![]() |
Metamath
Proof Explorer Theorem List (p. 215 of 491) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30946) |
![]() (30947-32469) |
![]() (32470-49035) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | cnfldaddOLD 21401 | Obsolete version of cnfldadd 21387 as of 27-Apr-2025. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ + = (+g‘ℂfld) | ||
Theorem | cnfldmulOLD 21402 | Obsolete version of cnfldmul 21389 as of 27-Apr-2025. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ · = (.r‘ℂfld) | ||
Theorem | cnfldcjOLD 21403 | Obsolete version of cnfldcj 21390 as of 27-Apr-2025. (Contributed by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) (Revised by Thierry Arnoux, 17-Dec-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ∗ = (*𝑟‘ℂfld) | ||
Theorem | cnfldtsetOLD 21404 | Obsolete version of cnfldtset 21391 as of 27-Apr-2025. (Contributed by Mario Carneiro, 14-Aug-2015.) (Revised by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (MetOpen‘(abs ∘ − )) = (TopSet‘ℂfld) | ||
Theorem | cnfldleOLD 21405 | Obsolete version of cnfldle 21392 as of 27-Apr-2025. (Contributed by Mario Carneiro, 14-Aug-2015.) (Revised by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ≤ = (le‘ℂfld) | ||
Theorem | cnflddsOLD 21406 | Obsolete version of cnfldds 21393 as of 27-Apr-2025. (Contributed by Mario Carneiro, 14-Aug-2015.) (Revised by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (abs ∘ − ) = (dist‘ℂfld) | ||
Theorem | cnfldunifOLD 21407 | Obsolete version of cnfldunif 21394 as of 27-Apr-2025. (Contributed by Thierry Arnoux, 17-Dec-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (metUnif‘(abs ∘ − )) = (UnifSet‘ℂfld) | ||
Theorem | cnfldfunOLD 21408 | Obsolete version of cnfldfun 21395 as of 27-Apr-2025. (Contributed by AV, 18-Nov-2021.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ Fun ℂfld | ||
Theorem | cnfldfunALTOLD 21409 | Obsolete version of cnfldfunALT 21396 as of 27-Apr-2025. (Contributed by AV, 14-Nov-2021.) (Proof shortened by AV, 11-Nov-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ Fun ℂfld | ||
Theorem | cnfldfunALTOLDOLD 21410 | Obsolete version of cnfldfunALTOLD 21409 as of 10-Nov-2024. The field of complex numbers is a function. (Contributed by AV, 14-Nov-2021.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ Fun ℂfld | ||
Theorem | xrsstr 21411 | The extended real structure is a structure. (Contributed by Mario Carneiro, 21-Aug-2015.) |
⊢ ℝ*𝑠 Struct 〈1, ;12〉 | ||
Theorem | xrsex 21412 | The extended real structure is a set. (Contributed by Mario Carneiro, 21-Aug-2015.) |
⊢ ℝ*𝑠 ∈ V | ||
Theorem | xrsbas 21413 | The base set of the extended real number structure. (Contributed by Mario Carneiro, 21-Aug-2015.) |
⊢ ℝ* = (Base‘ℝ*𝑠) | ||
Theorem | xrsadd 21414 | The addition operation of the extended real number structure. (Contributed by Mario Carneiro, 21-Aug-2015.) |
⊢ +𝑒 = (+g‘ℝ*𝑠) | ||
Theorem | xrsmul 21415 | The multiplication operation of the extended real number structure. (Contributed by Mario Carneiro, 21-Aug-2015.) |
⊢ ·e = (.r‘ℝ*𝑠) | ||
Theorem | xrstset 21416 | The topology component of the extended real number structure. (Contributed by Mario Carneiro, 21-Aug-2015.) |
⊢ (ordTop‘ ≤ ) = (TopSet‘ℝ*𝑠) | ||
Theorem | xrsle 21417 | The ordering of the extended real number structure. (Contributed by Mario Carneiro, 21-Aug-2015.) |
⊢ ≤ = (le‘ℝ*𝑠) | ||
Theorem | cncrng 21418 | The complex numbers form a commutative ring. (Contributed by Mario Carneiro, 8-Jan-2015.) Avoid ax-mulf 11232. (Revised by GG, 31-Mar-2025.) |
⊢ ℂfld ∈ CRing | ||
Theorem | cncrngOLD 21419 | Obsolete version of cncrng 21418 as of 30-Apr-2025. (Contributed by Mario Carneiro, 8-Jan-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ℂfld ∈ CRing | ||
Theorem | cnring 21420 | The complex numbers form a ring. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
⊢ ℂfld ∈ Ring | ||
Theorem | xrsmcmn 21421 | The "multiplicative group" of the extended reals is a commutative monoid (even though the "additive group" is not a semigroup, see xrsmgmdifsgrp 21438.) (Contributed by Mario Carneiro, 21-Aug-2015.) |
⊢ (mulGrp‘ℝ*𝑠) ∈ CMnd | ||
Theorem | cnfld0 21422 | Zero is the zero element of the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
⊢ 0 = (0g‘ℂfld) | ||
Theorem | cnfld1 21423 | One is the unity element of the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.) Avoid ax-mulf 11232. (Revised by GG, 31-Mar-2025.) |
⊢ 1 = (1r‘ℂfld) | ||
Theorem | cnfld1OLD 21424 | Obsolete version of cnfld1 21423 as of 30-Apr-2025. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 1 = (1r‘ℂfld) | ||
Theorem | cnfldneg 21425 | The additive inverse in the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
⊢ (𝑋 ∈ ℂ → ((invg‘ℂfld)‘𝑋) = -𝑋) | ||
Theorem | cnfldplusf 21426 | The functionalized addition operation of the field of complex numbers. (Contributed by Mario Carneiro, 2-Sep-2015.) |
⊢ + = (+𝑓‘ℂfld) | ||
Theorem | cnfldsub 21427 | The subtraction operator in the field of complex numbers. (Contributed by Mario Carneiro, 15-Jun-2015.) |
⊢ − = (-g‘ℂfld) | ||
Theorem | cndrng 21428 | The complex numbers form a division ring. (Contributed by Stefan O'Rear, 27-Nov-2014.) Avoid ax-mulf 11232. (Revised by GG, 30-Apr-2025.) |
⊢ ℂfld ∈ DivRing | ||
Theorem | cndrngOLD 21429 | Obsolete version of cndrng 21428 as of 30-Apr-2025. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ℂfld ∈ DivRing | ||
Theorem | cnflddiv 21430 | The division operation in the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 2-Dec-2014.) Avoid ax-mulf 11232. (Revised by GG, 30-Apr-2025.) |
⊢ / = (/r‘ℂfld) | ||
Theorem | cnflddivOLD 21431 | Obsolete version of cnflddiv 21430 as of 30-Apr-2025. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 2-Dec-2014.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ / = (/r‘ℂfld) | ||
Theorem | cnfldinv 21432 | The multiplicative inverse in the field of complex numbers. (Contributed by Mario Carneiro, 4-Dec-2014.) |
⊢ ((𝑋 ∈ ℂ ∧ 𝑋 ≠ 0) → ((invr‘ℂfld)‘𝑋) = (1 / 𝑋)) | ||
Theorem | cnfldmulg 21433 | The group multiple function in the field of complex numbers. (Contributed by Mario Carneiro, 14-Jun-2015.) |
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℂ) → (𝐴(.g‘ℂfld)𝐵) = (𝐴 · 𝐵)) | ||
Theorem | cnfldexp 21434 | The exponentiation operator in the field of complex numbers (for nonnegative exponents). (Contributed by Mario Carneiro, 15-Jun-2015.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℕ0) → (𝐵(.g‘(mulGrp‘ℂfld))𝐴) = (𝐴↑𝐵)) | ||
Theorem | cnsrng 21435 | The complex numbers form a *-ring. (Contributed by Mario Carneiro, 6-Oct-2015.) |
⊢ ℂfld ∈ *-Ring | ||
Theorem | xrsmgm 21436 | The "additive group" of the extended reals is a magma. (Contributed by AV, 30-Jan-2020.) |
⊢ ℝ*𝑠 ∈ Mgm | ||
Theorem | xrsnsgrp 21437 | The "additive group" of the extended reals is not a semigroup. (Contributed by AV, 30-Jan-2020.) |
⊢ ℝ*𝑠 ∉ Smgrp | ||
Theorem | xrsmgmdifsgrp 21438 | The "additive group" of the extended reals is a magma but not a semigroup, and therefore also not a monoid nor a group, in contrast to the "multiplicative group", see xrsmcmn 21421. (Contributed by AV, 30-Jan-2020.) |
⊢ ℝ*𝑠 ∈ (Mgm ∖ Smgrp) | ||
Theorem | xrs1mnd 21439 | The extended real numbers, restricted to ℝ* ∖ {-∞}, form an additive monoid - in contrast to the full structure, see xrsmgmdifsgrp 21438. (Contributed by Mario Carneiro, 27-Nov-2014.) |
⊢ 𝑅 = (ℝ*𝑠 ↾s (ℝ* ∖ {-∞})) ⇒ ⊢ 𝑅 ∈ Mnd | ||
Theorem | xrs10 21440 | The zero of the extended real number monoid. (Contributed by Mario Carneiro, 21-Aug-2015.) |
⊢ 𝑅 = (ℝ*𝑠 ↾s (ℝ* ∖ {-∞})) ⇒ ⊢ 0 = (0g‘𝑅) | ||
Theorem | xrs1cmn 21441 | The extended real numbers restricted to ℝ* ∖ {-∞} form a commutative monoid. They are not a group because 1 + +∞ = 2 + +∞ even though 1 ≠ 2. (Contributed by Mario Carneiro, 27-Nov-2014.) |
⊢ 𝑅 = (ℝ*𝑠 ↾s (ℝ* ∖ {-∞})) ⇒ ⊢ 𝑅 ∈ CMnd | ||
Theorem | xrge0subm 21442 | The nonnegative extended real numbers are a submonoid of the nonnegative-infinite extended reals. (Contributed by Mario Carneiro, 21-Aug-2015.) |
⊢ 𝑅 = (ℝ*𝑠 ↾s (ℝ* ∖ {-∞})) ⇒ ⊢ (0[,]+∞) ∈ (SubMnd‘𝑅) | ||
Theorem | xrge0cmn 21443 | The nonnegative extended real numbers are a monoid. (Contributed by Mario Carneiro, 30-Aug-2015.) |
⊢ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ CMnd | ||
Theorem | xrsds 21444* | The metric of the extended real number structure. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ 𝐷 = (dist‘ℝ*𝑠) ⇒ ⊢ 𝐷 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥 ≤ 𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦))) | ||
Theorem | xrsdsval 21445 | The metric of the extended real number structure. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ 𝐷 = (dist‘ℝ*𝑠) ⇒ ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴𝐷𝐵) = if(𝐴 ≤ 𝐵, (𝐵 +𝑒 -𝑒𝐴), (𝐴 +𝑒 -𝑒𝐵))) | ||
Theorem | xrsdsreval 21446 | The metric of the extended real number structure coincides with the real number metric on the reals. (Contributed by Mario Carneiro, 3-Sep-2015.) |
⊢ 𝐷 = (dist‘ℝ*𝑠) ⇒ ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐷𝐵) = (abs‘(𝐴 − 𝐵))) | ||
Theorem | xrsdsreclblem 21447 | Lemma for xrsdsreclb 21448. (Contributed by Mario Carneiro, 3-Sep-2015.) |
⊢ 𝐷 = (dist‘ℝ*𝑠) ⇒ ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≠ 𝐵) ∧ 𝐴 ≤ 𝐵) → ((𝐵 +𝑒 -𝑒𝐴) ∈ ℝ → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))) | ||
Theorem | xrsdsreclb 21448 | The metric of the extended real number structure is only real when both arguments are real. (Contributed by Mario Carneiro, 3-Sep-2015.) |
⊢ 𝐷 = (dist‘ℝ*𝑠) ⇒ ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≠ 𝐵) → ((𝐴𝐷𝐵) ∈ ℝ ↔ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))) | ||
Theorem | cnsubmlem 21449* | Lemma for nn0subm 21457 and friends. (Contributed by Mario Carneiro, 18-Jun-2015.) |
⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ ℂ) & ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥 + 𝑦) ∈ 𝐴) & ⊢ 0 ∈ 𝐴 ⇒ ⊢ 𝐴 ∈ (SubMnd‘ℂfld) | ||
Theorem | cnsubglem 21450* | Lemma for resubdrg 21643 and friends. (Contributed by Mario Carneiro, 4-Dec-2014.) |
⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ ℂ) & ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥 + 𝑦) ∈ 𝐴) & ⊢ (𝑥 ∈ 𝐴 → -𝑥 ∈ 𝐴) & ⊢ 𝐵 ∈ 𝐴 ⇒ ⊢ 𝐴 ∈ (SubGrp‘ℂfld) | ||
Theorem | cnsubrglem 21451* | Lemma for resubdrg 21643 and friends. (Contributed by Mario Carneiro, 4-Dec-2014.) Avoid ax-mulf 11232. (Revised by GG, 30-Apr-2025.) |
⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ ℂ) & ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥 + 𝑦) ∈ 𝐴) & ⊢ (𝑥 ∈ 𝐴 → -𝑥 ∈ 𝐴) & ⊢ 1 ∈ 𝐴 & ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥 · 𝑦) ∈ 𝐴) ⇒ ⊢ 𝐴 ∈ (SubRing‘ℂfld) | ||
Theorem | cnsubrglemOLD 21452* | Obsolete version of cnsubrglem 21451 as of 30-Apr-2025. (Contributed by Mario Carneiro, 4-Dec-2014.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ ℂ) & ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥 + 𝑦) ∈ 𝐴) & ⊢ (𝑥 ∈ 𝐴 → -𝑥 ∈ 𝐴) & ⊢ 1 ∈ 𝐴 & ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥 · 𝑦) ∈ 𝐴) ⇒ ⊢ 𝐴 ∈ (SubRing‘ℂfld) | ||
Theorem | cnsubdrglem 21453* | Lemma for resubdrg 21643 and friends. (Contributed by Mario Carneiro, 4-Dec-2014.) |
⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ ℂ) & ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥 + 𝑦) ∈ 𝐴) & ⊢ (𝑥 ∈ 𝐴 → -𝑥 ∈ 𝐴) & ⊢ 1 ∈ 𝐴 & ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥 · 𝑦) ∈ 𝐴) & ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ≠ 0) → (1 / 𝑥) ∈ 𝐴) ⇒ ⊢ (𝐴 ∈ (SubRing‘ℂfld) ∧ (ℂfld ↾s 𝐴) ∈ DivRing) | ||
Theorem | qsubdrg 21454 | The rational numbers form a division subring of the complex numbers. (Contributed by Mario Carneiro, 4-Dec-2014.) |
⊢ (ℚ ∈ (SubRing‘ℂfld) ∧ (ℂfld ↾s ℚ) ∈ DivRing) | ||
Theorem | zsubrg 21455 | The integers form a subring of the complex numbers. (Contributed by Mario Carneiro, 4-Dec-2014.) |
⊢ ℤ ∈ (SubRing‘ℂfld) | ||
Theorem | gzsubrg 21456 | The gaussian integers form a subring of the complex numbers. (Contributed by Mario Carneiro, 4-Dec-2014.) |
⊢ ℤ[i] ∈ (SubRing‘ℂfld) | ||
Theorem | nn0subm 21457 | The nonnegative integers form a submonoid of the complex numbers. (Contributed by Mario Carneiro, 18-Jun-2015.) |
⊢ ℕ0 ∈ (SubMnd‘ℂfld) | ||
Theorem | rege0subm 21458 | The nonnegative reals form a submonoid of the complex numbers. (Contributed by Mario Carneiro, 20-Jun-2015.) |
⊢ (0[,)+∞) ∈ (SubMnd‘ℂfld) | ||
Theorem | absabv 21459 | The regular absolute value function on the complex numbers is in fact an absolute value under our definition. (Contributed by Mario Carneiro, 4-Dec-2014.) |
⊢ abs ∈ (AbsVal‘ℂfld) | ||
Theorem | zsssubrg 21460 | The integers are a subset of any subring of the complex numbers. (Contributed by Mario Carneiro, 15-Oct-2015.) |
⊢ (𝑅 ∈ (SubRing‘ℂfld) → ℤ ⊆ 𝑅) | ||
Theorem | qsssubdrg 21461 | The rational numbers are a subset of any subfield of the complex numbers. (Contributed by Mario Carneiro, 15-Oct-2015.) |
⊢ ((𝑅 ∈ (SubRing‘ℂfld) ∧ (ℂfld ↾s 𝑅) ∈ DivRing) → ℚ ⊆ 𝑅) | ||
Theorem | cnsubrg 21462 | There are no subrings of the complex numbers strictly between ℝ and ℂ. (Contributed by Mario Carneiro, 15-Oct-2015.) |
⊢ ((𝑅 ∈ (SubRing‘ℂfld) ∧ ℝ ⊆ 𝑅) → 𝑅 ∈ {ℝ, ℂ}) | ||
Theorem | cnmgpabl 21463 | The unit group of the complex numbers is an abelian group. (Contributed by Mario Carneiro, 21-Jun-2015.) |
⊢ 𝑀 = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) ⇒ ⊢ 𝑀 ∈ Abel | ||
Theorem | cnmgpid 21464 | The group identity element of nonzero complex number multiplication is one. (Contributed by Steve Rodriguez, 23-Feb-2007.) (Revised by AV, 26-Aug-2021.) |
⊢ 𝑀 = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) ⇒ ⊢ (0g‘𝑀) = 1 | ||
Theorem | cnmsubglem 21465* | Lemma for rpmsubg 21466 and friends. (Contributed by Mario Carneiro, 21-Jun-2015.) |
⊢ 𝑀 = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) & ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ ℂ) & ⊢ (𝑥 ∈ 𝐴 → 𝑥 ≠ 0) & ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥 · 𝑦) ∈ 𝐴) & ⊢ 1 ∈ 𝐴 & ⊢ (𝑥 ∈ 𝐴 → (1 / 𝑥) ∈ 𝐴) ⇒ ⊢ 𝐴 ∈ (SubGrp‘𝑀) | ||
Theorem | rpmsubg 21466 | The positive reals form a multiplicative subgroup of the complex numbers. (Contributed by Mario Carneiro, 21-Jun-2015.) |
⊢ 𝑀 = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) ⇒ ⊢ ℝ+ ∈ (SubGrp‘𝑀) | ||
Theorem | gzrngunitlem 21467 | Lemma for gzrngunit 21468. (Contributed by Mario Carneiro, 4-Dec-2014.) |
⊢ 𝑍 = (ℂfld ↾s ℤ[i]) ⇒ ⊢ (𝐴 ∈ (Unit‘𝑍) → 1 ≤ (abs‘𝐴)) | ||
Theorem | gzrngunit 21468 | The units on ℤ[i] are the gaussian integers with norm 1. (Contributed by Mario Carneiro, 4-Dec-2014.) |
⊢ 𝑍 = (ℂfld ↾s ℤ[i]) ⇒ ⊢ (𝐴 ∈ (Unit‘𝑍) ↔ (𝐴 ∈ ℤ[i] ∧ (abs‘𝐴) = 1)) | ||
Theorem | gsumfsum 21469* | Relate a group sum on ℂfld to a finite sum on the complex numbers. (Contributed by Mario Carneiro, 28-Dec-2014.) |
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → (ℂfld Σg (𝑘 ∈ 𝐴 ↦ 𝐵)) = Σ𝑘 ∈ 𝐴 𝐵) | ||
Theorem | regsumfsum 21470* | Relate a group sum on (ℂfld ↾s ℝ) to a finite sum on the reals. Cf. gsumfsum 21469. (Contributed by Thierry Arnoux, 7-Sep-2018.) |
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → ((ℂfld ↾s ℝ) Σg (𝑘 ∈ 𝐴 ↦ 𝐵)) = Σ𝑘 ∈ 𝐴 𝐵) | ||
Theorem | expmhm 21471* | Exponentiation is a monoid homomorphism from addition to multiplication. (Contributed by Mario Carneiro, 18-Jun-2015.) |
⊢ 𝑁 = (ℂfld ↾s ℕ0) & ⊢ 𝑀 = (mulGrp‘ℂfld) ⇒ ⊢ (𝐴 ∈ ℂ → (𝑥 ∈ ℕ0 ↦ (𝐴↑𝑥)) ∈ (𝑁 MndHom 𝑀)) | ||
Theorem | nn0srg 21472 | The nonnegative integers form a semiring (commutative by subcmn 19869). (Contributed by Thierry Arnoux, 1-May-2018.) |
⊢ (ℂfld ↾s ℕ0) ∈ SRing | ||
Theorem | rge0srg 21473 | The nonnegative real numbers form a semiring (commutative by subcmn 19869). (Contributed by Thierry Arnoux, 6-Sep-2018.) |
⊢ (ℂfld ↾s (0[,)+∞)) ∈ SRing | ||
According to Wikipedia ("Integer", 25-May-2019, https://en.wikipedia.org/wiki/Integer) "The integers form a unital ring which is the most basic one, in the following sense: for any unital ring, there is a unique ring homomorphism from the integers into this ring. This universal property, namely to be an initial object in the category of [unital] rings, characterizes the ring 𝑍." In set.mm, there was no explicit definition for the ring of integers until June 2019, but it was denoted by (ℂfld ↾s ℤ), the field of complex numbers restricted to the integers. In zringring 21477 it is shown that this restriction is a ring (it is actually a principal ideal ring as shown in zringlpir 21495), and zringbas 21481 shows that its base set is the integers. As of June 2019, there is an abbreviation of this expression as Definition df-zring 21475 of the ring of integers. Remark: Instead of using the symbol "ZZrng" analogous to ℂfld used for the field of complex numbers, we have chosen the version with an "i" to indicate that the ring of integers is a unital ring, see also Wikipedia ("Rng (algebra)", 9-Jun-2019, https://en.wikipedia.org/wiki/Rng_(algebra) 21475). | ||
Syntax | czring 21474 | Extend class notation with the (unital) ring of integers. |
class ℤring | ||
Definition | df-zring 21475 | The (unital) ring of integers. (Contributed by Alexander van der Vekens, 9-Jun-2019.) |
⊢ ℤring = (ℂfld ↾s ℤ) | ||
Theorem | zringcrng 21476 | The ring of integers is a commutative ring. (Contributed by AV, 13-Jun-2019.) |
⊢ ℤring ∈ CRing | ||
Theorem | zringring 21477 | The ring of integers is a ring. (Contributed by AV, 20-May-2019.) (Revised by AV, 9-Jun-2019.) (Proof shortened by AV, 13-Jun-2019.) |
⊢ ℤring ∈ Ring | ||
Theorem | zringrng 21478 | The ring of integers is a non-unital ring. (Contributed by AV, 17-Mar-2025.) |
⊢ ℤring ∈ Rng | ||
Theorem | zringabl 21479 | The ring of integers is an (additive) abelian group. (Contributed by AV, 13-Jun-2019.) |
⊢ ℤring ∈ Abel | ||
Theorem | zringgrp 21480 | The ring of integers is an (additive) group. (Contributed by AV, 10-Jun-2019.) |
⊢ ℤring ∈ Grp | ||
Theorem | zringbas 21481 | The integers are the base of the ring of integers. (Contributed by Thierry Arnoux, 31-Oct-2017.) (Revised by AV, 9-Jun-2019.) |
⊢ ℤ = (Base‘ℤring) | ||
Theorem | zringplusg 21482 | The addition operation of the ring of integers. (Contributed by Thierry Arnoux, 8-Nov-2017.) (Revised by AV, 9-Jun-2019.) |
⊢ + = (+g‘ℤring) | ||
Theorem | zringsub 21483 | The subtraction of elements in the ring of integers. (Contributed by AV, 24-Mar-2025.) |
⊢ − = (-g‘ℤring) ⇒ ⊢ ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (𝑋 − 𝑌) = (𝑋 − 𝑌)) | ||
Theorem | zringmulg 21484 | The multiplication (group power) operation of the group of integers. (Contributed by Thierry Arnoux, 31-Oct-2017.) (Revised by AV, 9-Jun-2019.) |
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴(.g‘ℤring)𝐵) = (𝐴 · 𝐵)) | ||
Theorem | zringmulr 21485 | The multiplication operation of the ring of integers. (Contributed by Thierry Arnoux, 1-Nov-2017.) (Revised by AV, 9-Jun-2019.) |
⊢ · = (.r‘ℤring) | ||
Theorem | zring0 21486 | The zero element of the ring of integers. (Contributed by Thierry Arnoux, 1-Nov-2017.) (Revised by AV, 9-Jun-2019.) |
⊢ 0 = (0g‘ℤring) | ||
Theorem | zring1 21487 | The unity element of the ring of integers. (Contributed by Thierry Arnoux, 1-Nov-2017.) (Revised by AV, 9-Jun-2019.) |
⊢ 1 = (1r‘ℤring) | ||
Theorem | zringnzr 21488 | The ring of integers is a nonzero ring. (Contributed by AV, 18-Apr-2020.) |
⊢ ℤring ∈ NzRing | ||
Theorem | dvdsrzring 21489 | Ring divisibility in the ring of integers corresponds to ordinary divisibility in ℤ. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by AV, 9-Jun-2019.) |
⊢ ∥ = (∥r‘ℤring) | ||
Theorem | zringlpirlem1 21490 | Lemma for zringlpir 21495. A nonzero ideal of integers contains some positive integers. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by AV, 9-Jun-2019.) |
⊢ (𝜑 → 𝐼 ∈ (LIdeal‘ℤring)) & ⊢ (𝜑 → 𝐼 ≠ {0}) ⇒ ⊢ (𝜑 → (𝐼 ∩ ℕ) ≠ ∅) | ||
Theorem | zringlpirlem2 21491 | Lemma for zringlpir 21495. A nonzero ideal of integers contains the least positive element. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by AV, 9-Jun-2019.) (Revised by AV, 27-Sep-2020.) |
⊢ (𝜑 → 𝐼 ∈ (LIdeal‘ℤring)) & ⊢ (𝜑 → 𝐼 ≠ {0}) & ⊢ 𝐺 = inf((𝐼 ∩ ℕ), ℝ, < ) ⇒ ⊢ (𝜑 → 𝐺 ∈ 𝐼) | ||
Theorem | zringlpirlem3 21492 | Lemma for zringlpir 21495. All elements of a nonzero ideal of integers are divided by the least one. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by AV, 9-Jun-2019.) (Proof shortened by AV, 27-Sep-2020.) |
⊢ (𝜑 → 𝐼 ∈ (LIdeal‘ℤring)) & ⊢ (𝜑 → 𝐼 ≠ {0}) & ⊢ 𝐺 = inf((𝐼 ∩ ℕ), ℝ, < ) & ⊢ (𝜑 → 𝑋 ∈ 𝐼) ⇒ ⊢ (𝜑 → 𝐺 ∥ 𝑋) | ||
Theorem | zringinvg 21493 | The additive inverse of an element of the ring of integers. (Contributed by AV, 24-May-2019.) (Revised by AV, 10-Jun-2019.) |
⊢ (𝐴 ∈ ℤ → -𝐴 = ((invg‘ℤring)‘𝐴)) | ||
Theorem | zringunit 21494 | The units of ℤ are the integers with norm 1, i.e. 1 and -1. (Contributed by Mario Carneiro, 5-Dec-2014.) (Revised by AV, 10-Jun-2019.) |
⊢ (𝐴 ∈ (Unit‘ℤring) ↔ (𝐴 ∈ ℤ ∧ (abs‘𝐴) = 1)) | ||
Theorem | zringlpir 21495 | The integers are a principal ideal ring. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by AV, 9-Jun-2019.) (Proof shortened by AV, 27-Sep-2020.) |
⊢ ℤring ∈ LPIR | ||
Theorem | zringndrg 21496 | The integers are not a division ring, and therefore not a field. (Contributed by AV, 22-Oct-2021.) |
⊢ ℤring ∉ DivRing | ||
Theorem | zringcyg 21497 | The integers are a cyclic group. (Contributed by Mario Carneiro, 21-Apr-2016.) (Revised by AV, 9-Jun-2019.) |
⊢ ℤring ∈ CycGrp | ||
Theorem | zringsubgval 21498 | Subtraction in the ring of integers. (Contributed by AV, 3-Aug-2019.) |
⊢ − = (-g‘ℤring) ⇒ ⊢ ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (𝑋 − 𝑌) = (𝑋 − 𝑌)) | ||
Theorem | zringmpg 21499 | The multiplicative group of the ring of integers is the restriction of the multiplicative group of the complex numbers to the integers. (Contributed by AV, 15-Jun-2019.) |
⊢ ((mulGrp‘ℂfld) ↾s ℤ) = (mulGrp‘ℤring) | ||
Theorem | prmirredlem 21500 | A positive integer is irreducible over ℤ iff it is a prime number. (Contributed by Mario Carneiro, 5-Dec-2014.) (Revised by AV, 10-Jun-2019.) |
⊢ 𝐼 = (Irred‘ℤring) ⇒ ⊢ (𝐴 ∈ ℕ → (𝐴 ∈ 𝐼 ↔ 𝐴 ∈ ℙ)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |