MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isassa Structured version   Visualization version   GIF version

Theorem isassa 21402
Description: The properties of an associative algebra. (Contributed by Mario Carneiro, 29-Dec-2014.) (Revised by SN, 2-Mar-2025.)
Hypotheses
Ref Expression
isassa.v 𝑉 = (Baseβ€˜π‘Š)
isassa.f 𝐹 = (Scalarβ€˜π‘Š)
isassa.b 𝐡 = (Baseβ€˜πΉ)
isassa.s Β· = ( ·𝑠 β€˜π‘Š)
isassa.t Γ— = (.rβ€˜π‘Š)
Assertion
Ref Expression
isassa (π‘Š ∈ AssAlg ↔ ((π‘Š ∈ LMod ∧ π‘Š ∈ Ring) ∧ βˆ€π‘Ÿ ∈ 𝐡 βˆ€π‘₯ ∈ 𝑉 βˆ€π‘¦ ∈ 𝑉 (((π‘Ÿ Β· π‘₯) Γ— 𝑦) = (π‘Ÿ Β· (π‘₯ Γ— 𝑦)) ∧ (π‘₯ Γ— (π‘Ÿ Β· 𝑦)) = (π‘Ÿ Β· (π‘₯ Γ— 𝑦)))))
Distinct variable groups:   π‘₯,π‘Ÿ,𝑦   𝐡,π‘Ÿ   𝐹,π‘Ÿ   𝑉,π‘Ÿ,π‘₯,𝑦   Β· ,π‘Ÿ,π‘₯,𝑦   Γ— ,π‘Ÿ,π‘₯,𝑦   π‘Š,π‘Ÿ,π‘₯,𝑦
Allowed substitution hints:   𝐡(π‘₯,𝑦)   𝐹(π‘₯,𝑦)

Proof of Theorem isassa
Dummy variables 𝑓 𝑀 𝑠 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvexd 6903 . . . 4 (𝑀 = π‘Š β†’ (Scalarβ€˜π‘€) ∈ V)
2 fveq2 6888 . . . . 5 (𝑀 = π‘Š β†’ (Scalarβ€˜π‘€) = (Scalarβ€˜π‘Š))
3 isassa.f . . . . 5 𝐹 = (Scalarβ€˜π‘Š)
42, 3eqtr4di 2790 . . . 4 (𝑀 = π‘Š β†’ (Scalarβ€˜π‘€) = 𝐹)
5 fveq2 6888 . . . . . . 7 (𝑓 = 𝐹 β†’ (Baseβ€˜π‘“) = (Baseβ€˜πΉ))
6 isassa.b . . . . . . 7 𝐡 = (Baseβ€˜πΉ)
75, 6eqtr4di 2790 . . . . . 6 (𝑓 = 𝐹 β†’ (Baseβ€˜π‘“) = 𝐡)
87adantl 482 . . . . 5 ((𝑀 = π‘Š ∧ 𝑓 = 𝐹) β†’ (Baseβ€˜π‘“) = 𝐡)
9 fveq2 6888 . . . . . . . 8 (𝑀 = π‘Š β†’ (Baseβ€˜π‘€) = (Baseβ€˜π‘Š))
10 isassa.v . . . . . . . 8 𝑉 = (Baseβ€˜π‘Š)
119, 10eqtr4di 2790 . . . . . . 7 (𝑀 = π‘Š β†’ (Baseβ€˜π‘€) = 𝑉)
12 isassa.s . . . . . . . . 9 Β· = ( ·𝑠 β€˜π‘Š)
13 isassa.t . . . . . . . . 9 Γ— = (.rβ€˜π‘Š)
14 simpr 485 . . . . . . . . . . . 12 ((𝑠 = Β· ∧ 𝑑 = Γ— ) β†’ 𝑑 = Γ— )
15 simpl 483 . . . . . . . . . . . . 13 ((𝑠 = Β· ∧ 𝑑 = Γ— ) β†’ 𝑠 = Β· )
1615oveqd 7422 . . . . . . . . . . . 12 ((𝑠 = Β· ∧ 𝑑 = Γ— ) β†’ (π‘Ÿπ‘ π‘₯) = (π‘Ÿ Β· π‘₯))
17 eqidd 2733 . . . . . . . . . . . 12 ((𝑠 = Β· ∧ 𝑑 = Γ— ) β†’ 𝑦 = 𝑦)
1814, 16, 17oveq123d 7426 . . . . . . . . . . 11 ((𝑠 = Β· ∧ 𝑑 = Γ— ) β†’ ((π‘Ÿπ‘ π‘₯)𝑑𝑦) = ((π‘Ÿ Β· π‘₯) Γ— 𝑦))
19 eqidd 2733 . . . . . . . . . . . 12 ((𝑠 = Β· ∧ 𝑑 = Γ— ) β†’ π‘Ÿ = π‘Ÿ)
2014oveqd 7422 . . . . . . . . . . . 12 ((𝑠 = Β· ∧ 𝑑 = Γ— ) β†’ (π‘₯𝑑𝑦) = (π‘₯ Γ— 𝑦))
2115, 19, 20oveq123d 7426 . . . . . . . . . . 11 ((𝑠 = Β· ∧ 𝑑 = Γ— ) β†’ (π‘Ÿπ‘ (π‘₯𝑑𝑦)) = (π‘Ÿ Β· (π‘₯ Γ— 𝑦)))
2218, 21eqeq12d 2748 . . . . . . . . . 10 ((𝑠 = Β· ∧ 𝑑 = Γ— ) β†’ (((π‘Ÿπ‘ π‘₯)𝑑𝑦) = (π‘Ÿπ‘ (π‘₯𝑑𝑦)) ↔ ((π‘Ÿ Β· π‘₯) Γ— 𝑦) = (π‘Ÿ Β· (π‘₯ Γ— 𝑦))))
23 eqidd 2733 . . . . . . . . . . . 12 ((𝑠 = Β· ∧ 𝑑 = Γ— ) β†’ π‘₯ = π‘₯)
2415oveqd 7422 . . . . . . . . . . . 12 ((𝑠 = Β· ∧ 𝑑 = Γ— ) β†’ (π‘Ÿπ‘ π‘¦) = (π‘Ÿ Β· 𝑦))
2514, 23, 24oveq123d 7426 . . . . . . . . . . 11 ((𝑠 = Β· ∧ 𝑑 = Γ— ) β†’ (π‘₯𝑑(π‘Ÿπ‘ π‘¦)) = (π‘₯ Γ— (π‘Ÿ Β· 𝑦)))
2625, 21eqeq12d 2748 . . . . . . . . . 10 ((𝑠 = Β· ∧ 𝑑 = Γ— ) β†’ ((π‘₯𝑑(π‘Ÿπ‘ π‘¦)) = (π‘Ÿπ‘ (π‘₯𝑑𝑦)) ↔ (π‘₯ Γ— (π‘Ÿ Β· 𝑦)) = (π‘Ÿ Β· (π‘₯ Γ— 𝑦))))
2722, 26anbi12d 631 . . . . . . . . 9 ((𝑠 = Β· ∧ 𝑑 = Γ— ) β†’ ((((π‘Ÿπ‘ π‘₯)𝑑𝑦) = (π‘Ÿπ‘ (π‘₯𝑑𝑦)) ∧ (π‘₯𝑑(π‘Ÿπ‘ π‘¦)) = (π‘Ÿπ‘ (π‘₯𝑑𝑦))) ↔ (((π‘Ÿ Β· π‘₯) Γ— 𝑦) = (π‘Ÿ Β· (π‘₯ Γ— 𝑦)) ∧ (π‘₯ Γ— (π‘Ÿ Β· 𝑦)) = (π‘Ÿ Β· (π‘₯ Γ— 𝑦)))))
2812, 13, 27sbcie2s 17090 . . . . . . . 8 (𝑀 = π‘Š β†’ ([( ·𝑠 β€˜π‘€) / 𝑠][(.rβ€˜π‘€) / 𝑑](((π‘Ÿπ‘ π‘₯)𝑑𝑦) = (π‘Ÿπ‘ (π‘₯𝑑𝑦)) ∧ (π‘₯𝑑(π‘Ÿπ‘ π‘¦)) = (π‘Ÿπ‘ (π‘₯𝑑𝑦))) ↔ (((π‘Ÿ Β· π‘₯) Γ— 𝑦) = (π‘Ÿ Β· (π‘₯ Γ— 𝑦)) ∧ (π‘₯ Γ— (π‘Ÿ Β· 𝑦)) = (π‘Ÿ Β· (π‘₯ Γ— 𝑦)))))
2911, 28raleqbidv 3342 . . . . . . 7 (𝑀 = π‘Š β†’ (βˆ€π‘¦ ∈ (Baseβ€˜π‘€)[( ·𝑠 β€˜π‘€) / 𝑠][(.rβ€˜π‘€) / 𝑑](((π‘Ÿπ‘ π‘₯)𝑑𝑦) = (π‘Ÿπ‘ (π‘₯𝑑𝑦)) ∧ (π‘₯𝑑(π‘Ÿπ‘ π‘¦)) = (π‘Ÿπ‘ (π‘₯𝑑𝑦))) ↔ βˆ€π‘¦ ∈ 𝑉 (((π‘Ÿ Β· π‘₯) Γ— 𝑦) = (π‘Ÿ Β· (π‘₯ Γ— 𝑦)) ∧ (π‘₯ Γ— (π‘Ÿ Β· 𝑦)) = (π‘Ÿ Β· (π‘₯ Γ— 𝑦)))))
3011, 29raleqbidv 3342 . . . . . 6 (𝑀 = π‘Š β†’ (βˆ€π‘₯ ∈ (Baseβ€˜π‘€)βˆ€π‘¦ ∈ (Baseβ€˜π‘€)[( ·𝑠 β€˜π‘€) / 𝑠][(.rβ€˜π‘€) / 𝑑](((π‘Ÿπ‘ π‘₯)𝑑𝑦) = (π‘Ÿπ‘ (π‘₯𝑑𝑦)) ∧ (π‘₯𝑑(π‘Ÿπ‘ π‘¦)) = (π‘Ÿπ‘ (π‘₯𝑑𝑦))) ↔ βˆ€π‘₯ ∈ 𝑉 βˆ€π‘¦ ∈ 𝑉 (((π‘Ÿ Β· π‘₯) Γ— 𝑦) = (π‘Ÿ Β· (π‘₯ Γ— 𝑦)) ∧ (π‘₯ Γ— (π‘Ÿ Β· 𝑦)) = (π‘Ÿ Β· (π‘₯ Γ— 𝑦)))))
3130adantr 481 . . . . 5 ((𝑀 = π‘Š ∧ 𝑓 = 𝐹) β†’ (βˆ€π‘₯ ∈ (Baseβ€˜π‘€)βˆ€π‘¦ ∈ (Baseβ€˜π‘€)[( ·𝑠 β€˜π‘€) / 𝑠][(.rβ€˜π‘€) / 𝑑](((π‘Ÿπ‘ π‘₯)𝑑𝑦) = (π‘Ÿπ‘ (π‘₯𝑑𝑦)) ∧ (π‘₯𝑑(π‘Ÿπ‘ π‘¦)) = (π‘Ÿπ‘ (π‘₯𝑑𝑦))) ↔ βˆ€π‘₯ ∈ 𝑉 βˆ€π‘¦ ∈ 𝑉 (((π‘Ÿ Β· π‘₯) Γ— 𝑦) = (π‘Ÿ Β· (π‘₯ Γ— 𝑦)) ∧ (π‘₯ Γ— (π‘Ÿ Β· 𝑦)) = (π‘Ÿ Β· (π‘₯ Γ— 𝑦)))))
328, 31raleqbidv 3342 . . . 4 ((𝑀 = π‘Š ∧ 𝑓 = 𝐹) β†’ (βˆ€π‘Ÿ ∈ (Baseβ€˜π‘“)βˆ€π‘₯ ∈ (Baseβ€˜π‘€)βˆ€π‘¦ ∈ (Baseβ€˜π‘€)[( ·𝑠 β€˜π‘€) / 𝑠][(.rβ€˜π‘€) / 𝑑](((π‘Ÿπ‘ π‘₯)𝑑𝑦) = (π‘Ÿπ‘ (π‘₯𝑑𝑦)) ∧ (π‘₯𝑑(π‘Ÿπ‘ π‘¦)) = (π‘Ÿπ‘ (π‘₯𝑑𝑦))) ↔ βˆ€π‘Ÿ ∈ 𝐡 βˆ€π‘₯ ∈ 𝑉 βˆ€π‘¦ ∈ 𝑉 (((π‘Ÿ Β· π‘₯) Γ— 𝑦) = (π‘Ÿ Β· (π‘₯ Γ— 𝑦)) ∧ (π‘₯ Γ— (π‘Ÿ Β· 𝑦)) = (π‘Ÿ Β· (π‘₯ Γ— 𝑦)))))
331, 4, 32sbcied2 3823 . . 3 (𝑀 = π‘Š β†’ ([(Scalarβ€˜π‘€) / 𝑓]βˆ€π‘Ÿ ∈ (Baseβ€˜π‘“)βˆ€π‘₯ ∈ (Baseβ€˜π‘€)βˆ€π‘¦ ∈ (Baseβ€˜π‘€)[( ·𝑠 β€˜π‘€) / 𝑠][(.rβ€˜π‘€) / 𝑑](((π‘Ÿπ‘ π‘₯)𝑑𝑦) = (π‘Ÿπ‘ (π‘₯𝑑𝑦)) ∧ (π‘₯𝑑(π‘Ÿπ‘ π‘¦)) = (π‘Ÿπ‘ (π‘₯𝑑𝑦))) ↔ βˆ€π‘Ÿ ∈ 𝐡 βˆ€π‘₯ ∈ 𝑉 βˆ€π‘¦ ∈ 𝑉 (((π‘Ÿ Β· π‘₯) Γ— 𝑦) = (π‘Ÿ Β· (π‘₯ Γ— 𝑦)) ∧ (π‘₯ Γ— (π‘Ÿ Β· 𝑦)) = (π‘Ÿ Β· (π‘₯ Γ— 𝑦)))))
34 df-assa 21399 . . 3 AssAlg = {𝑀 ∈ (LMod ∩ Ring) ∣ [(Scalarβ€˜π‘€) / 𝑓]βˆ€π‘Ÿ ∈ (Baseβ€˜π‘“)βˆ€π‘₯ ∈ (Baseβ€˜π‘€)βˆ€π‘¦ ∈ (Baseβ€˜π‘€)[( ·𝑠 β€˜π‘€) / 𝑠][(.rβ€˜π‘€) / 𝑑](((π‘Ÿπ‘ π‘₯)𝑑𝑦) = (π‘Ÿπ‘ (π‘₯𝑑𝑦)) ∧ (π‘₯𝑑(π‘Ÿπ‘ π‘¦)) = (π‘Ÿπ‘ (π‘₯𝑑𝑦)))}
3533, 34elrab2 3685 . 2 (π‘Š ∈ AssAlg ↔ (π‘Š ∈ (LMod ∩ Ring) ∧ βˆ€π‘Ÿ ∈ 𝐡 βˆ€π‘₯ ∈ 𝑉 βˆ€π‘¦ ∈ 𝑉 (((π‘Ÿ Β· π‘₯) Γ— 𝑦) = (π‘Ÿ Β· (π‘₯ Γ— 𝑦)) ∧ (π‘₯ Γ— (π‘Ÿ Β· 𝑦)) = (π‘Ÿ Β· (π‘₯ Γ— 𝑦)))))
36 elin 3963 . . 3 (π‘Š ∈ (LMod ∩ Ring) ↔ (π‘Š ∈ LMod ∧ π‘Š ∈ Ring))
3736anbi1i 624 . 2 ((π‘Š ∈ (LMod ∩ Ring) ∧ βˆ€π‘Ÿ ∈ 𝐡 βˆ€π‘₯ ∈ 𝑉 βˆ€π‘¦ ∈ 𝑉 (((π‘Ÿ Β· π‘₯) Γ— 𝑦) = (π‘Ÿ Β· (π‘₯ Γ— 𝑦)) ∧ (π‘₯ Γ— (π‘Ÿ Β· 𝑦)) = (π‘Ÿ Β· (π‘₯ Γ— 𝑦)))) ↔ ((π‘Š ∈ LMod ∧ π‘Š ∈ Ring) ∧ βˆ€π‘Ÿ ∈ 𝐡 βˆ€π‘₯ ∈ 𝑉 βˆ€π‘¦ ∈ 𝑉 (((π‘Ÿ Β· π‘₯) Γ— 𝑦) = (π‘Ÿ Β· (π‘₯ Γ— 𝑦)) ∧ (π‘₯ Γ— (π‘Ÿ Β· 𝑦)) = (π‘Ÿ Β· (π‘₯ Γ— 𝑦)))))
3835, 37bitri 274 1 (π‘Š ∈ AssAlg ↔ ((π‘Š ∈ LMod ∧ π‘Š ∈ Ring) ∧ βˆ€π‘Ÿ ∈ 𝐡 βˆ€π‘₯ ∈ 𝑉 βˆ€π‘¦ ∈ 𝑉 (((π‘Ÿ Β· π‘₯) Γ— 𝑦) = (π‘Ÿ Β· (π‘₯ Γ— 𝑦)) ∧ (π‘₯ Γ— (π‘Ÿ Β· 𝑦)) = (π‘Ÿ Β· (π‘₯ Γ— 𝑦)))))
Colors of variables: wff setvar class
Syntax hints:   ↔ wb 205   ∧ wa 396   = wceq 1541   ∈ wcel 2106  βˆ€wral 3061  Vcvv 3474  [wsbc 3776   ∩ cin 3946  β€˜cfv 6540  (class class class)co 7405  Basecbs 17140  .rcmulr 17194  Scalarcsca 17196   ·𝑠 cvsca 17197  Ringcrg 20049  LModclmod 20463  AssAlgcasa 21396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-nul 5305
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ne 2941  df-ral 3062  df-rab 3433  df-v 3476  df-sbc 3777  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-iota 6492  df-fv 6548  df-ov 7408  df-assa 21399
This theorem is referenced by:  assalem  21403  assalmod  21406  assaring  21407  isassad  21410  assapropd  21417
  Copyright terms: Public domain W3C validator