Step | Hyp | Ref
| Expression |
1 | | fvexd 6903 |
. . . 4
β’ (π€ = π β (Scalarβπ€) β V) |
2 | | fveq2 6888 |
. . . . 5
β’ (π€ = π β (Scalarβπ€) = (Scalarβπ)) |
3 | | isassa.f |
. . . . 5
β’ πΉ = (Scalarβπ) |
4 | 2, 3 | eqtr4di 2790 |
. . . 4
β’ (π€ = π β (Scalarβπ€) = πΉ) |
5 | | fveq2 6888 |
. . . . . . 7
β’ (π = πΉ β (Baseβπ) = (BaseβπΉ)) |
6 | | isassa.b |
. . . . . . 7
β’ π΅ = (BaseβπΉ) |
7 | 5, 6 | eqtr4di 2790 |
. . . . . 6
β’ (π = πΉ β (Baseβπ) = π΅) |
8 | 7 | adantl 482 |
. . . . 5
β’ ((π€ = π β§ π = πΉ) β (Baseβπ) = π΅) |
9 | | fveq2 6888 |
. . . . . . . 8
β’ (π€ = π β (Baseβπ€) = (Baseβπ)) |
10 | | isassa.v |
. . . . . . . 8
β’ π = (Baseβπ) |
11 | 9, 10 | eqtr4di 2790 |
. . . . . . 7
β’ (π€ = π β (Baseβπ€) = π) |
12 | | isassa.s |
. . . . . . . . 9
β’ Β· = (
Β·π βπ) |
13 | | isassa.t |
. . . . . . . . 9
β’ Γ =
(.rβπ) |
14 | | simpr 485 |
. . . . . . . . . . . 12
β’ ((π = Β· β§ π‘ = Γ ) β π‘ = Γ ) |
15 | | simpl 483 |
. . . . . . . . . . . . 13
β’ ((π = Β· β§ π‘ = Γ ) β π = Β· ) |
16 | 15 | oveqd 7422 |
. . . . . . . . . . . 12
β’ ((π = Β· β§ π‘ = Γ ) β (ππ π₯) = (π Β· π₯)) |
17 | | eqidd 2733 |
. . . . . . . . . . . 12
β’ ((π = Β· β§ π‘ = Γ ) β π¦ = π¦) |
18 | 14, 16, 17 | oveq123d 7426 |
. . . . . . . . . . 11
β’ ((π = Β· β§ π‘ = Γ ) β ((ππ π₯)π‘π¦) = ((π Β· π₯) Γ π¦)) |
19 | | eqidd 2733 |
. . . . . . . . . . . 12
β’ ((π = Β· β§ π‘ = Γ ) β π = π) |
20 | 14 | oveqd 7422 |
. . . . . . . . . . . 12
β’ ((π = Β· β§ π‘ = Γ ) β (π₯π‘π¦) = (π₯ Γ π¦)) |
21 | 15, 19, 20 | oveq123d 7426 |
. . . . . . . . . . 11
β’ ((π = Β· β§ π‘ = Γ ) β (ππ (π₯π‘π¦)) = (π Β· (π₯ Γ π¦))) |
22 | 18, 21 | eqeq12d 2748 |
. . . . . . . . . 10
β’ ((π = Β· β§ π‘ = Γ ) β (((ππ π₯)π‘π¦) = (ππ (π₯π‘π¦)) β ((π Β· π₯) Γ π¦) = (π Β· (π₯ Γ π¦)))) |
23 | | eqidd 2733 |
. . . . . . . . . . . 12
β’ ((π = Β· β§ π‘ = Γ ) β π₯ = π₯) |
24 | 15 | oveqd 7422 |
. . . . . . . . . . . 12
β’ ((π = Β· β§ π‘ = Γ ) β (ππ π¦) = (π Β· π¦)) |
25 | 14, 23, 24 | oveq123d 7426 |
. . . . . . . . . . 11
β’ ((π = Β· β§ π‘ = Γ ) β (π₯π‘(ππ π¦)) = (π₯ Γ (π Β· π¦))) |
26 | 25, 21 | eqeq12d 2748 |
. . . . . . . . . 10
β’ ((π = Β· β§ π‘ = Γ ) β ((π₯π‘(ππ π¦)) = (ππ (π₯π‘π¦)) β (π₯ Γ (π Β· π¦)) = (π Β· (π₯ Γ π¦)))) |
27 | 22, 26 | anbi12d 631 |
. . . . . . . . 9
β’ ((π = Β· β§ π‘ = Γ ) β ((((ππ π₯)π‘π¦) = (ππ (π₯π‘π¦)) β§ (π₯π‘(ππ π¦)) = (ππ (π₯π‘π¦))) β (((π Β· π₯) Γ π¦) = (π Β· (π₯ Γ π¦)) β§ (π₯ Γ (π Β· π¦)) = (π Β· (π₯ Γ π¦))))) |
28 | 12, 13, 27 | sbcie2s 17090 |
. . . . . . . 8
β’ (π€ = π β ([(
Β·π βπ€) / π ][(.rβπ€) / π‘](((ππ π₯)π‘π¦) = (ππ (π₯π‘π¦)) β§ (π₯π‘(ππ π¦)) = (ππ (π₯π‘π¦))) β (((π Β· π₯) Γ π¦) = (π Β· (π₯ Γ π¦)) β§ (π₯ Γ (π Β· π¦)) = (π Β· (π₯ Γ π¦))))) |
29 | 11, 28 | raleqbidv 3342 |
. . . . . . 7
β’ (π€ = π β (βπ¦ β (Baseβπ€)[(
Β·π βπ€) / π ][(.rβπ€) / π‘](((ππ π₯)π‘π¦) = (ππ (π₯π‘π¦)) β§ (π₯π‘(ππ π¦)) = (ππ (π₯π‘π¦))) β βπ¦ β π (((π Β· π₯) Γ π¦) = (π Β· (π₯ Γ π¦)) β§ (π₯ Γ (π Β· π¦)) = (π Β· (π₯ Γ π¦))))) |
30 | 11, 29 | raleqbidv 3342 |
. . . . . 6
β’ (π€ = π β (βπ₯ β (Baseβπ€)βπ¦ β (Baseβπ€)[(
Β·π βπ€) / π ][(.rβπ€) / π‘](((ππ π₯)π‘π¦) = (ππ (π₯π‘π¦)) β§ (π₯π‘(ππ π¦)) = (ππ (π₯π‘π¦))) β βπ₯ β π βπ¦ β π (((π Β· π₯) Γ π¦) = (π Β· (π₯ Γ π¦)) β§ (π₯ Γ (π Β· π¦)) = (π Β· (π₯ Γ π¦))))) |
31 | 30 | adantr 481 |
. . . . 5
β’ ((π€ = π β§ π = πΉ) β (βπ₯ β (Baseβπ€)βπ¦ β (Baseβπ€)[(
Β·π βπ€) / π ][(.rβπ€) / π‘](((ππ π₯)π‘π¦) = (ππ (π₯π‘π¦)) β§ (π₯π‘(ππ π¦)) = (ππ (π₯π‘π¦))) β βπ₯ β π βπ¦ β π (((π Β· π₯) Γ π¦) = (π Β· (π₯ Γ π¦)) β§ (π₯ Γ (π Β· π¦)) = (π Β· (π₯ Γ π¦))))) |
32 | 8, 31 | raleqbidv 3342 |
. . . 4
β’ ((π€ = π β§ π = πΉ) β (βπ β (Baseβπ)βπ₯ β (Baseβπ€)βπ¦ β (Baseβπ€)[(
Β·π βπ€) / π ][(.rβπ€) / π‘](((ππ π₯)π‘π¦) = (ππ (π₯π‘π¦)) β§ (π₯π‘(ππ π¦)) = (ππ (π₯π‘π¦))) β βπ β π΅ βπ₯ β π βπ¦ β π (((π Β· π₯) Γ π¦) = (π Β· (π₯ Γ π¦)) β§ (π₯ Γ (π Β· π¦)) = (π Β· (π₯ Γ π¦))))) |
33 | 1, 4, 32 | sbcied2 3823 |
. . 3
β’ (π€ = π β ([(Scalarβπ€) / π]βπ β (Baseβπ)βπ₯ β (Baseβπ€)βπ¦ β (Baseβπ€)[(
Β·π βπ€) / π ][(.rβπ€) / π‘](((ππ π₯)π‘π¦) = (ππ (π₯π‘π¦)) β§ (π₯π‘(ππ π¦)) = (ππ (π₯π‘π¦))) β βπ β π΅ βπ₯ β π βπ¦ β π (((π Β· π₯) Γ π¦) = (π Β· (π₯ Γ π¦)) β§ (π₯ Γ (π Β· π¦)) = (π Β· (π₯ Γ π¦))))) |
34 | | df-assa 21399 |
. . 3
β’ AssAlg =
{π€ β (LMod β© Ring)
β£ [(Scalarβπ€) / π]βπ β (Baseβπ)βπ₯ β (Baseβπ€)βπ¦ β (Baseβπ€)[(
Β·π βπ€) / π ][(.rβπ€) / π‘](((ππ π₯)π‘π¦) = (ππ (π₯π‘π¦)) β§ (π₯π‘(ππ π¦)) = (ππ (π₯π‘π¦)))} |
35 | 33, 34 | elrab2 3685 |
. 2
β’ (π β AssAlg β (π β (LMod β© Ring) β§
βπ β π΅ βπ₯ β π βπ¦ β π (((π Β· π₯) Γ π¦) = (π Β· (π₯ Γ π¦)) β§ (π₯ Γ (π Β· π¦)) = (π Β· (π₯ Γ π¦))))) |
36 | | elin 3963 |
. . 3
β’ (π β (LMod β© Ring) β
(π β LMod β§ π β Ring)) |
37 | 36 | anbi1i 624 |
. 2
β’ ((π β (LMod β© Ring) β§
βπ β π΅ βπ₯ β π βπ¦ β π (((π Β· π₯) Γ π¦) = (π Β· (π₯ Γ π¦)) β§ (π₯ Γ (π Β· π¦)) = (π Β· (π₯ Γ π¦)))) β ((π β LMod β§ π β Ring) β§ βπ β π΅ βπ₯ β π βπ¦ β π (((π Β· π₯) Γ π¦) = (π Β· (π₯ Γ π¦)) β§ (π₯ Γ (π Β· π¦)) = (π Β· (π₯ Γ π¦))))) |
38 | 35, 37 | bitri 274 |
1
β’ (π β AssAlg β ((π β LMod β§ π β Ring) β§
βπ β π΅ βπ₯ β π βπ¦ β π (((π Β· π₯) Γ π¦) = (π Β· (π₯ Γ π¦)) β§ (π₯ Γ (π Β· π¦)) = (π Β· (π₯ Γ π¦))))) |