![]() |
Metamath
Proof Explorer Theorem List (p. 215 of 473) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-29860) |
![]() (29861-31383) |
![]() (31384-47242) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | mplelsfi 21401 | A polynomial treated as a coefficient function has finitely many nonzero terms. (Contributed by Stefan O'Rear, 22-Mar-2015.) (Revised by AV, 25-Jun-2019.) |
⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 0 = (0g‘𝑅) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) & ⊢ (𝜑 → 𝑅 ∈ 𝑉) ⇒ ⊢ (𝜑 → 𝐹 finSupp 0 ) | ||
Theorem | mplval2 21402 | Self-referential expression for the set of multivariate polynomials. (Contributed by Mario Carneiro, 7-Jan-2015.) (Revised by Mario Carneiro, 2-Oct-2015.) |
⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ 𝑈 = (Base‘𝑃) ⇒ ⊢ 𝑃 = (𝑆 ↾s 𝑈) | ||
Theorem | mplbasss 21403 | The set of polynomials is a subset of the set of power series. (Contributed by Mario Carneiro, 7-Jan-2015.) (Revised by Mario Carneiro, 2-Oct-2015.) |
⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ 𝑈 = (Base‘𝑃) & ⊢ 𝐵 = (Base‘𝑆) ⇒ ⊢ 𝑈 ⊆ 𝐵 | ||
Theorem | mplelf 21404* | A polynomial is defined as a function on the coefficients. (Contributed by Mario Carneiro, 7-Jan-2015.) (Revised by Mario Carneiro, 2-Oct-2015.) |
⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → 𝑋:𝐷⟶𝐾) | ||
Theorem | mplsubglem 21405* | If 𝐴 is an ideal of sets (a nonempty collection closed under subset and binary union) of the set 𝐷 of finite bags (the primary applications being 𝐴 = Fin and 𝐴 = 𝒫 𝐵 for some 𝐵), then the set of all power series whose coefficient functions are supported on an element of 𝐴 is a subgroup of the set of all power series. (Contributed by Mario Carneiro, 12-Jan-2015.) (Revised by AV, 16-Jul-2019.) |
⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → ∅ ∈ 𝐴) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (𝑥 ∪ 𝑦) ∈ 𝐴) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ⊆ 𝑥)) → 𝑦 ∈ 𝐴) & ⊢ (𝜑 → 𝑈 = {𝑔 ∈ 𝐵 ∣ (𝑔 supp 0 ) ∈ 𝐴}) & ⊢ (𝜑 → 𝑅 ∈ Grp) ⇒ ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝑆)) | ||
Theorem | mpllsslem 21406* | If 𝐴 is an ideal of subsets (a nonempty collection closed under subset and binary union) of the set 𝐷 of finite bags (the primary applications being 𝐴 = Fin and 𝐴 = 𝒫 𝐵 for some 𝐵), then the set of all power series whose coefficient functions are supported on an element of 𝐴 is a linear subspace of the set of all power series. (Contributed by Mario Carneiro, 12-Jan-2015.) (Revised by AV, 16-Jul-2019.) |
⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → ∅ ∈ 𝐴) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (𝑥 ∪ 𝑦) ∈ 𝐴) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ⊆ 𝑥)) → 𝑦 ∈ 𝐴) & ⊢ (𝜑 → 𝑈 = {𝑔 ∈ 𝐵 ∣ (𝑔 supp 0 ) ∈ 𝐴}) & ⊢ (𝜑 → 𝑅 ∈ Ring) ⇒ ⊢ (𝜑 → 𝑈 ∈ (LSubSp‘𝑆)) | ||
Theorem | mplsubglem2 21407* | Lemma for mplsubg 21408 and mpllss 21409. (Contributed by AV, 16-Jul-2019.) |
⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝑈 = (Base‘𝑃) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) ⇒ ⊢ (𝜑 → 𝑈 = {𝑔 ∈ (Base‘𝑆) ∣ (𝑔 supp (0g‘𝑅)) ∈ Fin}) | ||
Theorem | mplsubg 21408 | The set of polynomials is closed under addition, i.e. it is a subgroup of the set of power series. (Contributed by Mario Carneiro, 8-Jan-2015.) (Proof shortened by AV, 16-Jul-2019.) |
⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝑈 = (Base‘𝑃) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑅 ∈ Grp) ⇒ ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝑆)) | ||
Theorem | mpllss 21409 | The set of polynomials is closed under scalar multiplication, i.e. it is a linear subspace of the set of power series. (Contributed by Mario Carneiro, 7-Jan-2015.) (Proof shortened by AV, 16-Jul-2019.) |
⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝑈 = (Base‘𝑃) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑅 ∈ Ring) ⇒ ⊢ (𝜑 → 𝑈 ∈ (LSubSp‘𝑆)) | ||
Theorem | mplsubrglem 21410* | Lemma for mplsubrg 21411. (Contributed by Mario Carneiro, 9-Jan-2015.) (Revised by AV, 18-Jul-2019.) |
⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝑈 = (Base‘𝑃) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐴 = ( ∘f + “ ((𝑋 supp 0 ) × (𝑌 supp 0 ))) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑋 ∈ 𝑈) & ⊢ (𝜑 → 𝑌 ∈ 𝑈) ⇒ ⊢ (𝜑 → (𝑋(.r‘𝑆)𝑌) ∈ 𝑈) | ||
Theorem | mplsubrg 21411 | The set of polynomials is closed under multiplication, i.e. it is a subring of the set of power series. (Contributed by Mario Carneiro, 9-Jan-2015.) |
⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝑈 = (Base‘𝑃) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑅 ∈ Ring) ⇒ ⊢ (𝜑 → 𝑈 ∈ (SubRing‘𝑆)) | ||
Theorem | mpl0 21412* | The zero polynomial. (Contributed by Mario Carneiro, 9-Jan-2015.) |
⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} & ⊢ 𝑂 = (0g‘𝑅) & ⊢ 0 = (0g‘𝑃) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑅 ∈ Grp) ⇒ ⊢ (𝜑 → 0 = (𝐷 × {𝑂})) | ||
Theorem | mpladd 21413 | The addition operation on multivariate polynomials. (Contributed by Mario Carneiro, 9-Jan-2015.) (Revised by Mario Carneiro, 2-Oct-2015.) |
⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ + = (+g‘𝑅) & ⊢ ✚ = (+g‘𝑃) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋 ✚ 𝑌) = (𝑋 ∘f + 𝑌)) | ||
Theorem | mplneg 21414 | The negative function on multivariate polynomials. (Contributed by SN, 25-May-2024.) |
⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝑁 = (invg‘𝑅) & ⊢ 𝑀 = (invg‘𝑃) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ Grp) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑀‘𝑋) = (𝑁 ∘ 𝑋)) | ||
Theorem | mplmul 21415* | The multiplication operation on multivariate polynomials. (Contributed by Mario Carneiro, 9-Jan-2015.) |
⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ · = (.r‘𝑅) & ⊢ ∙ = (.r‘𝑃) & ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} & ⊢ (𝜑 → 𝐹 ∈ 𝐵) & ⊢ (𝜑 → 𝐺 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐹 ∙ 𝐺) = (𝑘 ∈ 𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝐹‘𝑥) · (𝐺‘(𝑘 ∘f − 𝑥))))))) | ||
Theorem | mpl1 21416* | The identity element of the ring of polynomials. (Contributed by Mario Carneiro, 10-Jan-2015.) |
⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} & ⊢ 0 = (0g‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ 𝑈 = (1r‘𝑃) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑅 ∈ Ring) ⇒ ⊢ (𝜑 → 𝑈 = (𝑥 ∈ 𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 ))) | ||
Theorem | mplsca 21417 | The scalar field of a multivariate polynomial structure. (Contributed by Mario Carneiro, 9-Jan-2015.) |
⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ 𝑊) ⇒ ⊢ (𝜑 → 𝑅 = (Scalar‘𝑃)) | ||
Theorem | mplvsca2 21418 | The scalar multiplication operation on multivariate polynomials. (Contributed by Mario Carneiro, 9-Jan-2015.) |
⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ · = ( ·𝑠 ‘𝑃) ⇒ ⊢ · = ( ·𝑠 ‘𝑆) | ||
Theorem | mplvsca 21419* | The scalar multiplication operation on multivariate polynomials. (Contributed by Mario Carneiro, 9-Jan-2015.) (Revised by Mario Carneiro, 2-Oct-2015.) |
⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ ∙ = ( ·𝑠 ‘𝑃) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ · = (.r‘𝑅) & ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} & ⊢ (𝜑 → 𝑋 ∈ 𝐾) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋 ∙ 𝐹) = ((𝐷 × {𝑋}) ∘f · 𝐹)) | ||
Theorem | mplvscaval 21420* | The scalar multiplication operation on multivariate polynomials. (Contributed by Mario Carneiro, 9-Jan-2015.) |
⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ ∙ = ( ·𝑠 ‘𝑃) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ · = (.r‘𝑅) & ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} & ⊢ (𝜑 → 𝑋 ∈ 𝐾) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐷) ⇒ ⊢ (𝜑 → ((𝑋 ∙ 𝐹)‘𝑌) = (𝑋 · (𝐹‘𝑌))) | ||
Theorem | mvrcl 21421 | A power series variable is a polynomial. (Contributed by Mario Carneiro, 9-Jan-2015.) |
⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝑉 = (𝐼 mVar 𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑋 ∈ 𝐼) ⇒ ⊢ (𝜑 → (𝑉‘𝑋) ∈ 𝐵) | ||
Theorem | mplgrp 21422 | The polynomial ring is a group. (Contributed by Mario Carneiro, 9-Jan-2015.) |
⊢ 𝑃 = (𝐼 mPoly 𝑅) ⇒ ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Grp) → 𝑃 ∈ Grp) | ||
Theorem | mpllmod 21423 | The polynomial ring is a left module. (Contributed by Mario Carneiro, 9-Jan-2015.) |
⊢ 𝑃 = (𝐼 mPoly 𝑅) ⇒ ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) → 𝑃 ∈ LMod) | ||
Theorem | mplring 21424 | The polynomial ring is a ring. (Contributed by Mario Carneiro, 9-Jan-2015.) |
⊢ 𝑃 = (𝐼 mPoly 𝑅) ⇒ ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) → 𝑃 ∈ Ring) | ||
Theorem | mpllvec 21425 | The polynomial ring is a vector space. (Contributed by SN, 29-Feb-2024.) |
⊢ 𝑃 = (𝐼 mPoly 𝑅) ⇒ ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ DivRing) → 𝑃 ∈ LVec) | ||
Theorem | mplcrng 21426 | The polynomial ring is a commutative ring. (Contributed by Mario Carneiro, 9-Jan-2015.) |
⊢ 𝑃 = (𝐼 mPoly 𝑅) ⇒ ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ CRing) → 𝑃 ∈ CRing) | ||
Theorem | mplassa 21427 | The polynomial ring is an associative algebra. (Contributed by Mario Carneiro, 9-Jan-2015.) |
⊢ 𝑃 = (𝐼 mPoly 𝑅) ⇒ ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ CRing) → 𝑃 ∈ AssAlg) | ||
Theorem | ressmplbas2 21428 | The base set of a restricted polynomial algebra consists of power series in the subring which are also polynomials (in the parent ring). (Contributed by Mario Carneiro, 3-Jul-2015.) |
⊢ 𝑆 = (𝐼 mPoly 𝑅) & ⊢ 𝐻 = (𝑅 ↾s 𝑇) & ⊢ 𝑈 = (𝐼 mPoly 𝐻) & ⊢ 𝐵 = (Base‘𝑈) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) & ⊢ 𝑊 = (𝐼 mPwSer 𝐻) & ⊢ 𝐶 = (Base‘𝑊) & ⊢ 𝐾 = (Base‘𝑆) ⇒ ⊢ (𝜑 → 𝐵 = (𝐶 ∩ 𝐾)) | ||
Theorem | ressmplbas 21429 | A restricted polynomial algebra has the same base set. (Contributed by Mario Carneiro, 3-Jul-2015.) |
⊢ 𝑆 = (𝐼 mPoly 𝑅) & ⊢ 𝐻 = (𝑅 ↾s 𝑇) & ⊢ 𝑈 = (𝐼 mPoly 𝐻) & ⊢ 𝐵 = (Base‘𝑈) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) & ⊢ 𝑃 = (𝑆 ↾s 𝐵) ⇒ ⊢ (𝜑 → 𝐵 = (Base‘𝑃)) | ||
Theorem | ressmpladd 21430 | A restricted polynomial algebra has the same addition operation. (Contributed by Mario Carneiro, 3-Jul-2015.) |
⊢ 𝑆 = (𝐼 mPoly 𝑅) & ⊢ 𝐻 = (𝑅 ↾s 𝑇) & ⊢ 𝑈 = (𝐼 mPoly 𝐻) & ⊢ 𝐵 = (Base‘𝑈) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) & ⊢ 𝑃 = (𝑆 ↾s 𝐵) ⇒ ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋(+g‘𝑈)𝑌) = (𝑋(+g‘𝑃)𝑌)) | ||
Theorem | ressmplmul 21431 | A restricted polynomial algebra has the same multiplication operation. (Contributed by Mario Carneiro, 3-Jul-2015.) |
⊢ 𝑆 = (𝐼 mPoly 𝑅) & ⊢ 𝐻 = (𝑅 ↾s 𝑇) & ⊢ 𝑈 = (𝐼 mPoly 𝐻) & ⊢ 𝐵 = (Base‘𝑈) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) & ⊢ 𝑃 = (𝑆 ↾s 𝐵) ⇒ ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋(.r‘𝑈)𝑌) = (𝑋(.r‘𝑃)𝑌)) | ||
Theorem | ressmplvsca 21432 | A restricted power series algebra has the same scalar multiplication operation. (Contributed by Mario Carneiro, 3-Jul-2015.) |
⊢ 𝑆 = (𝐼 mPoly 𝑅) & ⊢ 𝐻 = (𝑅 ↾s 𝑇) & ⊢ 𝑈 = (𝐼 mPoly 𝐻) & ⊢ 𝐵 = (Base‘𝑈) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) & ⊢ 𝑃 = (𝑆 ↾s 𝐵) ⇒ ⊢ ((𝜑 ∧ (𝑋 ∈ 𝑇 ∧ 𝑌 ∈ 𝐵)) → (𝑋( ·𝑠 ‘𝑈)𝑌) = (𝑋( ·𝑠 ‘𝑃)𝑌)) | ||
Theorem | subrgmpl 21433 | A subring of the base ring induces a subring of polynomials. (Contributed by Mario Carneiro, 3-Jul-2015.) |
⊢ 𝑆 = (𝐼 mPoly 𝑅) & ⊢ 𝐻 = (𝑅 ↾s 𝑇) & ⊢ 𝑈 = (𝐼 mPoly 𝐻) & ⊢ 𝐵 = (Base‘𝑈) ⇒ ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑇 ∈ (SubRing‘𝑅)) → 𝐵 ∈ (SubRing‘𝑆)) | ||
Theorem | subrgmvr 21434 | The variables in a subring polynomial algebra are the same as the original ring. (Contributed by Mario Carneiro, 4-Jul-2015.) |
⊢ 𝑉 = (𝐼 mVar 𝑅) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) & ⊢ 𝐻 = (𝑅 ↾s 𝑇) ⇒ ⊢ (𝜑 → 𝑉 = (𝐼 mVar 𝐻)) | ||
Theorem | subrgmvrf 21435 | The variables in a polynomial algebra are contained in every subring algebra. (Contributed by Mario Carneiro, 4-Jul-2015.) |
⊢ 𝑉 = (𝐼 mVar 𝑅) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) & ⊢ 𝐻 = (𝑅 ↾s 𝑇) & ⊢ 𝑈 = (𝐼 mPoly 𝐻) & ⊢ 𝐵 = (Base‘𝑈) ⇒ ⊢ (𝜑 → 𝑉:𝐼⟶𝐵) | ||
Theorem | mplmon 21436* | A monomial is a polynomial. (Contributed by Mario Carneiro, 9-Jan-2015.) |
⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 0 = (0g‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑋 ∈ 𝐷) ⇒ ⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) ∈ 𝐵) | ||
Theorem | mplmonmul 21437* | The product of two monomials adds the exponent vectors together. For example, the product of (𝑥↑2)(𝑦↑2) with (𝑦↑1)(𝑧↑3) is (𝑥↑2)(𝑦↑3)(𝑧↑3), where the exponent vectors 〈2, 2, 0〉 and 〈0, 1, 3〉 are added to give 〈2, 3, 3〉. (Contributed by Mario Carneiro, 9-Jan-2015.) |
⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 0 = (0g‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑋 ∈ 𝐷) & ⊢ · = (.r‘𝑃) & ⊢ (𝜑 → 𝑌 ∈ 𝐷) ⇒ ⊢ (𝜑 → ((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 1 , 0 )) · (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 ))) = (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑋 ∘f + 𝑌), 1 , 0 ))) | ||
Theorem | mplcoe1 21438* | Decompose a polynomial into a finite sum of monomials. (Contributed by Mario Carneiro, 9-Jan-2015.) |
⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} & ⊢ 0 = (0g‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ · = ( ·𝑠 ‘𝑃) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → 𝑋 = (𝑃 Σg (𝑘 ∈ 𝐷 ↦ ((𝑋‘𝑘) · (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )))))) | ||
Theorem | mplcoe3 21439* | Decompose a monomial in one variable into a power of a variable. (Contributed by Mario Carneiro, 7-Jan-2015.) (Proof shortened by AV, 18-Jul-2019.) |
⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} & ⊢ 0 = (0g‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ 𝐺 = (mulGrp‘𝑃) & ⊢ ↑ = (.g‘𝐺) & ⊢ 𝑉 = (𝐼 mVar 𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑋 ∈ 𝐼) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑋, 𝑁, 0)), 1 , 0 )) = (𝑁 ↑ (𝑉‘𝑋))) | ||
Theorem | mplcoe5lem 21440* | Lemma for mplcoe4 21479. (Contributed by AV, 7-Oct-2019.) |
⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} & ⊢ 0 = (0g‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ 𝐺 = (mulGrp‘𝑃) & ⊢ ↑ = (.g‘𝐺) & ⊢ 𝑉 = (𝐼 mVar 𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑌 ∈ 𝐷) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐼 ∀𝑦 ∈ 𝐼 ((𝑉‘𝑦)(+g‘𝐺)(𝑉‘𝑥)) = ((𝑉‘𝑥)(+g‘𝐺)(𝑉‘𝑦))) & ⊢ (𝜑 → 𝑆 ⊆ 𝐼) ⇒ ⊢ (𝜑 → ran (𝑘 ∈ 𝑆 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))) ⊆ ((Cntz‘𝐺)‘ran (𝑘 ∈ 𝑆 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))))) | ||
Theorem | mplcoe5 21441* | Decompose a monomial into a finite product of powers of variables. Instead of assuming that 𝑅 is a commutative ring (as in mplcoe2 21442), it is sufficient that 𝑅 is a ring and all the variables of the multivariate polynomial commute. (Contributed by AV, 7-Oct-2019.) |
⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} & ⊢ 0 = (0g‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ 𝐺 = (mulGrp‘𝑃) & ⊢ ↑ = (.g‘𝐺) & ⊢ 𝑉 = (𝐼 mVar 𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑌 ∈ 𝐷) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐼 ∀𝑦 ∈ 𝐼 ((𝑉‘𝑦)(+g‘𝐺)(𝑉‘𝑥)) = ((𝑉‘𝑥)(+g‘𝐺)(𝑉‘𝑦))) ⇒ ⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 )) = (𝐺 Σg (𝑘 ∈ 𝐼 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))))) | ||
Theorem | mplcoe2 21442* | Decompose a monomial into a finite product of powers of variables. (The assumption that 𝑅 is a commutative ring is not strictly necessary, because the submonoid of monomials is in the center of the multiplicative monoid of polynomials, but it simplifies the proof.) (Contributed by Mario Carneiro, 10-Jan-2015.) (Proof shortened by AV, 18-Oct-2019.) |
⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} & ⊢ 0 = (0g‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ 𝐺 = (mulGrp‘𝑃) & ⊢ ↑ = (.g‘𝐺) & ⊢ 𝑉 = (𝐼 mVar 𝑅) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑌 ∈ 𝐷) ⇒ ⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 1 , 0 )) = (𝐺 Σg (𝑘 ∈ 𝐼 ↦ ((𝑌‘𝑘) ↑ (𝑉‘𝑘))))) | ||
Theorem | mplbas2 21443 | An alternative expression for the set of polynomials, as the smallest subalgebra of the set of power series that contains all the variable generators. (Contributed by Mario Carneiro, 10-Jan-2015.) |
⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ 𝑉 = (𝐼 mVar 𝑅) & ⊢ 𝐴 = (AlgSpan‘𝑆) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑅 ∈ CRing) ⇒ ⊢ (𝜑 → (𝐴‘ran 𝑉) = (Base‘𝑃)) | ||
Theorem | ltbval 21444* | Value of the well-order on finite bags. (Contributed by Mario Carneiro, 8-Feb-2015.) |
⊢ 𝐶 = (𝑇 <bag 𝐼) & ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑇 ∈ 𝑊) ⇒ ⊢ (𝜑 → 𝐶 = {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐷 ∧ ∃𝑧 ∈ 𝐼 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐼 (𝑧𝑇𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤))))}) | ||
Theorem | ltbwe 21445* | The finite bag order is a well-order, given a well-order of the index set. (Contributed by Mario Carneiro, 2-Jun-2015.) |
⊢ 𝐶 = (𝑇 <bag 𝐼) & ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑇 ∈ 𝑊) & ⊢ (𝜑 → 𝑇 We 𝐼) ⇒ ⊢ (𝜑 → 𝐶 We 𝐷) | ||
Theorem | reldmopsr 21446 | Lemma for ordered power series. (Contributed by Stefan O'Rear, 2-Oct-2015.) |
⊢ Rel dom ordPwSer | ||
Theorem | opsrval 21447* | The value of the "ordered power series" function. This is the same as mPwSer psrval 21317, but with the addition of a well-order on 𝐼 we can turn a strict order on 𝑅 into a strict order on the power series structure. (Contributed by Mario Carneiro, 8-Feb-2015.) |
⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ 𝑂 = ((𝐼 ordPwSer 𝑅)‘𝑇) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ < = (lt‘𝑅) & ⊢ 𝐶 = (𝑇 <bag 𝐼) & ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} & ⊢ ≤ = {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ (∃𝑧 ∈ 𝐷 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐷 (𝑤𝐶𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤))) ∨ 𝑥 = 𝑦))} & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ 𝑊) & ⊢ (𝜑 → 𝑇 ⊆ (𝐼 × 𝐼)) ⇒ ⊢ (𝜑 → 𝑂 = (𝑆 sSet 〈(le‘ndx), ≤ 〉)) | ||
Theorem | opsrle 21448* | An alternative expression for the set of polynomials, as the smallest subalgebra of the set of power series that contains all the variable generators. (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised by Mario Carneiro, 2-Oct-2015.) |
⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ 𝑂 = ((𝐼 ordPwSer 𝑅)‘𝑇) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ < = (lt‘𝑅) & ⊢ 𝐶 = (𝑇 <bag 𝐼) & ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} & ⊢ ≤ = (le‘𝑂) & ⊢ (𝜑 → 𝑇 ⊆ (𝐼 × 𝐼)) ⇒ ⊢ (𝜑 → ≤ = {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ (∃𝑧 ∈ 𝐷 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐷 (𝑤𝐶𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤))) ∨ 𝑥 = 𝑦))}) | ||
Theorem | opsrval2 21449 | Self-referential expression for the ordered power series structure. (Contributed by Mario Carneiro, 8-Feb-2015.) |
⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ 𝑂 = ((𝐼 ordPwSer 𝑅)‘𝑇) & ⊢ ≤ = (le‘𝑂) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ 𝑊) & ⊢ (𝜑 → 𝑇 ⊆ (𝐼 × 𝐼)) ⇒ ⊢ (𝜑 → 𝑂 = (𝑆 sSet 〈(le‘ndx), ≤ 〉)) | ||
Theorem | opsrbaslem 21450 | Get a component of the ordered power series structure. (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 9-Sep-2021.) (Revised by AV, 1-Nov-2024.) |
⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ 𝑂 = ((𝐼 ordPwSer 𝑅)‘𝑇) & ⊢ (𝜑 → 𝑇 ⊆ (𝐼 × 𝐼)) & ⊢ 𝐸 = Slot (𝐸‘ndx) & ⊢ (𝐸‘ndx) ≠ (le‘ndx) ⇒ ⊢ (𝜑 → (𝐸‘𝑆) = (𝐸‘𝑂)) | ||
Theorem | opsrbaslemOLD 21451 | Obsolete version of opsrbaslem 21450 as of 1-Nov-2024. Get a component of the ordered power series structure. (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 9-Sep-2021.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ 𝑂 = ((𝐼 ordPwSer 𝑅)‘𝑇) & ⊢ (𝜑 → 𝑇 ⊆ (𝐼 × 𝐼)) & ⊢ 𝐸 = Slot 𝑁 & ⊢ 𝑁 ∈ ℕ & ⊢ 𝑁 < ;10 ⇒ ⊢ (𝜑 → (𝐸‘𝑆) = (𝐸‘𝑂)) | ||
Theorem | opsrbas 21452 | The base set of the ordered power series structure. (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised by Mario Carneiro, 30-Aug-2015.) (Revised by AV, 1-Nov-2024.) |
⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ 𝑂 = ((𝐼 ordPwSer 𝑅)‘𝑇) & ⊢ (𝜑 → 𝑇 ⊆ (𝐼 × 𝐼)) ⇒ ⊢ (𝜑 → (Base‘𝑆) = (Base‘𝑂)) | ||
Theorem | opsrbasOLD 21453 | Obsolete version of opsrbaslem 21450 as of 1-Nov-2024. The base set of the ordered power series structure. (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised by Mario Carneiro, 30-Aug-2015.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ 𝑂 = ((𝐼 ordPwSer 𝑅)‘𝑇) & ⊢ (𝜑 → 𝑇 ⊆ (𝐼 × 𝐼)) ⇒ ⊢ (𝜑 → (Base‘𝑆) = (Base‘𝑂)) | ||
Theorem | opsrplusg 21454 | The addition operation of the ordered power series structure. (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised by Mario Carneiro, 30-Aug-2015.) (Revised by AV, 1-Nov-2024.) |
⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ 𝑂 = ((𝐼 ordPwSer 𝑅)‘𝑇) & ⊢ (𝜑 → 𝑇 ⊆ (𝐼 × 𝐼)) ⇒ ⊢ (𝜑 → (+g‘𝑆) = (+g‘𝑂)) | ||
Theorem | opsrplusgOLD 21455 | Obsolete version of opsrplusg 21454 as of 1-Nov-2024. The addition operation of the ordered power series structure. (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised by Mario Carneiro, 30-Aug-2015.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ 𝑂 = ((𝐼 ordPwSer 𝑅)‘𝑇) & ⊢ (𝜑 → 𝑇 ⊆ (𝐼 × 𝐼)) ⇒ ⊢ (𝜑 → (+g‘𝑆) = (+g‘𝑂)) | ||
Theorem | opsrmulr 21456 | The multiplication operation of the ordered power series structure. (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised by Mario Carneiro, 30-Aug-2015.) (Revised by AV, 1-Nov-2024.) |
⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ 𝑂 = ((𝐼 ordPwSer 𝑅)‘𝑇) & ⊢ (𝜑 → 𝑇 ⊆ (𝐼 × 𝐼)) ⇒ ⊢ (𝜑 → (.r‘𝑆) = (.r‘𝑂)) | ||
Theorem | opsrmulrOLD 21457 | Obsolete version of opsrmulr 21456 as of 1-Nov-2024. The multiplication operation of the ordered power series structure. (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised by Mario Carneiro, 30-Aug-2015.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ 𝑂 = ((𝐼 ordPwSer 𝑅)‘𝑇) & ⊢ (𝜑 → 𝑇 ⊆ (𝐼 × 𝐼)) ⇒ ⊢ (𝜑 → (.r‘𝑆) = (.r‘𝑂)) | ||
Theorem | opsrvsca 21458 | The scalar product operation of the ordered power series structure. (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised by Mario Carneiro, 30-Aug-2015.) (Revised by AV, 1-Nov-2024.) |
⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ 𝑂 = ((𝐼 ordPwSer 𝑅)‘𝑇) & ⊢ (𝜑 → 𝑇 ⊆ (𝐼 × 𝐼)) ⇒ ⊢ (𝜑 → ( ·𝑠 ‘𝑆) = ( ·𝑠 ‘𝑂)) | ||
Theorem | opsrvscaOLD 21459 | Obsolete version of opsrvsca 21458 as of 1-Nov-2024. The scalar product of the ordered power series structure. (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised by Mario Carneiro, 30-Aug-2015.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ 𝑂 = ((𝐼 ordPwSer 𝑅)‘𝑇) & ⊢ (𝜑 → 𝑇 ⊆ (𝐼 × 𝐼)) ⇒ ⊢ (𝜑 → ( ·𝑠 ‘𝑆) = ( ·𝑠 ‘𝑂)) | ||
Theorem | opsrsca 21460 | The scalar ring of the ordered power series structure. (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised by Mario Carneiro, 30-Aug-2015.) (Revised by AV, 1-Nov-2024.) |
⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ 𝑂 = ((𝐼 ordPwSer 𝑅)‘𝑇) & ⊢ (𝜑 → 𝑇 ⊆ (𝐼 × 𝐼)) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ 𝑊) ⇒ ⊢ (𝜑 → 𝑅 = (Scalar‘𝑂)) | ||
Theorem | opsrscaOLD 21461 | Obsolete version of opsrsca 21460 as of 1-Nov-2024. The scalar ring of the ordered power series structure. (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised by Mario Carneiro, 30-Aug-2015.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ 𝑂 = ((𝐼 ordPwSer 𝑅)‘𝑇) & ⊢ (𝜑 → 𝑇 ⊆ (𝐼 × 𝐼)) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ 𝑊) ⇒ ⊢ (𝜑 → 𝑅 = (Scalar‘𝑂)) | ||
Theorem | opsrtoslem1 21462* | Lemma for opsrtos 21464. (Contributed by Mario Carneiro, 8-Feb-2015.) |
⊢ 𝑂 = ((𝐼 ordPwSer 𝑅)‘𝑇) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ Toset) & ⊢ (𝜑 → 𝑇 ⊆ (𝐼 × 𝐼)) & ⊢ (𝜑 → 𝑇 We 𝐼) & ⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ < = (lt‘𝑅) & ⊢ 𝐶 = (𝑇 <bag 𝐼) & ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} & ⊢ (𝜓 ↔ ∃𝑧 ∈ 𝐷 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐷 (𝑤𝐶𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤)))) & ⊢ ≤ = (le‘𝑂) ⇒ ⊢ (𝜑 → ≤ = (({〈𝑥, 𝑦〉 ∣ 𝜓} ∩ (𝐵 × 𝐵)) ∪ ( I ↾ 𝐵))) | ||
Theorem | opsrtoslem2 21463* | Lemma for opsrtos 21464. (Contributed by Mario Carneiro, 8-Feb-2015.) |
⊢ 𝑂 = ((𝐼 ordPwSer 𝑅)‘𝑇) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ Toset) & ⊢ (𝜑 → 𝑇 ⊆ (𝐼 × 𝐼)) & ⊢ (𝜑 → 𝑇 We 𝐼) & ⊢ 𝑆 = (𝐼 mPwSer 𝑅) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ < = (lt‘𝑅) & ⊢ 𝐶 = (𝑇 <bag 𝐼) & ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} & ⊢ (𝜓 ↔ ∃𝑧 ∈ 𝐷 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐷 (𝑤𝐶𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤)))) & ⊢ ≤ = (le‘𝑂) ⇒ ⊢ (𝜑 → 𝑂 ∈ Toset) | ||
Theorem | opsrtos 21464 | The ordered power series structure is a totally ordered set. (Contributed by Mario Carneiro, 10-Jan-2015.) |
⊢ 𝑂 = ((𝐼 ordPwSer 𝑅)‘𝑇) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ Toset) & ⊢ (𝜑 → 𝑇 ⊆ (𝐼 × 𝐼)) & ⊢ (𝜑 → 𝑇 We 𝐼) ⇒ ⊢ (𝜑 → 𝑂 ∈ Toset) | ||
Theorem | opsrso 21465 | The ordered power series structure is a totally ordered set. (Contributed by Mario Carneiro, 10-Jan-2015.) |
⊢ 𝑂 = ((𝐼 ordPwSer 𝑅)‘𝑇) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ Toset) & ⊢ (𝜑 → 𝑇 ⊆ (𝐼 × 𝐼)) & ⊢ (𝜑 → 𝑇 We 𝐼) & ⊢ ≤ = (lt‘𝑂) & ⊢ 𝐵 = (Base‘𝑂) ⇒ ⊢ (𝜑 → ≤ Or 𝐵) | ||
Theorem | opsrcrng 21466 | The ring of ordered power series is commutative ring. (Contributed by Mario Carneiro, 10-Jan-2015.) |
⊢ 𝑂 = ((𝐼 ordPwSer 𝑅)‘𝑇) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑇 ⊆ (𝐼 × 𝐼)) ⇒ ⊢ (𝜑 → 𝑂 ∈ CRing) | ||
Theorem | opsrassa 21467 | The ring of ordered power series is an associative algebra. (Contributed by Mario Carneiro, 29-Dec-2014.) |
⊢ 𝑂 = ((𝐼 ordPwSer 𝑅)‘𝑇) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑇 ⊆ (𝐼 × 𝐼)) ⇒ ⊢ (𝜑 → 𝑂 ∈ AssAlg) | ||
Theorem | mvrf2 21468 | The power series/polynomial variable function maps indices to polynomials. (Contributed by Stefan O'Rear, 8-Mar-2015.) |
⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝑉 = (𝐼 mVar 𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑅 ∈ Ring) ⇒ ⊢ (𝜑 → 𝑉:𝐼⟶𝐵) | ||
Theorem | mplmon2 21469* | Express a scaled monomial. (Contributed by Stefan O'Rear, 8-Mar-2015.) |
⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ · = ( ·𝑠 ‘𝑃) & ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} & ⊢ 1 = (1r‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐾 ∈ 𝐷) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋 · (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝐾, 1 , 0 ))) = (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝐾, 𝑋, 0 ))) | ||
Theorem | psrbag0 21470* | The empty bag is a bag. (Contributed by Stefan O'Rear, 9-Mar-2015.) |
⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ⇒ ⊢ (𝐼 ∈ 𝑉 → (𝐼 × {0}) ∈ 𝐷) | ||
Theorem | psrbagsn 21471* | A singleton bag is a bag. (Contributed by Stefan O'Rear, 9-Mar-2015.) |
⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ⇒ ⊢ (𝐼 ∈ 𝑉 → (𝑥 ∈ 𝐼 ↦ if(𝑥 = 𝐾, 1, 0)) ∈ 𝐷) | ||
Theorem | mplascl 21472* | Value of the scalar injection into the polynomial algebra. (Contributed by Stefan O'Rear, 9-Mar-2015.) |
⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐴 = (algSc‘𝑃) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐴‘𝑋) = (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝐼 × {0}), 𝑋, 0 ))) | ||
Theorem | mplasclf 21473 | The scalar injection is a function into the polynomial algebra. (Contributed by Stefan O'Rear, 9-Mar-2015.) |
⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐴 = (algSc‘𝑃) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑅 ∈ Ring) ⇒ ⊢ (𝜑 → 𝐴:𝐾⟶𝐵) | ||
Theorem | subrgascl 21474 | The scalar injection function in a subring algebra is the same up to a restriction to the subring. (Contributed by Mario Carneiro, 4-Jul-2015.) |
⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝐴 = (algSc‘𝑃) & ⊢ 𝐻 = (𝑅 ↾s 𝑇) & ⊢ 𝑈 = (𝐼 mPoly 𝐻) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) & ⊢ 𝐶 = (algSc‘𝑈) ⇒ ⊢ (𝜑 → 𝐶 = (𝐴 ↾ 𝑇)) | ||
Theorem | subrgasclcl 21475 | The scalars in a polynomial algebra are in the subring algebra iff the scalar value is in the subring. (Contributed by Mario Carneiro, 4-Jul-2015.) |
⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝐴 = (algSc‘𝑃) & ⊢ 𝐻 = (𝑅 ↾s 𝑇) & ⊢ 𝑈 = (𝐼 mPoly 𝐻) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) & ⊢ 𝐵 = (Base‘𝑈) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ (𝜑 → 𝑋 ∈ 𝐾) ⇒ ⊢ (𝜑 → ((𝐴‘𝑋) ∈ 𝐵 ↔ 𝑋 ∈ 𝑇)) | ||
Theorem | mplmon2cl 21476* | A scaled monomial is a polynomial. (Contributed by Stefan O'Rear, 8-Mar-2015.) |
⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐶 = (Base‘𝑅) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ (𝜑 → 𝑋 ∈ 𝐶) & ⊢ (𝜑 → 𝐾 ∈ 𝐷) ⇒ ⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝐾, 𝑋, 0 )) ∈ 𝐵) | ||
Theorem | mplmon2mul 21477* | Product of scaled monomials. (Contributed by Stefan O'Rear, 8-Mar-2015.) |
⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐶 = (Base‘𝑅) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ ∙ = (.r‘𝑃) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑋 ∈ 𝐷) & ⊢ (𝜑 → 𝑌 ∈ 𝐷) & ⊢ (𝜑 → 𝐹 ∈ 𝐶) & ⊢ (𝜑 → 𝐺 ∈ 𝐶) ⇒ ⊢ (𝜑 → ((𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑋, 𝐹, 0 )) ∙ (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑌, 𝐺, 0 ))) = (𝑦 ∈ 𝐷 ↦ if(𝑦 = (𝑋 ∘f + 𝑌), (𝐹 · 𝐺), 0 ))) | ||
Theorem | mplind 21478* | Prove a property of polynomials by "structural" induction, under a simplified model of structure which loses the sum of products structure. The commutativity condition is stronger than strictly needed. (Contributed by Stefan O'Rear, 11-Mar-2015.) |
⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝑉 = (𝐼 mVar 𝑅) & ⊢ 𝑌 = (𝐼 mPoly 𝑅) & ⊢ + = (+g‘𝑌) & ⊢ · = (.r‘𝑌) & ⊢ 𝐶 = (algSc‘𝑌) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻)) → (𝑥 + 𝑦) ∈ 𝐻) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻)) → (𝑥 · 𝑦) ∈ 𝐻) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐾) → (𝐶‘𝑥) ∈ 𝐻) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝑉‘𝑥) ∈ 𝐻) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑅 ∈ CRing) ⇒ ⊢ (𝜑 → 𝑋 ∈ 𝐻) | ||
Theorem | mplcoe4 21479* | Decompose a polynomial into a finite sum of scaled monomials. (Contributed by Stefan O'Rear, 8-Mar-2015.) |
⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → 𝑋 = (𝑃 Σg (𝑘 ∈ 𝐷 ↦ (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝑘, (𝑋‘𝑘), 0 ))))) | ||
Syntax | ces 21480 | Evaluation of a multivariate polynomial in a subring. |
class evalSub | ||
Syntax | cevl 21481 | Evaluation of a multivariate polynomial. |
class eval | ||
Definition | df-evls 21482* | Define the evaluation map for the polynomial algebra. The function ((𝐼 evalSub 𝑆)‘𝑅):𝑉⟶(𝑆 ↑m (𝑆 ↑m 𝐼)) makes sense when 𝐼 is an index set, 𝑆 is a ring, 𝑅 is a subring of 𝑆, and where 𝑉 is the set of polynomials in (𝐼 mPoly 𝑅). This function maps an element of the formal polynomial algebra (with coefficients in 𝑅) to a function from assignments 𝐼⟶𝑆 of the variables to elements of 𝑆 formed by evaluating the polynomial with the given assignments. (Contributed by Stefan O'Rear, 11-Mar-2015.) |
⊢ evalSub = (𝑖 ∈ V, 𝑠 ∈ CRing ↦ ⦋(Base‘𝑠) / 𝑏⦌(𝑟 ∈ (SubRing‘𝑠) ↦ ⦋(𝑖 mPoly (𝑠 ↾s 𝑟)) / 𝑤⦌(℩𝑓 ∈ (𝑤 RingHom (𝑠 ↑s (𝑏 ↑m 𝑖)))((𝑓 ∘ (algSc‘𝑤)) = (𝑥 ∈ 𝑟 ↦ ((𝑏 ↑m 𝑖) × {𝑥})) ∧ (𝑓 ∘ (𝑖 mVar (𝑠 ↾s 𝑟))) = (𝑥 ∈ 𝑖 ↦ (𝑔 ∈ (𝑏 ↑m 𝑖) ↦ (𝑔‘𝑥))))))) | ||
Definition | df-evl 21483* | A simplification of evalSub when the evaluation ring is the same as the coefficient ring. (Contributed by Stefan O'Rear, 19-Mar-2015.) |
⊢ eval = (𝑖 ∈ V, 𝑟 ∈ V ↦ ((𝑖 evalSub 𝑟)‘(Base‘𝑟))) | ||
Theorem | evlslem4 21484* | The support of a tensor product of ring element families is contained in the product of the supports. (Contributed by Stefan O'Rear, 8-Mar-2015.) (Revised by AV, 18-Jul-2019.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝑋 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐽) → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝐽 ∈ 𝑊) ⇒ ⊢ (𝜑 → ((𝑥 ∈ 𝐼, 𝑦 ∈ 𝐽 ↦ (𝑋 · 𝑌)) supp 0 ) ⊆ (((𝑥 ∈ 𝐼 ↦ 𝑋) supp 0 ) × ((𝑦 ∈ 𝐽 ↦ 𝑌) supp 0 ))) | ||
Theorem | psrbagev1 21485* | A bag of multipliers provides the conditions for a valid sum. (Contributed by Stefan O'Rear, 9-Mar-2015.) (Revised by AV, 18-Jul-2019.) (Revised by AV, 11-Apr-2024.) Remove a sethood hypothesis. (Revised by SN, 7-Aug-2024.) |
⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} & ⊢ 𝐶 = (Base‘𝑇) & ⊢ · = (.g‘𝑇) & ⊢ 0 = (0g‘𝑇) & ⊢ (𝜑 → 𝑇 ∈ CMnd) & ⊢ (𝜑 → 𝐵 ∈ 𝐷) & ⊢ (𝜑 → 𝐺:𝐼⟶𝐶) ⇒ ⊢ (𝜑 → ((𝐵 ∘f · 𝐺):𝐼⟶𝐶 ∧ (𝐵 ∘f · 𝐺) finSupp 0 )) | ||
Theorem | psrbagev1OLD 21486* | Obsolete version of psrbagev1 21485 as of 7-Aug-2024. (Contributed by Stefan O'Rear, 9-Mar-2015.) (Revised by AV, 18-Jul-2019.) (Revised by AV, 11-Apr-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} & ⊢ 𝐶 = (Base‘𝑇) & ⊢ · = (.g‘𝑇) & ⊢ 0 = (0g‘𝑇) & ⊢ (𝜑 → 𝑇 ∈ CMnd) & ⊢ (𝜑 → 𝐵 ∈ 𝐷) & ⊢ (𝜑 → 𝐺:𝐼⟶𝐶) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) ⇒ ⊢ (𝜑 → ((𝐵 ∘f · 𝐺):𝐼⟶𝐶 ∧ (𝐵 ∘f · 𝐺) finSupp 0 )) | ||
Theorem | psrbagev2 21487* | Closure of a sum using a bag of multipliers. (Contributed by Stefan O'Rear, 9-Mar-2015.) (Proof shortened by AV, 18-Jul-2019.) (Revised by AV, 11-Apr-2024.) Remove a sethood hypothesis. (Revised by SN, 7-Aug-2024.) |
⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} & ⊢ 𝐶 = (Base‘𝑇) & ⊢ · = (.g‘𝑇) & ⊢ (𝜑 → 𝑇 ∈ CMnd) & ⊢ (𝜑 → 𝐵 ∈ 𝐷) & ⊢ (𝜑 → 𝐺:𝐼⟶𝐶) ⇒ ⊢ (𝜑 → (𝑇 Σg (𝐵 ∘f · 𝐺)) ∈ 𝐶) | ||
Theorem | psrbagev2OLD 21488* | Obsolete version of psrbagev2 21487 as of 7-Aug-2024. (Contributed by Stefan O'Rear, 9-Mar-2015.) (Proof shortened by AV, 18-Jul-2019.) (Revised by AV, 11-Apr-2024.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} & ⊢ 𝐶 = (Base‘𝑇) & ⊢ · = (.g‘𝑇) & ⊢ (𝜑 → 𝑇 ∈ CMnd) & ⊢ (𝜑 → 𝐵 ∈ 𝐷) & ⊢ (𝜑 → 𝐺:𝐼⟶𝐶) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) ⇒ ⊢ (𝜑 → (𝑇 Σg (𝐵 ∘f · 𝐺)) ∈ 𝐶) | ||
Theorem | evlslem2 21489* | A linear function on the polynomial ring which is multiplicative on scaled monomials is generally multiplicative. (Contributed by Stefan O'Rear, 9-Mar-2015.) (Revised by AV, 11-Apr-2024.) |
⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ · = (.r‘𝑆) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑆 ∈ CRing) & ⊢ (𝜑 → 𝐸 ∈ (𝑃 GrpHom 𝑆)) & ⊢ ((𝜑 ∧ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ (𝑗 ∈ 𝐷 ∧ 𝑖 ∈ 𝐷))) → (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = (𝑗 ∘f + 𝑖), ((𝑥‘𝑗)(.r‘𝑅)(𝑦‘𝑖)), 0 ))) = ((𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑗, (𝑥‘𝑗), 0 ))) · (𝐸‘(𝑘 ∈ 𝐷 ↦ if(𝑘 = 𝑖, (𝑦‘𝑖), 0 ))))) ⇒ ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐸‘(𝑥(.r‘𝑃)𝑦)) = ((𝐸‘𝑥) · (𝐸‘𝑦))) | ||
Theorem | evlslem3 21490* | Lemma for evlseu 21493. Polynomial evaluation of a scaled monomial. (Contributed by Stefan O'Rear, 8-Mar-2015.) (Revised by AV, 11-Apr-2024.) |
⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝐶 = (Base‘𝑆) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} & ⊢ 𝑇 = (mulGrp‘𝑆) & ⊢ ↑ = (.g‘𝑇) & ⊢ · = (.r‘𝑆) & ⊢ 𝑉 = (𝐼 mVar 𝑅) & ⊢ 𝐸 = (𝑝 ∈ 𝐵 ↦ (𝑆 Σg (𝑏 ∈ 𝐷 ↦ ((𝐹‘(𝑝‘𝑏)) · (𝑇 Σg (𝑏 ∘f ↑ 𝐺)))))) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑆 ∈ CRing) & ⊢ (𝜑 → 𝐹 ∈ (𝑅 RingHom 𝑆)) & ⊢ (𝜑 → 𝐺:𝐼⟶𝐶) & ⊢ 0 = (0g‘𝑅) & ⊢ (𝜑 → 𝐴 ∈ 𝐷) & ⊢ (𝜑 → 𝐻 ∈ 𝐾) ⇒ ⊢ (𝜑 → (𝐸‘(𝑥 ∈ 𝐷 ↦ if(𝑥 = 𝐴, 𝐻, 0 ))) = ((𝐹‘𝐻) · (𝑇 Σg (𝐴 ∘f ↑ 𝐺)))) | ||
Theorem | evlslem6 21491* | Lemma for evlseu 21493. Finiteness and consistency of the top-level sum. (Contributed by Stefan O'Rear, 9-Mar-2015.) (Revised by AV, 26-Jul-2019.) (Revised by AV, 11-Apr-2024.) |
⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝐶 = (Base‘𝑆) & ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} & ⊢ 𝑇 = (mulGrp‘𝑆) & ⊢ ↑ = (.g‘𝑇) & ⊢ · = (.r‘𝑆) & ⊢ 𝑉 = (𝐼 mVar 𝑅) & ⊢ 𝐸 = (𝑝 ∈ 𝐵 ↦ (𝑆 Σg (𝑏 ∈ 𝐷 ↦ ((𝐹‘(𝑝‘𝑏)) · (𝑇 Σg (𝑏 ∘f ↑ 𝐺)))))) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑆 ∈ CRing) & ⊢ (𝜑 → 𝐹 ∈ (𝑅 RingHom 𝑆)) & ⊢ (𝜑 → 𝐺:𝐼⟶𝐶) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((𝑏 ∈ 𝐷 ↦ ((𝐹‘(𝑌‘𝑏)) · (𝑇 Σg (𝑏 ∘f ↑ 𝐺)))):𝐷⟶𝐶 ∧ (𝑏 ∈ 𝐷 ↦ ((𝐹‘(𝑌‘𝑏)) · (𝑇 Σg (𝑏 ∘f ↑ 𝐺)))) finSupp (0g‘𝑆))) | ||
Theorem | evlslem1 21492* | Lemma for evlseu 21493, give a formula for (the unique) polynomial evaluation homomorphism. (Contributed by Stefan O'Rear, 9-Mar-2015.) (Proof shortened by AV, 26-Jul-2019.) (Revised by AV, 11-Apr-2024.) |
⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝐶 = (Base‘𝑆) & ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} & ⊢ 𝑇 = (mulGrp‘𝑆) & ⊢ ↑ = (.g‘𝑇) & ⊢ · = (.r‘𝑆) & ⊢ 𝑉 = (𝐼 mVar 𝑅) & ⊢ 𝐸 = (𝑝 ∈ 𝐵 ↦ (𝑆 Σg (𝑏 ∈ 𝐷 ↦ ((𝐹‘(𝑝‘𝑏)) · (𝑇 Σg (𝑏 ∘f ↑ 𝐺)))))) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑆 ∈ CRing) & ⊢ (𝜑 → 𝐹 ∈ (𝑅 RingHom 𝑆)) & ⊢ (𝜑 → 𝐺:𝐼⟶𝐶) & ⊢ 𝐴 = (algSc‘𝑃) ⇒ ⊢ (𝜑 → (𝐸 ∈ (𝑃 RingHom 𝑆) ∧ (𝐸 ∘ 𝐴) = 𝐹 ∧ (𝐸 ∘ 𝑉) = 𝐺)) | ||
Theorem | evlseu 21493* | For a given interpretation of the variables 𝐺 and of the scalars 𝐹, this extends to a homomorphic interpretation of the polynomial ring in exactly one way. (Contributed by Stefan O'Rear, 9-Mar-2015.) (Revised by AV, 11-Apr-2024.) |
⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝐶 = (Base‘𝑆) & ⊢ 𝐴 = (algSc‘𝑃) & ⊢ 𝑉 = (𝐼 mVar 𝑅) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑆 ∈ CRing) & ⊢ (𝜑 → 𝐹 ∈ (𝑅 RingHom 𝑆)) & ⊢ (𝜑 → 𝐺:𝐼⟶𝐶) ⇒ ⊢ (𝜑 → ∃!𝑚 ∈ (𝑃 RingHom 𝑆)((𝑚 ∘ 𝐴) = 𝐹 ∧ (𝑚 ∘ 𝑉) = 𝐺)) | ||
Theorem | reldmevls 21494 | Well-behaved binary operation property of evalSub. (Contributed by Stefan O'Rear, 19-Mar-2015.) |
⊢ Rel dom evalSub | ||
Theorem | mpfrcl 21495 | Reverse closure for the set of polynomial functions. (Contributed by Stefan O'Rear, 19-Mar-2015.) |
⊢ 𝑄 = ran ((𝐼 evalSub 𝑆)‘𝑅) ⇒ ⊢ (𝑋 ∈ 𝑄 → (𝐼 ∈ V ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆))) | ||
Theorem | evlsval 21496* | Value of the polynomial evaluation map function. (Contributed by Stefan O'Rear, 11-Mar-2015.) (Revised by AV, 18-Sep-2021.) |
⊢ 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅) & ⊢ 𝑊 = (𝐼 mPoly 𝑈) & ⊢ 𝑉 = (𝐼 mVar 𝑈) & ⊢ 𝑈 = (𝑆 ↾s 𝑅) & ⊢ 𝑇 = (𝑆 ↑s (𝐵 ↑m 𝐼)) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ 𝐴 = (algSc‘𝑊) & ⊢ 𝑋 = (𝑥 ∈ 𝑅 ↦ ((𝐵 ↑m 𝐼) × {𝑥})) & ⊢ 𝑌 = (𝑥 ∈ 𝐼 ↦ (𝑔 ∈ (𝐵 ↑m 𝐼) ↦ (𝑔‘𝑥))) ⇒ ⊢ ((𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑄 = (℩𝑓 ∈ (𝑊 RingHom 𝑇)((𝑓 ∘ 𝐴) = 𝑋 ∧ (𝑓 ∘ 𝑉) = 𝑌))) | ||
Theorem | evlsval2 21497* | Characterizing properties of the polynomial evaluation map function. (Contributed by Stefan O'Rear, 12-Mar-2015.) (Revised by AV, 18-Sep-2021.) |
⊢ 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅) & ⊢ 𝑊 = (𝐼 mPoly 𝑈) & ⊢ 𝑉 = (𝐼 mVar 𝑈) & ⊢ 𝑈 = (𝑆 ↾s 𝑅) & ⊢ 𝑇 = (𝑆 ↑s (𝐵 ↑m 𝐼)) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ 𝐴 = (algSc‘𝑊) & ⊢ 𝑋 = (𝑥 ∈ 𝑅 ↦ ((𝐵 ↑m 𝐼) × {𝑥})) & ⊢ 𝑌 = (𝑥 ∈ 𝐼 ↦ (𝑔 ∈ (𝐵 ↑m 𝐼) ↦ (𝑔‘𝑥))) ⇒ ⊢ ((𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → (𝑄 ∈ (𝑊 RingHom 𝑇) ∧ ((𝑄 ∘ 𝐴) = 𝑋 ∧ (𝑄 ∘ 𝑉) = 𝑌))) | ||
Theorem | evlsrhm 21498 | Polynomial evaluation is a homomorphism (into the product ring). (Contributed by Stefan O'Rear, 12-Mar-2015.) |
⊢ 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅) & ⊢ 𝑊 = (𝐼 mPoly 𝑈) & ⊢ 𝑈 = (𝑆 ↾s 𝑅) & ⊢ 𝑇 = (𝑆 ↑s (𝐵 ↑m 𝐼)) & ⊢ 𝐵 = (Base‘𝑆) ⇒ ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑄 ∈ (𝑊 RingHom 𝑇)) | ||
Theorem | evlssca 21499 | Polynomial evaluation maps scalars to constant functions. (Contributed by Stefan O'Rear, 13-Mar-2015.) (Proof shortened by AV, 18-Sep-2021.) |
⊢ 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅) & ⊢ 𝑊 = (𝐼 mPoly 𝑈) & ⊢ 𝑈 = (𝑆 ↾s 𝑅) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ 𝐴 = (algSc‘𝑊) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑆 ∈ CRing) & ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) & ⊢ (𝜑 → 𝑋 ∈ 𝑅) ⇒ ⊢ (𝜑 → (𝑄‘(𝐴‘𝑋)) = ((𝐵 ↑m 𝐼) × {𝑋})) | ||
Theorem | evlsvar 21500* | Polynomial evaluation maps variables to projections. (Contributed by Stefan O'Rear, 12-Mar-2015.) (Proof shortened by AV, 18-Sep-2021.) |
⊢ 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅) & ⊢ 𝑉 = (𝐼 mVar 𝑈) & ⊢ 𝑈 = (𝑆 ↾s 𝑅) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑆 ∈ CRing) & ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) & ⊢ (𝜑 → 𝑋 ∈ 𝐼) ⇒ ⊢ (𝜑 → (𝑄‘(𝑉‘𝑋)) = (𝑔 ∈ (𝐵 ↑m 𝐼) ↦ (𝑔‘𝑋))) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |