𝑥)𝑡𝑦) = (𝑟𝑠(𝑥𝑡𝑦)) ∧ (𝑥𝑡(𝑟𝑠𝑦)) = (𝑟𝑠(𝑥𝑡𝑦)))) ↔ (𝐹 ∈ CRing ∧ ∀𝑟𝐵𝑥𝑉𝑦𝑉 (((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦))))))
461, 4, 45sbcied2 3758 . . 3 (𝑤 = 𝑊 → ([(Scalar‘𝑤) / 𝑓](𝑓 ∈ CRing ∧ ∀𝑟 ∈ (Base‘𝑓)∀𝑥 ∈ (Base‘𝑤)∀𝑦 ∈ (Base‘𝑤)[( ·𝑠𝑤) / 𝑠][(.r𝑤) / 𝑡](((𝑟𝑠𝑥)𝑡𝑦) = (𝑟𝑠(𝑥𝑡𝑦)) ∧ (𝑥𝑡(𝑟𝑠𝑦)) = (𝑟𝑠(𝑥𝑡𝑦)))) ↔ (𝐹 ∈ CRing ∧ ∀𝑟𝐵𝑥𝑉𝑦𝑉 (((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦))))))
47 df-assa 20970 . . 3 AssAlg = {𝑤 ∈ (LMod ∩ Ring) ∣ [(Scalar‘𝑤) / 𝑓](𝑓 ∈ CRing ∧ ∀𝑟 ∈ (Base‘𝑓)∀𝑥 ∈ (Base‘𝑤)∀𝑦 ∈ (Base‘𝑤)[( ·𝑠𝑤) / 𝑠][(.r𝑤) / 𝑡](((𝑟𝑠𝑥)𝑡𝑦) = (𝑟𝑠(𝑥𝑡𝑦)) ∧ (𝑥𝑡(𝑟𝑠𝑦)) = (𝑟𝑠(𝑥𝑡𝑦))))}
4846, 47elrab2 3620 . 2 (𝑊 ∈ AssAlg ↔ (𝑊 ∈ (LMod ∩ Ring) ∧ (𝐹 ∈ CRing ∧ ∀𝑟𝐵𝑥𝑉𝑦𝑉 (((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦))))))
49 anass 468 . 2 (((𝑊 ∈ (LMod ∩ Ring) ∧ 𝐹 ∈ CRing) ∧ ∀𝑟𝐵𝑥𝑉𝑦𝑉 (((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦)))) ↔ (𝑊 ∈ (LMod ∩ Ring) ∧ (𝐹 ∈ CRing ∧ ∀𝑟𝐵𝑥𝑉𝑦𝑉 (((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦))))))
50 elin 3899 . . . . 5 (𝑊 ∈ (LMod ∩ Ring) ↔ (𝑊 ∈ LMod ∧ 𝑊 ∈ Ring))
5150anbi1i 623 . . . 4 ((𝑊 ∈ (LMod ∩ Ring) ∧ 𝐹 ∈ CRing) ↔ ((𝑊 ∈ LMod ∧ 𝑊 ∈ Ring) ∧ 𝐹 ∈ CRing))
52 df-3an 1087 . . . 4 ((𝑊 ∈ LMod ∧ 𝑊 ∈ Ring ∧ 𝐹 ∈ CRing) ↔ ((𝑊 ∈ LMod ∧ 𝑊 ∈ Ring) ∧ 𝐹 ∈ CRing))
5351, 52bitr4i 277 . . 3 ((𝑊 ∈ (LMod ∩ Ring) ∧ 𝐹 ∈ CRing) ↔ (𝑊 ∈ LMod ∧ 𝑊 ∈ Ring ∧ 𝐹 ∈ CRing))
5453anbi1i 623 . 2 (((𝑊 ∈ (LMod ∩ Ring) ∧ 𝐹 ∈ CRing) ∧ ∀𝑟𝐵𝑥𝑉𝑦𝑉 (((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦)))) ↔ ((𝑊 ∈ LMod ∧ 𝑊 ∈ Ring ∧ 𝐹 ∈ CRing) ∧ ∀𝑟𝐵𝑥𝑉𝑦𝑉 (((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦)))))
5548, 49, 543bitr2i 298 1 (𝑊 ∈ AssAlg ↔ ((𝑊 ∈ LMod ∧ 𝑊 ∈ Ring ∧ 𝐹 ∈ CRing) ∧ ∀𝑟𝐵𝑥𝑉𝑦𝑉 (((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦)))))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  Vcvv 3422  [wsbc 3711  cin 3882  cfv 6418  (class class class)co 7255  Basecbs 16840  .rcmulr 16889  Scalarcsca 16891   ·𝑠 cvsca 16892  Ringcrg 19698  CRingccrg 19699  LModclmod 20038  AssAlgcasa 20967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-nul 5225
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-iota 6376  df-fv 6426  df-ov 7258  df-assa 20970
This theorem is referenced by:  assalem  20974  assalmod  20977  assaring  20978  assasca  20979  isassad  20981  assapropd  20986
  Copyright terms: Public domain W3C validator