Step | Hyp | Ref
| Expression |
1 | | fvexd 6935 |
. . . 4
⊢ (𝑤 = 𝑊 → (Scalar‘𝑤) ∈ V) |
2 | | fveq2 6920 |
. . . . 5
⊢ (𝑤 = 𝑊 → (Scalar‘𝑤) = (Scalar‘𝑊)) |
3 | | isassa.f |
. . . . 5
⊢ 𝐹 = (Scalar‘𝑊) |
4 | 2, 3 | eqtr4di 2798 |
. . . 4
⊢ (𝑤 = 𝑊 → (Scalar‘𝑤) = 𝐹) |
5 | | fveq2 6920 |
. . . . . . 7
⊢ (𝑓 = 𝐹 → (Base‘𝑓) = (Base‘𝐹)) |
6 | | isassa.b |
. . . . . . 7
⊢ 𝐵 = (Base‘𝐹) |
7 | 5, 6 | eqtr4di 2798 |
. . . . . 6
⊢ (𝑓 = 𝐹 → (Base‘𝑓) = 𝐵) |
8 | 7 | adantl 481 |
. . . . 5
⊢ ((𝑤 = 𝑊 ∧ 𝑓 = 𝐹) → (Base‘𝑓) = 𝐵) |
9 | | fveq2 6920 |
. . . . . . . 8
⊢ (𝑤 = 𝑊 → (Base‘𝑤) = (Base‘𝑊)) |
10 | | isassa.v |
. . . . . . . 8
⊢ 𝑉 = (Base‘𝑊) |
11 | 9, 10 | eqtr4di 2798 |
. . . . . . 7
⊢ (𝑤 = 𝑊 → (Base‘𝑤) = 𝑉) |
12 | | isassa.s |
. . . . . . . . 9
⊢ · = (
·𝑠 ‘𝑊) |
13 | | isassa.t |
. . . . . . . . 9
⊢ × =
(.r‘𝑊) |
14 | | simpr 484 |
. . . . . . . . . . . 12
⊢ ((𝑠 = · ∧ 𝑡 = × ) → 𝑡 = × ) |
15 | | simpl 482 |
. . . . . . . . . . . . 13
⊢ ((𝑠 = · ∧ 𝑡 = × ) → 𝑠 = · ) |
16 | 15 | oveqd 7465 |
. . . . . . . . . . . 12
⊢ ((𝑠 = · ∧ 𝑡 = × ) → (𝑟𝑠𝑥) = (𝑟 · 𝑥)) |
17 | | eqidd 2741 |
. . . . . . . . . . . 12
⊢ ((𝑠 = · ∧ 𝑡 = × ) → 𝑦 = 𝑦) |
18 | 14, 16, 17 | oveq123d 7469 |
. . . . . . . . . . 11
⊢ ((𝑠 = · ∧ 𝑡 = × ) → ((𝑟𝑠𝑥)𝑡𝑦) = ((𝑟 · 𝑥) × 𝑦)) |
19 | | eqidd 2741 |
. . . . . . . . . . . 12
⊢ ((𝑠 = · ∧ 𝑡 = × ) → 𝑟 = 𝑟) |
20 | 14 | oveqd 7465 |
. . . . . . . . . . . 12
⊢ ((𝑠 = · ∧ 𝑡 = × ) → (𝑥𝑡𝑦) = (𝑥 × 𝑦)) |
21 | 15, 19, 20 | oveq123d 7469 |
. . . . . . . . . . 11
⊢ ((𝑠 = · ∧ 𝑡 = × ) → (𝑟𝑠(𝑥𝑡𝑦)) = (𝑟 · (𝑥 × 𝑦))) |
22 | 18, 21 | eqeq12d 2756 |
. . . . . . . . . 10
⊢ ((𝑠 = · ∧ 𝑡 = × ) → (((𝑟𝑠𝑥)𝑡𝑦) = (𝑟𝑠(𝑥𝑡𝑦)) ↔ ((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)))) |
23 | | eqidd 2741 |
. . . . . . . . . . . 12
⊢ ((𝑠 = · ∧ 𝑡 = × ) → 𝑥 = 𝑥) |
24 | 15 | oveqd 7465 |
. . . . . . . . . . . 12
⊢ ((𝑠 = · ∧ 𝑡 = × ) → (𝑟𝑠𝑦) = (𝑟 · 𝑦)) |
25 | 14, 23, 24 | oveq123d 7469 |
. . . . . . . . . . 11
⊢ ((𝑠 = · ∧ 𝑡 = × ) → (𝑥𝑡(𝑟𝑠𝑦)) = (𝑥 × (𝑟 · 𝑦))) |
26 | 25, 21 | eqeq12d 2756 |
. . . . . . . . . 10
⊢ ((𝑠 = · ∧ 𝑡 = × ) → ((𝑥𝑡(𝑟𝑠𝑦)) = (𝑟𝑠(𝑥𝑡𝑦)) ↔ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦)))) |
27 | 22, 26 | anbi12d 631 |
. . . . . . . . 9
⊢ ((𝑠 = · ∧ 𝑡 = × ) → ((((𝑟𝑠𝑥)𝑡𝑦) = (𝑟𝑠(𝑥𝑡𝑦)) ∧ (𝑥𝑡(𝑟𝑠𝑦)) = (𝑟𝑠(𝑥𝑡𝑦))) ↔ (((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦))))) |
28 | 12, 13, 27 | sbcie2s 17208 |
. . . . . . . 8
⊢ (𝑤 = 𝑊 → ([(
·𝑠 ‘𝑤) / 𝑠][(.r‘𝑤) / 𝑡](((𝑟𝑠𝑥)𝑡𝑦) = (𝑟𝑠(𝑥𝑡𝑦)) ∧ (𝑥𝑡(𝑟𝑠𝑦)) = (𝑟𝑠(𝑥𝑡𝑦))) ↔ (((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦))))) |
29 | 11, 28 | raleqbidv 3354 |
. . . . . . 7
⊢ (𝑤 = 𝑊 → (∀𝑦 ∈ (Base‘𝑤)[(
·𝑠 ‘𝑤) / 𝑠][(.r‘𝑤) / 𝑡](((𝑟𝑠𝑥)𝑡𝑦) = (𝑟𝑠(𝑥𝑡𝑦)) ∧ (𝑥𝑡(𝑟𝑠𝑦)) = (𝑟𝑠(𝑥𝑡𝑦))) ↔ ∀𝑦 ∈ 𝑉 (((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦))))) |
30 | 11, 29 | raleqbidv 3354 |
. . . . . 6
⊢ (𝑤 = 𝑊 → (∀𝑥 ∈ (Base‘𝑤)∀𝑦 ∈ (Base‘𝑤)[(
·𝑠 ‘𝑤) / 𝑠][(.r‘𝑤) / 𝑡](((𝑟𝑠𝑥)𝑡𝑦) = (𝑟𝑠(𝑥𝑡𝑦)) ∧ (𝑥𝑡(𝑟𝑠𝑦)) = (𝑟𝑠(𝑥𝑡𝑦))) ↔ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦))))) |
31 | 30 | adantr 480 |
. . . . 5
⊢ ((𝑤 = 𝑊 ∧ 𝑓 = 𝐹) → (∀𝑥 ∈ (Base‘𝑤)∀𝑦 ∈ (Base‘𝑤)[(
·𝑠 ‘𝑤) / 𝑠][(.r‘𝑤) / 𝑡](((𝑟𝑠𝑥)𝑡𝑦) = (𝑟𝑠(𝑥𝑡𝑦)) ∧ (𝑥𝑡(𝑟𝑠𝑦)) = (𝑟𝑠(𝑥𝑡𝑦))) ↔ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦))))) |
32 | 8, 31 | raleqbidv 3354 |
. . . 4
⊢ ((𝑤 = 𝑊 ∧ 𝑓 = 𝐹) → (∀𝑟 ∈ (Base‘𝑓)∀𝑥 ∈ (Base‘𝑤)∀𝑦 ∈ (Base‘𝑤)[(
·𝑠 ‘𝑤) / 𝑠][(.r‘𝑤) / 𝑡](((𝑟𝑠𝑥)𝑡𝑦) = (𝑟𝑠(𝑥𝑡𝑦)) ∧ (𝑥𝑡(𝑟𝑠𝑦)) = (𝑟𝑠(𝑥𝑡𝑦))) ↔ ∀𝑟 ∈ 𝐵 ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦))))) |
33 | 1, 4, 32 | sbcied2 3852 |
. . 3
⊢ (𝑤 = 𝑊 → ([(Scalar‘𝑤) / 𝑓]∀𝑟 ∈ (Base‘𝑓)∀𝑥 ∈ (Base‘𝑤)∀𝑦 ∈ (Base‘𝑤)[(
·𝑠 ‘𝑤) / 𝑠][(.r‘𝑤) / 𝑡](((𝑟𝑠𝑥)𝑡𝑦) = (𝑟𝑠(𝑥𝑡𝑦)) ∧ (𝑥𝑡(𝑟𝑠𝑦)) = (𝑟𝑠(𝑥𝑡𝑦))) ↔ ∀𝑟 ∈ 𝐵 ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦))))) |
34 | | df-assa 21896 |
. . 3
⊢ AssAlg =
{𝑤 ∈ (LMod ∩ Ring)
∣ [(Scalar‘𝑤) / 𝑓]∀𝑟 ∈ (Base‘𝑓)∀𝑥 ∈ (Base‘𝑤)∀𝑦 ∈ (Base‘𝑤)[(
·𝑠 ‘𝑤) / 𝑠][(.r‘𝑤) / 𝑡](((𝑟𝑠𝑥)𝑡𝑦) = (𝑟𝑠(𝑥𝑡𝑦)) ∧ (𝑥𝑡(𝑟𝑠𝑦)) = (𝑟𝑠(𝑥𝑡𝑦)))} |
35 | 33, 34 | elrab2 3711 |
. 2
⊢ (𝑊 ∈ AssAlg ↔ (𝑊 ∈ (LMod ∩ Ring) ∧
∀𝑟 ∈ 𝐵 ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦))))) |
36 | | elin 3992 |
. . 3
⊢ (𝑊 ∈ (LMod ∩ Ring) ↔
(𝑊 ∈ LMod ∧ 𝑊 ∈ Ring)) |
37 | 36 | anbi1i 623 |
. 2
⊢ ((𝑊 ∈ (LMod ∩ Ring) ∧
∀𝑟 ∈ 𝐵 ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦)))) ↔ ((𝑊 ∈ LMod ∧ 𝑊 ∈ Ring) ∧ ∀𝑟 ∈ 𝐵 ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦))))) |
38 | 35, 37 | bitri 275 |
1
⊢ (𝑊 ∈ AssAlg ↔ ((𝑊 ∈ LMod ∧ 𝑊 ∈ Ring) ∧
∀𝑟 ∈ 𝐵 ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦))))) |