MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isassa Structured version   Visualization version   GIF version

Theorem isassa 21063
Description: The properties of an associative algebra. (Contributed by Mario Carneiro, 29-Dec-2014.)
Hypotheses
Ref Expression
isassa.v 𝑉 = (Base‘𝑊)
isassa.f 𝐹 = (Scalar‘𝑊)
isassa.b 𝐵 = (Base‘𝐹)
isassa.s · = ( ·𝑠𝑊)
isassa.t × = (.r𝑊)
Assertion
Ref Expression
isassa (𝑊 ∈ AssAlg ↔ ((𝑊 ∈ LMod ∧ 𝑊 ∈ Ring ∧ 𝐹 ∈ CRing) ∧ ∀𝑟𝐵𝑥𝑉𝑦𝑉 (((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦)))))
Distinct variable groups:   𝑥,𝑟,𝑦   𝐵,𝑟   𝐹,𝑟   𝑉,𝑟,𝑥,𝑦   · ,𝑟,𝑥,𝑦   × ,𝑟,𝑥,𝑦   𝑊,𝑟,𝑥,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem isassa
Dummy variables 𝑓 𝑤 𝑠 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvexd 6789 . . . 4 (𝑤 = 𝑊 → (Scalar‘𝑤) ∈ V)
2 fveq2 6774 . . . . 5 (𝑤 = 𝑊 → (Scalar‘𝑤) = (Scalar‘𝑊))
3 isassa.f . . . . 5 𝐹 = (Scalar‘𝑊)
42, 3eqtr4di 2796 . . . 4 (𝑤 = 𝑊 → (Scalar‘𝑤) = 𝐹)
5 simpr 485 . . . . . 6 ((𝑤 = 𝑊𝑓 = 𝐹) → 𝑓 = 𝐹)
65eleq1d 2823 . . . . 5 ((𝑤 = 𝑊𝑓 = 𝐹) → (𝑓 ∈ CRing ↔ 𝐹 ∈ CRing))
75fveq2d 6778 . . . . . . 7 ((𝑤 = 𝑊𝑓 = 𝐹) → (Base‘𝑓) = (Base‘𝐹))
8 isassa.b . . . . . . 7 𝐵 = (Base‘𝐹)
97, 8eqtr4di 2796 . . . . . 6 ((𝑤 = 𝑊𝑓 = 𝐹) → (Base‘𝑓) = 𝐵)
10 fveq2 6774 . . . . . . . . 9 (𝑤 = 𝑊 → (Base‘𝑤) = (Base‘𝑊))
11 isassa.v . . . . . . . . 9 𝑉 = (Base‘𝑊)
1210, 11eqtr4di 2796 . . . . . . . 8 (𝑤 = 𝑊 → (Base‘𝑤) = 𝑉)
13 fvexd 6789 . . . . . . . . . 10 (𝑤 = 𝑊 → ( ·𝑠𝑤) ∈ V)
14 fvexd 6789 . . . . . . . . . . 11 ((𝑤 = 𝑊𝑠 = ( ·𝑠𝑤)) → (.r𝑤) ∈ V)
15 simpr 485 . . . . . . . . . . . . . . 15 (((𝑤 = 𝑊𝑠 = ( ·𝑠𝑤)) ∧ 𝑡 = (.r𝑤)) → 𝑡 = (.r𝑤))
16 fveq2 6774 . . . . . . . . . . . . . . . . 17 (𝑤 = 𝑊 → (.r𝑤) = (.r𝑊))
1716ad2antrr 723 . . . . . . . . . . . . . . . 16 (((𝑤 = 𝑊𝑠 = ( ·𝑠𝑤)) ∧ 𝑡 = (.r𝑤)) → (.r𝑤) = (.r𝑊))
18 isassa.t . . . . . . . . . . . . . . . 16 × = (.r𝑊)
1917, 18eqtr4di 2796 . . . . . . . . . . . . . . 15 (((𝑤 = 𝑊𝑠 = ( ·𝑠𝑤)) ∧ 𝑡 = (.r𝑤)) → (.r𝑤) = × )
2015, 19eqtrd 2778 . . . . . . . . . . . . . 14 (((𝑤 = 𝑊𝑠 = ( ·𝑠𝑤)) ∧ 𝑡 = (.r𝑤)) → 𝑡 = × )
21 simplr 766 . . . . . . . . . . . . . . . 16 (((𝑤 = 𝑊𝑠 = ( ·𝑠𝑤)) ∧ 𝑡 = (.r𝑤)) → 𝑠 = ( ·𝑠𝑤))
22 fveq2 6774 . . . . . . . . . . . . . . . . . 18 (𝑤 = 𝑊 → ( ·𝑠𝑤) = ( ·𝑠𝑊))
2322ad2antrr 723 . . . . . . . . . . . . . . . . 17 (((𝑤 = 𝑊𝑠 = ( ·𝑠𝑤)) ∧ 𝑡 = (.r𝑤)) → ( ·𝑠𝑤) = ( ·𝑠𝑊))
24 isassa.s . . . . . . . . . . . . . . . . 17 · = ( ·𝑠𝑊)
2523, 24eqtr4di 2796 . . . . . . . . . . . . . . . 16 (((𝑤 = 𝑊𝑠 = ( ·𝑠𝑤)) ∧ 𝑡 = (.r𝑤)) → ( ·𝑠𝑤) = · )
2621, 25eqtrd 2778 . . . . . . . . . . . . . . 15 (((𝑤 = 𝑊𝑠 = ( ·𝑠𝑤)) ∧ 𝑡 = (.r𝑤)) → 𝑠 = · )
2726oveqd 7292 . . . . . . . . . . . . . 14 (((𝑤 = 𝑊𝑠 = ( ·𝑠𝑤)) ∧ 𝑡 = (.r𝑤)) → (𝑟𝑠𝑥) = (𝑟 · 𝑥))
28 eqidd 2739 . . . . . . . . . . . . . 14 (((𝑤 = 𝑊𝑠 = ( ·𝑠𝑤)) ∧ 𝑡 = (.r𝑤)) → 𝑦 = 𝑦)
2920, 27, 28oveq123d 7296 . . . . . . . . . . . . 13 (((𝑤 = 𝑊𝑠 = ( ·𝑠𝑤)) ∧ 𝑡 = (.r𝑤)) → ((𝑟𝑠𝑥)𝑡𝑦) = ((𝑟 · 𝑥) × 𝑦))
30 eqidd 2739 . . . . . . . . . . . . . 14 (((𝑤 = 𝑊𝑠 = ( ·𝑠𝑤)) ∧ 𝑡 = (.r𝑤)) → 𝑟 = 𝑟)
3120oveqd 7292 . . . . . . . . . . . . . 14 (((𝑤 = 𝑊𝑠 = ( ·𝑠𝑤)) ∧ 𝑡 = (.r𝑤)) → (𝑥𝑡𝑦) = (𝑥 × 𝑦))
3226, 30, 31oveq123d 7296 . . . . . . . . . . . . 13 (((𝑤 = 𝑊𝑠 = ( ·𝑠𝑤)) ∧ 𝑡 = (.r𝑤)) → (𝑟𝑠(𝑥𝑡𝑦)) = (𝑟 · (𝑥 × 𝑦)))
3329, 32eqeq12d 2754 . . . . . . . . . . . 12 (((𝑤 = 𝑊𝑠 = ( ·𝑠𝑤)) ∧ 𝑡 = (.r𝑤)) → (((𝑟𝑠𝑥)𝑡𝑦) = (𝑟𝑠(𝑥𝑡𝑦)) ↔ ((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦))))
34 eqidd 2739 . . . . . . . . . . . . . 14 (((𝑤 = 𝑊𝑠 = ( ·𝑠𝑤)) ∧ 𝑡 = (.r𝑤)) → 𝑥 = 𝑥)
3526oveqd 7292 . . . . . . . . . . . . . 14 (((𝑤 = 𝑊𝑠 = ( ·𝑠𝑤)) ∧ 𝑡 = (.r𝑤)) → (𝑟𝑠𝑦) = (𝑟 · 𝑦))
3620, 34, 35oveq123d 7296 . . . . . . . . . . . . 13 (((𝑤 = 𝑊𝑠 = ( ·𝑠𝑤)) ∧ 𝑡 = (.r𝑤)) → (𝑥𝑡(𝑟𝑠𝑦)) = (𝑥 × (𝑟 · 𝑦)))
3736, 32eqeq12d 2754 . . . . . . . . . . . 12 (((𝑤 = 𝑊𝑠 = ( ·𝑠𝑤)) ∧ 𝑡 = (.r𝑤)) → ((𝑥𝑡(𝑟𝑠𝑦)) = (𝑟𝑠(𝑥𝑡𝑦)) ↔ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦))))
3833, 37anbi12d 631 . . . . . . . . . . 11 (((𝑤 = 𝑊𝑠 = ( ·𝑠𝑤)) ∧ 𝑡 = (.r𝑤)) → ((((𝑟𝑠𝑥)𝑡𝑦) = (𝑟𝑠(𝑥𝑡𝑦)) ∧ (𝑥𝑡(𝑟𝑠𝑦)) = (𝑟𝑠(𝑥𝑡𝑦))) ↔ (((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦)))))
3914, 38sbcied 3761 . . . . . . . . . 10 ((𝑤 = 𝑊𝑠 = ( ·𝑠𝑤)) → ([(.r𝑤) / 𝑡](((𝑟𝑠𝑥)𝑡𝑦) = (𝑟𝑠(𝑥𝑡𝑦)) ∧ (𝑥𝑡(𝑟𝑠𝑦)) = (𝑟𝑠(𝑥𝑡𝑦))) ↔ (((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦)))))
4013, 39sbcied 3761 . . . . . . . . 9 (𝑤 = 𝑊 → ([( ·𝑠𝑤) / 𝑠][(.r𝑤) / 𝑡](((𝑟𝑠𝑥)𝑡𝑦) = (𝑟𝑠(𝑥𝑡𝑦)) ∧ (𝑥𝑡(𝑟𝑠𝑦)) = (𝑟𝑠(𝑥𝑡𝑦))) ↔ (((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦)))))
4112, 40raleqbidv 3336 . . . . . . . 8 (𝑤 = 𝑊 → (∀𝑦 ∈ (Base‘𝑤)[( ·𝑠𝑤) / 𝑠][(.r𝑤) / 𝑡](((𝑟𝑠𝑥)𝑡𝑦) = (𝑟𝑠(𝑥𝑡𝑦)) ∧ (𝑥𝑡(𝑟𝑠𝑦)) = (𝑟𝑠(𝑥𝑡𝑦))) ↔ ∀𝑦𝑉 (((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦)))))
4212, 41raleqbidv 3336 . . . . . . 7 (𝑤 = 𝑊 → (∀𝑥 ∈ (Base‘𝑤)∀𝑦 ∈ (Base‘𝑤)[( ·𝑠𝑤) / 𝑠][(.r𝑤) / 𝑡](((𝑟𝑠𝑥)𝑡𝑦) = (𝑟𝑠(𝑥𝑡𝑦)) ∧ (𝑥𝑡(𝑟𝑠𝑦)) = (𝑟𝑠(𝑥𝑡𝑦))) ↔ ∀𝑥𝑉𝑦𝑉 (((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦)))))
4342adantr 481 . . . . . 6 ((𝑤 = 𝑊𝑓 = 𝐹) → (∀𝑥 ∈ (Base‘𝑤)∀𝑦 ∈ (Base‘𝑤)[( ·𝑠𝑤) / 𝑠][(.r𝑤) / 𝑡](((𝑟𝑠𝑥)𝑡𝑦) = (𝑟𝑠(𝑥𝑡𝑦)) ∧ (𝑥𝑡(𝑟𝑠𝑦)) = (𝑟𝑠(𝑥𝑡𝑦))) ↔ ∀𝑥𝑉𝑦𝑉 (((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦)))))
449, 43raleqbidv 3336 . . . . 5 ((𝑤 = 𝑊𝑓 = 𝐹) → (∀𝑟 ∈ (Base‘𝑓)∀𝑥 ∈ (Base‘𝑤)∀𝑦 ∈ (Base‘𝑤)[( ·𝑠𝑤) / 𝑠][(.r𝑤) / 𝑡](((𝑟𝑠𝑥)𝑡𝑦) = (𝑟𝑠(𝑥𝑡𝑦)) ∧ (𝑥𝑡(𝑟𝑠𝑦)) = (𝑟𝑠(𝑥𝑡𝑦))) ↔ ∀𝑟𝐵𝑥𝑉𝑦𝑉 (((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦)))))
456, 44anbi12d 631 . . . 4 ((𝑤 = 𝑊𝑓 = 𝐹) → ((𝑓 ∈ CRing ∧ ∀𝑟 ∈ (Base‘𝑓)∀𝑥 ∈ (Base‘𝑤)∀𝑦 ∈ (Base‘𝑤)[( ·𝑠𝑤) / 𝑠][(.r𝑤) / 𝑡](((𝑟𝑠𝑥)𝑡𝑦) = (𝑟𝑠(𝑥𝑡𝑦)) ∧ (𝑥𝑡(𝑟𝑠𝑦)) = (𝑟𝑠(𝑥𝑡𝑦)))) ↔ (𝐹 ∈ CRing ∧ ∀𝑟𝐵𝑥𝑉𝑦𝑉 (((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦))))))
461, 4, 45sbcied2 3763 . . 3 (𝑤 = 𝑊 → ([(Scalar‘𝑤) / 𝑓](𝑓 ∈ CRing ∧ ∀𝑟 ∈ (Base‘𝑓)∀𝑥 ∈ (Base‘𝑤)∀𝑦 ∈ (Base‘𝑤)[( ·𝑠𝑤) / 𝑠][(.r𝑤) / 𝑡](((𝑟𝑠𝑥)𝑡𝑦) = (𝑟𝑠(𝑥𝑡𝑦)) ∧ (𝑥𝑡(𝑟𝑠𝑦)) = (𝑟𝑠(𝑥𝑡𝑦)))) ↔ (𝐹 ∈ CRing ∧ ∀𝑟𝐵𝑥𝑉𝑦𝑉 (((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦))))))
47 df-assa 21060 . . 3 AssAlg = {𝑤 ∈ (LMod ∩ Ring) ∣ [(Scalar‘𝑤) / 𝑓](𝑓 ∈ CRing ∧ ∀𝑟 ∈ (Base‘𝑓)∀𝑥 ∈ (Base‘𝑤)∀𝑦 ∈ (Base‘𝑤)[( ·𝑠𝑤) / 𝑠][(.r𝑤) / 𝑡](((𝑟𝑠𝑥)𝑡𝑦) = (𝑟𝑠(𝑥𝑡𝑦)) ∧ (𝑥𝑡(𝑟𝑠𝑦)) = (𝑟𝑠(𝑥𝑡𝑦))))}
4846, 47elrab2 3627 . 2 (𝑊 ∈ AssAlg ↔ (𝑊 ∈ (LMod ∩ Ring) ∧ (𝐹 ∈ CRing ∧ ∀𝑟𝐵𝑥𝑉𝑦𝑉 (((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦))))))
49 anass 469 . 2 (((𝑊 ∈ (LMod ∩ Ring) ∧ 𝐹 ∈ CRing) ∧ ∀𝑟𝐵𝑥𝑉𝑦𝑉 (((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦)))) ↔ (𝑊 ∈ (LMod ∩ Ring) ∧ (𝐹 ∈ CRing ∧ ∀𝑟𝐵𝑥𝑉𝑦𝑉 (((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦))))))
50 elin 3903 . . . . 5 (𝑊 ∈ (LMod ∩ Ring) ↔ (𝑊 ∈ LMod ∧ 𝑊 ∈ Ring))
5150anbi1i 624 . . . 4 ((𝑊 ∈ (LMod ∩ Ring) ∧ 𝐹 ∈ CRing) ↔ ((𝑊 ∈ LMod ∧ 𝑊 ∈ Ring) ∧ 𝐹 ∈ CRing))
52 df-3an 1088 . . . 4 ((𝑊 ∈ LMod ∧ 𝑊 ∈ Ring ∧ 𝐹 ∈ CRing) ↔ ((𝑊 ∈ LMod ∧ 𝑊 ∈ Ring) ∧ 𝐹 ∈ CRing))
5351, 52bitr4i 277 . . 3 ((𝑊 ∈ (LMod ∩ Ring) ∧ 𝐹 ∈ CRing) ↔ (𝑊 ∈ LMod ∧ 𝑊 ∈ Ring ∧ 𝐹 ∈ CRing))
5453anbi1i 624 . 2 (((𝑊 ∈ (LMod ∩ Ring) ∧ 𝐹 ∈ CRing) ∧ ∀𝑟𝐵𝑥𝑉𝑦𝑉 (((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦)))) ↔ ((𝑊 ∈ LMod ∧ 𝑊 ∈ Ring ∧ 𝐹 ∈ CRing) ∧ ∀𝑟𝐵𝑥𝑉𝑦𝑉 (((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦)))))
5548, 49, 543bitr2i 299 1 (𝑊 ∈ AssAlg ↔ ((𝑊 ∈ LMod ∧ 𝑊 ∈ Ring ∧ 𝐹 ∈ CRing) ∧ ∀𝑟𝐵𝑥𝑉𝑦𝑉 (((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦)))))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wral 3064  Vcvv 3432  [wsbc 3716  cin 3886  cfv 6433  (class class class)co 7275  Basecbs 16912  .rcmulr 16963  Scalarcsca 16965   ·𝑠 cvsca 16966  Ringcrg 19783  CRingccrg 19784  LModclmod 20123  AssAlgcasa 21057
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-nul 5230
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-iota 6391  df-fv 6441  df-ov 7278  df-assa 21060
This theorem is referenced by:  assalem  21064  assalmod  21067  assaring  21068  assasca  21069  isassad  21071  assapropd  21076
  Copyright terms: Public domain W3C validator