MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isassa Structured version   Visualization version   GIF version

Theorem isassa 21816
Description: The properties of an associative algebra. (Contributed by Mario Carneiro, 29-Dec-2014.) (Revised by SN, 2-Mar-2025.)
Hypotheses
Ref Expression
isassa.v 𝑉 = (Base‘𝑊)
isassa.f 𝐹 = (Scalar‘𝑊)
isassa.b 𝐵 = (Base‘𝐹)
isassa.s · = ( ·𝑠𝑊)
isassa.t × = (.r𝑊)
Assertion
Ref Expression
isassa (𝑊 ∈ AssAlg ↔ ((𝑊 ∈ LMod ∧ 𝑊 ∈ Ring) ∧ ∀𝑟𝐵𝑥𝑉𝑦𝑉 (((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦)))))
Distinct variable groups:   𝑥,𝑟,𝑦   𝐵,𝑟   𝐹,𝑟   𝑉,𝑟,𝑥,𝑦   · ,𝑟,𝑥,𝑦   × ,𝑟,𝑥,𝑦   𝑊,𝑟,𝑥,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem isassa
Dummy variables 𝑓 𝑤 𝑠 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvexd 6891 . . . 4 (𝑤 = 𝑊 → (Scalar‘𝑤) ∈ V)
2 fveq2 6876 . . . . 5 (𝑤 = 𝑊 → (Scalar‘𝑤) = (Scalar‘𝑊))
3 isassa.f . . . . 5 𝐹 = (Scalar‘𝑊)
42, 3eqtr4di 2788 . . . 4 (𝑤 = 𝑊 → (Scalar‘𝑤) = 𝐹)
5 fveq2 6876 . . . . . . 7 (𝑓 = 𝐹 → (Base‘𝑓) = (Base‘𝐹))
6 isassa.b . . . . . . 7 𝐵 = (Base‘𝐹)
75, 6eqtr4di 2788 . . . . . 6 (𝑓 = 𝐹 → (Base‘𝑓) = 𝐵)
87adantl 481 . . . . 5 ((𝑤 = 𝑊𝑓 = 𝐹) → (Base‘𝑓) = 𝐵)
9 fveq2 6876 . . . . . . . 8 (𝑤 = 𝑊 → (Base‘𝑤) = (Base‘𝑊))
10 isassa.v . . . . . . . 8 𝑉 = (Base‘𝑊)
119, 10eqtr4di 2788 . . . . . . 7 (𝑤 = 𝑊 → (Base‘𝑤) = 𝑉)
12 isassa.s . . . . . . . . 9 · = ( ·𝑠𝑊)
13 isassa.t . . . . . . . . 9 × = (.r𝑊)
14 simpr 484 . . . . . . . . . . . 12 ((𝑠 = ·𝑡 = × ) → 𝑡 = × )
15 simpl 482 . . . . . . . . . . . . 13 ((𝑠 = ·𝑡 = × ) → 𝑠 = · )
1615oveqd 7422 . . . . . . . . . . . 12 ((𝑠 = ·𝑡 = × ) → (𝑟𝑠𝑥) = (𝑟 · 𝑥))
17 eqidd 2736 . . . . . . . . . . . 12 ((𝑠 = ·𝑡 = × ) → 𝑦 = 𝑦)
1814, 16, 17oveq123d 7426 . . . . . . . . . . 11 ((𝑠 = ·𝑡 = × ) → ((𝑟𝑠𝑥)𝑡𝑦) = ((𝑟 · 𝑥) × 𝑦))
19 eqidd 2736 . . . . . . . . . . . 12 ((𝑠 = ·𝑡 = × ) → 𝑟 = 𝑟)
2014oveqd 7422 . . . . . . . . . . . 12 ((𝑠 = ·𝑡 = × ) → (𝑥𝑡𝑦) = (𝑥 × 𝑦))
2115, 19, 20oveq123d 7426 . . . . . . . . . . 11 ((𝑠 = ·𝑡 = × ) → (𝑟𝑠(𝑥𝑡𝑦)) = (𝑟 · (𝑥 × 𝑦)))
2218, 21eqeq12d 2751 . . . . . . . . . 10 ((𝑠 = ·𝑡 = × ) → (((𝑟𝑠𝑥)𝑡𝑦) = (𝑟𝑠(𝑥𝑡𝑦)) ↔ ((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦))))
23 eqidd 2736 . . . . . . . . . . . 12 ((𝑠 = ·𝑡 = × ) → 𝑥 = 𝑥)
2415oveqd 7422 . . . . . . . . . . . 12 ((𝑠 = ·𝑡 = × ) → (𝑟𝑠𝑦) = (𝑟 · 𝑦))
2514, 23, 24oveq123d 7426 . . . . . . . . . . 11 ((𝑠 = ·𝑡 = × ) → (𝑥𝑡(𝑟𝑠𝑦)) = (𝑥 × (𝑟 · 𝑦)))
2625, 21eqeq12d 2751 . . . . . . . . . 10 ((𝑠 = ·𝑡 = × ) → ((𝑥𝑡(𝑟𝑠𝑦)) = (𝑟𝑠(𝑥𝑡𝑦)) ↔ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦))))
2722, 26anbi12d 632 . . . . . . . . 9 ((𝑠 = ·𝑡 = × ) → ((((𝑟𝑠𝑥)𝑡𝑦) = (𝑟𝑠(𝑥𝑡𝑦)) ∧ (𝑥𝑡(𝑟𝑠𝑦)) = (𝑟𝑠(𝑥𝑡𝑦))) ↔ (((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦)))))
2812, 13, 27sbcie2s 17180 . . . . . . . 8 (𝑤 = 𝑊 → ([( ·𝑠𝑤) / 𝑠][(.r𝑤) / 𝑡](((𝑟𝑠𝑥)𝑡𝑦) = (𝑟𝑠(𝑥𝑡𝑦)) ∧ (𝑥𝑡(𝑟𝑠𝑦)) = (𝑟𝑠(𝑥𝑡𝑦))) ↔ (((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦)))))
2911, 28raleqbidv 3325 . . . . . . 7 (𝑤 = 𝑊 → (∀𝑦 ∈ (Base‘𝑤)[( ·𝑠𝑤) / 𝑠][(.r𝑤) / 𝑡](((𝑟𝑠𝑥)𝑡𝑦) = (𝑟𝑠(𝑥𝑡𝑦)) ∧ (𝑥𝑡(𝑟𝑠𝑦)) = (𝑟𝑠(𝑥𝑡𝑦))) ↔ ∀𝑦𝑉 (((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦)))))
3011, 29raleqbidv 3325 . . . . . 6 (𝑤 = 𝑊 → (∀𝑥 ∈ (Base‘𝑤)∀𝑦 ∈ (Base‘𝑤)[( ·𝑠𝑤) / 𝑠][(.r𝑤) / 𝑡](((𝑟𝑠𝑥)𝑡𝑦) = (𝑟𝑠(𝑥𝑡𝑦)) ∧ (𝑥𝑡(𝑟𝑠𝑦)) = (𝑟𝑠(𝑥𝑡𝑦))) ↔ ∀𝑥𝑉𝑦𝑉 (((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦)))))
3130adantr 480 . . . . 5 ((𝑤 = 𝑊𝑓 = 𝐹) → (∀𝑥 ∈ (Base‘𝑤)∀𝑦 ∈ (Base‘𝑤)[( ·𝑠𝑤) / 𝑠][(.r𝑤) / 𝑡](((𝑟𝑠𝑥)𝑡𝑦) = (𝑟𝑠(𝑥𝑡𝑦)) ∧ (𝑥𝑡(𝑟𝑠𝑦)) = (𝑟𝑠(𝑥𝑡𝑦))) ↔ ∀𝑥𝑉𝑦𝑉 (((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦)))))
328, 31raleqbidv 3325 . . . 4 ((𝑤 = 𝑊𝑓 = 𝐹) → (∀𝑟 ∈ (Base‘𝑓)∀𝑥 ∈ (Base‘𝑤)∀𝑦 ∈ (Base‘𝑤)[( ·𝑠𝑤) / 𝑠][(.r𝑤) / 𝑡](((𝑟𝑠𝑥)𝑡𝑦) = (𝑟𝑠(𝑥𝑡𝑦)) ∧ (𝑥𝑡(𝑟𝑠𝑦)) = (𝑟𝑠(𝑥𝑡𝑦))) ↔ ∀𝑟𝐵𝑥𝑉𝑦𝑉 (((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦)))))
331, 4, 32sbcied2 3810 . . 3 (𝑤 = 𝑊 → ([(Scalar‘𝑤) / 𝑓]𝑟 ∈ (Base‘𝑓)∀𝑥 ∈ (Base‘𝑤)∀𝑦 ∈ (Base‘𝑤)[( ·𝑠𝑤) / 𝑠][(.r𝑤) / 𝑡](((𝑟𝑠𝑥)𝑡𝑦) = (𝑟𝑠(𝑥𝑡𝑦)) ∧ (𝑥𝑡(𝑟𝑠𝑦)) = (𝑟𝑠(𝑥𝑡𝑦))) ↔ ∀𝑟𝐵𝑥𝑉𝑦𝑉 (((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦)))))
34 df-assa 21813 . . 3 AssAlg = {𝑤 ∈ (LMod ∩ Ring) ∣ [(Scalar‘𝑤) / 𝑓]𝑟 ∈ (Base‘𝑓)∀𝑥 ∈ (Base‘𝑤)∀𝑦 ∈ (Base‘𝑤)[( ·𝑠𝑤) / 𝑠][(.r𝑤) / 𝑡](((𝑟𝑠𝑥)𝑡𝑦) = (𝑟𝑠(𝑥𝑡𝑦)) ∧ (𝑥𝑡(𝑟𝑠𝑦)) = (𝑟𝑠(𝑥𝑡𝑦)))}
3533, 34elrab2 3674 . 2 (𝑊 ∈ AssAlg ↔ (𝑊 ∈ (LMod ∩ Ring) ∧ ∀𝑟𝐵𝑥𝑉𝑦𝑉 (((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦)))))
36 elin 3942 . . 3 (𝑊 ∈ (LMod ∩ Ring) ↔ (𝑊 ∈ LMod ∧ 𝑊 ∈ Ring))
3736anbi1i 624 . 2 ((𝑊 ∈ (LMod ∩ Ring) ∧ ∀𝑟𝐵𝑥𝑉𝑦𝑉 (((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦)))) ↔ ((𝑊 ∈ LMod ∧ 𝑊 ∈ Ring) ∧ ∀𝑟𝐵𝑥𝑉𝑦𝑉 (((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦)))))
3835, 37bitri 275 1 (𝑊 ∈ AssAlg ↔ ((𝑊 ∈ LMod ∧ 𝑊 ∈ Ring) ∧ ∀𝑟𝐵𝑥𝑉𝑦𝑉 (((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦)))))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3051  Vcvv 3459  [wsbc 3765  cin 3925  cfv 6531  (class class class)co 7405  Basecbs 17228  .rcmulr 17272  Scalarcsca 17274   ·𝑠 cvsca 17275  Ringcrg 20193  LModclmod 20817  AssAlgcasa 21810
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-nul 5276
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ne 2933  df-ral 3052  df-rab 3416  df-v 3461  df-sbc 3766  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-iota 6484  df-fv 6539  df-ov 7408  df-assa 21813
This theorem is referenced by:  assalem  21817  assalmod  21820  assaring  21821  isassad  21825  assapropd  21832
  Copyright terms: Public domain W3C validator