Home | Metamath
Proof Explorer Theorem List (p. 215 of 466) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29280) |
Hilbert Space Explorer
(29281-30803) |
Users' Mathboxes
(30804-46521) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | ressply1add 21401 | A restricted polynomial algebra has the same addition operation. (Contributed by Mario Carneiro, 3-Jul-2015.) |
⊢ 𝑆 = (Poly1‘𝑅) & ⊢ 𝐻 = (𝑅 ↾s 𝑇) & ⊢ 𝑈 = (Poly1‘𝐻) & ⊢ 𝐵 = (Base‘𝑈) & ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) & ⊢ 𝑃 = (𝑆 ↾s 𝐵) ⇒ ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋(+g‘𝑈)𝑌) = (𝑋(+g‘𝑃)𝑌)) | ||
Theorem | ressply1mul 21402 | A restricted polynomial algebra has the same multiplication operation. (Contributed by Mario Carneiro, 3-Jul-2015.) |
⊢ 𝑆 = (Poly1‘𝑅) & ⊢ 𝐻 = (𝑅 ↾s 𝑇) & ⊢ 𝑈 = (Poly1‘𝐻) & ⊢ 𝐵 = (Base‘𝑈) & ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) & ⊢ 𝑃 = (𝑆 ↾s 𝐵) ⇒ ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋(.r‘𝑈)𝑌) = (𝑋(.r‘𝑃)𝑌)) | ||
Theorem | ressply1vsca 21403 | A restricted power series algebra has the same scalar multiplication operation. (Contributed by Mario Carneiro, 3-Jul-2015.) |
⊢ 𝑆 = (Poly1‘𝑅) & ⊢ 𝐻 = (𝑅 ↾s 𝑇) & ⊢ 𝑈 = (Poly1‘𝐻) & ⊢ 𝐵 = (Base‘𝑈) & ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) & ⊢ 𝑃 = (𝑆 ↾s 𝐵) ⇒ ⊢ ((𝜑 ∧ (𝑋 ∈ 𝑇 ∧ 𝑌 ∈ 𝐵)) → (𝑋( ·𝑠 ‘𝑈)𝑌) = (𝑋( ·𝑠 ‘𝑃)𝑌)) | ||
Theorem | subrgply1 21404 | A subring of the base ring induces a subring of polynomials. (Contributed by Mario Carneiro, 3-Jul-2015.) |
⊢ 𝑆 = (Poly1‘𝑅) & ⊢ 𝐻 = (𝑅 ↾s 𝑇) & ⊢ 𝑈 = (Poly1‘𝐻) & ⊢ 𝐵 = (Base‘𝑈) ⇒ ⊢ (𝑇 ∈ (SubRing‘𝑅) → 𝐵 ∈ (SubRing‘𝑆)) | ||
Theorem | gsumply1subr 21405 | Evaluate a group sum in a polynomial ring over a subring. (Contributed by AV, 22-Sep-2019.) (Proof shortened by AV, 31-Jan-2020.) |
⊢ 𝑆 = (Poly1‘𝑅) & ⊢ 𝐻 = (𝑅 ↾s 𝑇) & ⊢ 𝑈 = (Poly1‘𝐻) & ⊢ 𝐵 = (Base‘𝑈) & ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) ⇒ ⊢ (𝜑 → (𝑆 Σg 𝐹) = (𝑈 Σg 𝐹)) | ||
Theorem | psrbaspropd 21406 | Property deduction for power series base set. (Contributed by Stefan O'Rear, 27-Mar-2015.) |
⊢ (𝜑 → (Base‘𝑅) = (Base‘𝑆)) ⇒ ⊢ (𝜑 → (Base‘(𝐼 mPwSer 𝑅)) = (Base‘(𝐼 mPwSer 𝑆))) | ||
Theorem | psrplusgpropd 21407* | Property deduction for power series addition. (Contributed by Stefan O'Rear, 27-Mar-2015.) (Revised by Mario Carneiro, 3-Oct-2015.) |
⊢ (𝜑 → 𝐵 = (Base‘𝑅)) & ⊢ (𝜑 → 𝐵 = (Base‘𝑆)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝑅)𝑦) = (𝑥(+g‘𝑆)𝑦)) ⇒ ⊢ (𝜑 → (+g‘(𝐼 mPwSer 𝑅)) = (+g‘(𝐼 mPwSer 𝑆))) | ||
Theorem | mplbaspropd 21408* | Property deduction for polynomial base set. (Contributed by Stefan O'Rear, 27-Mar-2015.) (Proof shortened by AV, 19-Jul-2019.) |
⊢ (𝜑 → 𝐵 = (Base‘𝑅)) & ⊢ (𝜑 → 𝐵 = (Base‘𝑆)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝑅)𝑦) = (𝑥(+g‘𝑆)𝑦)) ⇒ ⊢ (𝜑 → (Base‘(𝐼 mPoly 𝑅)) = (Base‘(𝐼 mPoly 𝑆))) | ||
Theorem | psropprmul 21409 | Reversing multiplication in a ring reverses multiplication in the power series ring. (Contributed by Stefan O'Rear, 27-Mar-2015.) |
⊢ 𝑌 = (𝐼 mPwSer 𝑅) & ⊢ 𝑆 = (oppr‘𝑅) & ⊢ 𝑍 = (𝐼 mPwSer 𝑆) & ⊢ · = (.r‘𝑌) & ⊢ ∙ = (.r‘𝑍) & ⊢ 𝐵 = (Base‘𝑌) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (𝐹 ∙ 𝐺) = (𝐺 · 𝐹)) | ||
Theorem | ply1opprmul 21410 | Reversing multiplication in a ring reverses multiplication in the univariate polynomial ring. (Contributed by Stefan O'Rear, 27-Mar-2015.) |
⊢ 𝑌 = (Poly1‘𝑅) & ⊢ 𝑆 = (oppr‘𝑅) & ⊢ 𝑍 = (Poly1‘𝑆) & ⊢ · = (.r‘𝑌) & ⊢ ∙ = (.r‘𝑍) & ⊢ 𝐵 = (Base‘𝑌) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (𝐹 ∙ 𝐺) = (𝐺 · 𝐹)) | ||
Theorem | 00ply1bas 21411 | Lemma for ply1basfvi 21412 and deg1fvi 25250. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
⊢ ∅ = (Base‘(Poly1‘∅)) | ||
Theorem | ply1basfvi 21412 | Protection compatibility of the univariate polynomial base set. (Contributed by Stefan O'Rear, 27-Mar-2015.) |
⊢ (Base‘(Poly1‘𝑅)) = (Base‘(Poly1‘( I ‘𝑅))) | ||
Theorem | ply1plusgfvi 21413 | Protection compatibility of the univariate polynomial addition. (Contributed by Stefan O'Rear, 27-Mar-2015.) |
⊢ (+g‘(Poly1‘𝑅)) = (+g‘(Poly1‘( I ‘𝑅))) | ||
Theorem | ply1baspropd 21414* | Property deduction for univariate polynomial base set. (Contributed by Stefan O'Rear, 27-Mar-2015.) |
⊢ (𝜑 → 𝐵 = (Base‘𝑅)) & ⊢ (𝜑 → 𝐵 = (Base‘𝑆)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝑅)𝑦) = (𝑥(+g‘𝑆)𝑦)) ⇒ ⊢ (𝜑 → (Base‘(Poly1‘𝑅)) = (Base‘(Poly1‘𝑆))) | ||
Theorem | ply1plusgpropd 21415* | Property deduction for univariate polynomial addition. (Contributed by Stefan O'Rear, 27-Mar-2015.) |
⊢ (𝜑 → 𝐵 = (Base‘𝑅)) & ⊢ (𝜑 → 𝐵 = (Base‘𝑆)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝑅)𝑦) = (𝑥(+g‘𝑆)𝑦)) ⇒ ⊢ (𝜑 → (+g‘(Poly1‘𝑅)) = (+g‘(Poly1‘𝑆))) | ||
Theorem | opsrring 21416 | Ordered power series form a ring. (Contributed by Stefan O'Rear, 22-Mar-2015.) |
⊢ 𝑂 = ((𝐼 ordPwSer 𝑅)‘𝑇) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑇 ⊆ (𝐼 × 𝐼)) ⇒ ⊢ (𝜑 → 𝑂 ∈ Ring) | ||
Theorem | opsrlmod 21417 | Ordered power series form a left module. (Contributed by Stefan O'Rear, 26-Mar-2015.) |
⊢ 𝑂 = ((𝐼 ordPwSer 𝑅)‘𝑇) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑇 ⊆ (𝐼 × 𝐼)) ⇒ ⊢ (𝜑 → 𝑂 ∈ LMod) | ||
Theorem | psr1ring 21418 | Univariate power series form a ring. (Contributed by Stefan O'Rear, 22-Mar-2015.) |
⊢ 𝑆 = (PwSer1‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → 𝑆 ∈ Ring) | ||
Theorem | ply1ring 21419 | Univariate polynomials form a ring. (Contributed by Stefan O'Rear, 22-Mar-2015.) |
⊢ 𝑃 = (Poly1‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → 𝑃 ∈ Ring) | ||
Theorem | psr1lmod 21420 | Univariate power series form a left module. (Contributed by Stefan O'Rear, 26-Mar-2015.) |
⊢ 𝑃 = (PwSer1‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → 𝑃 ∈ LMod) | ||
Theorem | psr1sca 21421 | Scalars of a univariate power series ring. (Contributed by Stefan O'Rear, 4-Jul-2015.) |
⊢ 𝑃 = (PwSer1‘𝑅) ⇒ ⊢ (𝑅 ∈ 𝑉 → 𝑅 = (Scalar‘𝑃)) | ||
Theorem | psr1sca2 21422 | Scalars of a univariate power series ring. (Contributed by Stefan O'Rear, 26-Mar-2015.) (Revised by Mario Carneiro, 4-Jul-2015.) |
⊢ 𝑃 = (PwSer1‘𝑅) ⇒ ⊢ ( I ‘𝑅) = (Scalar‘𝑃) | ||
Theorem | ply1lmod 21423 | Univariate polynomials form a left module. (Contributed by Stefan O'Rear, 26-Mar-2015.) |
⊢ 𝑃 = (Poly1‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → 𝑃 ∈ LMod) | ||
Theorem | ply1sca 21424 | Scalars of a univariate polynomial ring. (Contributed by Stefan O'Rear, 26-Mar-2015.) |
⊢ 𝑃 = (Poly1‘𝑅) ⇒ ⊢ (𝑅 ∈ 𝑉 → 𝑅 = (Scalar‘𝑃)) | ||
Theorem | ply1sca2 21425 | Scalars of a univariate polynomial ring. (Contributed by Stefan O'Rear, 26-Mar-2015.) |
⊢ 𝑃 = (Poly1‘𝑅) ⇒ ⊢ ( I ‘𝑅) = (Scalar‘𝑃) | ||
Theorem | ply1mpl0 21426 | The univariate polynomial ring has the same zero as the corresponding multivariate polynomial ring. (Contributed by Stefan O'Rear, 23-Mar-2015.) (Revised by Mario Carneiro, 3-Oct-2015.) |
⊢ 𝑀 = (1o mPoly 𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 0 = (0g‘𝑃) ⇒ ⊢ 0 = (0g‘𝑀) | ||
Theorem | ply10s0 21427 | Zero times a univariate polynomial is the zero polynomial (lmod0vs 20156 analog.) (Contributed by AV, 2-Dec-2019.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ ∗ = ( ·𝑠 ‘𝑃) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → ( 0 ∗ 𝑀) = (0g‘𝑃)) | ||
Theorem | ply1mpl1 21428 | The univariate polynomial ring has the same one as the corresponding multivariate polynomial ring. (Contributed by Stefan O'Rear, 23-Mar-2015.) (Revised by Mario Carneiro, 3-Oct-2015.) |
⊢ 𝑀 = (1o mPoly 𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 1 = (1r‘𝑃) ⇒ ⊢ 1 = (1r‘𝑀) | ||
Theorem | ply1ascl 21429 | The univariate polynomial ring inherits the multivariate ring's scalar function. (Contributed by Stefan O'Rear, 28-Mar-2015.) (Proof shortened by Fan Zheng, 26-Jun-2016.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐴 = (algSc‘𝑃) ⇒ ⊢ 𝐴 = (algSc‘(1o mPoly 𝑅)) | ||
Theorem | subrg1ascl 21430 | The scalar injection function in a subring algebra is the same up to a restriction to the subring. (Contributed by Mario Carneiro, 4-Jul-2015.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐴 = (algSc‘𝑃) & ⊢ 𝐻 = (𝑅 ↾s 𝑇) & ⊢ 𝑈 = (Poly1‘𝐻) & ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) & ⊢ 𝐶 = (algSc‘𝑈) ⇒ ⊢ (𝜑 → 𝐶 = (𝐴 ↾ 𝑇)) | ||
Theorem | subrg1asclcl 21431 | The scalars in a polynomial algebra are in the subring algebra iff the scalar value is in the subring. (Contributed by Mario Carneiro, 4-Jul-2015.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐴 = (algSc‘𝑃) & ⊢ 𝐻 = (𝑅 ↾s 𝑇) & ⊢ 𝑈 = (Poly1‘𝐻) & ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) & ⊢ 𝐵 = (Base‘𝑈) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ (𝜑 → 𝑋 ∈ 𝐾) ⇒ ⊢ (𝜑 → ((𝐴‘𝑋) ∈ 𝐵 ↔ 𝑋 ∈ 𝑇)) | ||
Theorem | subrgvr1 21432 | The variables in a subring polynomial algebra are the same as the original ring. (Contributed by Mario Carneiro, 5-Jul-2015.) |
⊢ 𝑋 = (var1‘𝑅) & ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) & ⊢ 𝐻 = (𝑅 ↾s 𝑇) ⇒ ⊢ (𝜑 → 𝑋 = (var1‘𝐻)) | ||
Theorem | subrgvr1cl 21433 | The variables in a polynomial algebra are contained in every subring algebra. (Contributed by Mario Carneiro, 5-Jul-2015.) |
⊢ 𝑋 = (var1‘𝑅) & ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) & ⊢ 𝐻 = (𝑅 ↾s 𝑇) & ⊢ 𝑈 = (Poly1‘𝐻) & ⊢ 𝐵 = (Base‘𝑈) ⇒ ⊢ (𝜑 → 𝑋 ∈ 𝐵) | ||
Theorem | coe1z 21434 | The coefficient vector of 0. (Contributed by Stefan O'Rear, 23-Mar-2015.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 0 = (0g‘𝑃) & ⊢ 𝑌 = (0g‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → (coe1‘ 0 ) = (ℕ0 × {𝑌})) | ||
Theorem | coe1add 21435 | The coefficient vector of an addition. (Contributed by Stefan O'Rear, 24-Mar-2015.) |
⊢ 𝑌 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ ✚ = (+g‘𝑌) & ⊢ + = (+g‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (coe1‘(𝐹 ✚ 𝐺)) = ((coe1‘𝐹) ∘f + (coe1‘𝐺))) | ||
Theorem | coe1addfv 21436 | A particular coefficient of an addition. (Contributed by Stefan O'Rear, 23-Mar-2015.) |
⊢ 𝑌 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ ✚ = (+g‘𝑌) & ⊢ + = (+g‘𝑅) ⇒ ⊢ (((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ 𝑋 ∈ ℕ0) → ((coe1‘(𝐹 ✚ 𝐺))‘𝑋) = (((coe1‘𝐹)‘𝑋) + ((coe1‘𝐺)‘𝑋))) | ||
Theorem | coe1subfv 21437 | A particular coefficient of a subtraction. (Contributed by Stefan O'Rear, 23-Mar-2015.) |
⊢ 𝑌 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ − = (-g‘𝑌) & ⊢ 𝑁 = (-g‘𝑅) ⇒ ⊢ (((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) ∧ 𝑋 ∈ ℕ0) → ((coe1‘(𝐹 − 𝐺))‘𝑋) = (((coe1‘𝐹)‘𝑋)𝑁((coe1‘𝐺)‘𝑋))) | ||
Theorem | coe1mul2lem1 21438 | An equivalence for coe1mul2 21440. (Contributed by Stefan O'Rear, 25-Mar-2015.) |
⊢ ((𝐴 ∈ ℕ0 ∧ 𝑋 ∈ (ℕ0 ↑m 1o)) → (𝑋 ∘r ≤ (1o × {𝐴}) ↔ (𝑋‘∅) ∈ (0...𝐴))) | ||
Theorem | coe1mul2lem2 21439* | An equivalence for coe1mul2 21440. (Contributed by Stefan O'Rear, 25-Mar-2015.) |
⊢ 𝐻 = {𝑑 ∈ (ℕ0 ↑m 1o) ∣ 𝑑 ∘r ≤ (1o × {𝑘})} ⇒ ⊢ (𝑘 ∈ ℕ0 → (𝑐 ∈ 𝐻 ↦ (𝑐‘∅)):𝐻–1-1-onto→(0...𝑘)) | ||
Theorem | coe1mul2 21440* | The coefficient vector of multiplication in the univariate power series ring. (Contributed by Stefan O'Rear, 25-Mar-2015.) |
⊢ 𝑆 = (PwSer1‘𝑅) & ⊢ ∙ = (.r‘𝑆) & ⊢ · = (.r‘𝑅) & ⊢ 𝐵 = (Base‘𝑆) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (coe1‘(𝐹 ∙ 𝐺)) = (𝑘 ∈ ℕ0 ↦ (𝑅 Σg (𝑥 ∈ (0...𝑘) ↦ (((coe1‘𝐹)‘𝑥) · ((coe1‘𝐺)‘(𝑘 − 𝑥))))))) | ||
Theorem | coe1mul 21441* | The coefficient vector of multiplication in the univariate polynomial ring. (Contributed by Stefan O'Rear, 25-Mar-2015.) |
⊢ 𝑌 = (Poly1‘𝑅) & ⊢ ∙ = (.r‘𝑌) & ⊢ · = (.r‘𝑅) & ⊢ 𝐵 = (Base‘𝑌) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (coe1‘(𝐹 ∙ 𝐺)) = (𝑘 ∈ ℕ0 ↦ (𝑅 Σg (𝑥 ∈ (0...𝑘) ↦ (((coe1‘𝐹)‘𝑥) · ((coe1‘𝐺)‘(𝑘 − 𝑥))))))) | ||
Theorem | ply1moncl 21442 | Closure of the expression for a univariate primitive monomial. (Contributed by AV, 14-Aug-2019.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ 𝑁 = (mulGrp‘𝑃) & ⊢ ↑ = (.g‘𝑁) & ⊢ 𝐵 = (Base‘𝑃) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐷 ∈ ℕ0) → (𝐷 ↑ 𝑋) ∈ 𝐵) | ||
Theorem | ply1tmcl 21443 | Closure of the expression for a univariate polynomial term. (Contributed by Stefan O'Rear, 27-Mar-2015.) (Proof shortened by AV, 25-Nov-2019.) |
⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ · = ( ·𝑠 ‘𝑃) & ⊢ 𝑁 = (mulGrp‘𝑃) & ⊢ ↑ = (.g‘𝑁) & ⊢ 𝐵 = (Base‘𝑃) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0) → (𝐶 · (𝐷 ↑ 𝑋)) ∈ 𝐵) | ||
Theorem | coe1tm 21444* | Coefficient vector of a polynomial term. (Contributed by Stefan O'Rear, 27-Mar-2015.) |
⊢ 0 = (0g‘𝑅) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ · = ( ·𝑠 ‘𝑃) & ⊢ 𝑁 = (mulGrp‘𝑃) & ⊢ ↑ = (.g‘𝑁) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0) → (coe1‘(𝐶 · (𝐷 ↑ 𝑋))) = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 𝐷, 𝐶, 0 ))) | ||
Theorem | coe1tmfv1 21445 | Nonzero coefficient of a polynomial term. (Contributed by Stefan O'Rear, 27-Mar-2015.) |
⊢ 0 = (0g‘𝑅) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ · = ( ·𝑠 ‘𝑃) & ⊢ 𝑁 = (mulGrp‘𝑃) & ⊢ ↑ = (.g‘𝑁) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0) → ((coe1‘(𝐶 · (𝐷 ↑ 𝑋)))‘𝐷) = 𝐶) | ||
Theorem | coe1tmfv2 21446 | Zero coefficient of a polynomial term. (Contributed by Stefan O'Rear, 27-Mar-2015.) |
⊢ 0 = (0g‘𝑅) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ · = ( ·𝑠 ‘𝑃) & ⊢ 𝑁 = (mulGrp‘𝑃) & ⊢ ↑ = (.g‘𝑁) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐶 ∈ 𝐾) & ⊢ (𝜑 → 𝐷 ∈ ℕ0) & ⊢ (𝜑 → 𝐹 ∈ ℕ0) & ⊢ (𝜑 → 𝐷 ≠ 𝐹) ⇒ ⊢ (𝜑 → ((coe1‘(𝐶 · (𝐷 ↑ 𝑋)))‘𝐹) = 0 ) | ||
Theorem | coe1tmmul2 21447* | Coefficient vector of a polynomial multiplied on the right by a term. (Contributed by Stefan O'Rear, 27-Mar-2015.) |
⊢ 0 = (0g‘𝑅) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ · = ( ·𝑠 ‘𝑃) & ⊢ 𝑁 = (mulGrp‘𝑃) & ⊢ ↑ = (.g‘𝑁) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ ∙ = (.r‘𝑃) & ⊢ × = (.r‘𝑅) & ⊢ (𝜑 → 𝐴 ∈ 𝐵) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐶 ∈ 𝐾) & ⊢ (𝜑 → 𝐷 ∈ ℕ0) ⇒ ⊢ (𝜑 → (coe1‘(𝐴 ∙ (𝐶 · (𝐷 ↑ 𝑋)))) = (𝑥 ∈ ℕ0 ↦ if(𝐷 ≤ 𝑥, (((coe1‘𝐴)‘(𝑥 − 𝐷)) × 𝐶), 0 ))) | ||
Theorem | coe1tmmul 21448* | Coefficient vector of a polynomial multiplied on the left by a term. (Contributed by Stefan O'Rear, 29-Mar-2015.) |
⊢ 0 = (0g‘𝑅) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ · = ( ·𝑠 ‘𝑃) & ⊢ 𝑁 = (mulGrp‘𝑃) & ⊢ ↑ = (.g‘𝑁) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ ∙ = (.r‘𝑃) & ⊢ × = (.r‘𝑅) & ⊢ (𝜑 → 𝐴 ∈ 𝐵) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐶 ∈ 𝐾) & ⊢ (𝜑 → 𝐷 ∈ ℕ0) ⇒ ⊢ (𝜑 → (coe1‘((𝐶 · (𝐷 ↑ 𝑋)) ∙ 𝐴)) = (𝑥 ∈ ℕ0 ↦ if(𝐷 ≤ 𝑥, (𝐶 × ((coe1‘𝐴)‘(𝑥 − 𝐷))), 0 ))) | ||
Theorem | coe1tmmul2fv 21449 | Function value of a right-multiplication by a term in the shifted domain. (Contributed by Stefan O'Rear, 27-Mar-2015.) |
⊢ 0 = (0g‘𝑅) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ · = ( ·𝑠 ‘𝑃) & ⊢ 𝑁 = (mulGrp‘𝑃) & ⊢ ↑ = (.g‘𝑁) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ ∙ = (.r‘𝑃) & ⊢ × = (.r‘𝑅) & ⊢ (𝜑 → 𝐴 ∈ 𝐵) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐶 ∈ 𝐾) & ⊢ (𝜑 → 𝐷 ∈ ℕ0) & ⊢ (𝜑 → 𝑌 ∈ ℕ0) ⇒ ⊢ (𝜑 → ((coe1‘(𝐴 ∙ (𝐶 · (𝐷 ↑ 𝑋))))‘(𝐷 + 𝑌)) = (((coe1‘𝐴)‘𝑌) × 𝐶)) | ||
Theorem | coe1pwmul 21450* | Coefficient vector of a polynomial multiplied on the left by a variable power. (Contributed by Stefan O'Rear, 1-Apr-2015.) |
⊢ 0 = (0g‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ 𝑁 = (mulGrp‘𝑃) & ⊢ ↑ = (.g‘𝑁) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ · = (.r‘𝑃) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐴 ∈ 𝐵) & ⊢ (𝜑 → 𝐷 ∈ ℕ0) ⇒ ⊢ (𝜑 → (coe1‘((𝐷 ↑ 𝑋) · 𝐴)) = (𝑥 ∈ ℕ0 ↦ if(𝐷 ≤ 𝑥, ((coe1‘𝐴)‘(𝑥 − 𝐷)), 0 ))) | ||
Theorem | coe1pwmulfv 21451 | Function value of a right-multiplication by a variable power in the shifted domain. (Contributed by Stefan O'Rear, 1-Apr-2015.) |
⊢ 0 = (0g‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ 𝑁 = (mulGrp‘𝑃) & ⊢ ↑ = (.g‘𝑁) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ · = (.r‘𝑃) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐴 ∈ 𝐵) & ⊢ (𝜑 → 𝐷 ∈ ℕ0) & ⊢ (𝜑 → 𝑌 ∈ ℕ0) ⇒ ⊢ (𝜑 → ((coe1‘((𝐷 ↑ 𝑋) · 𝐴))‘(𝐷 + 𝑌)) = ((coe1‘𝐴)‘𝑌)) | ||
Theorem | ply1scltm 21452 | A scalar is a term with zero exponent. (Contributed by Stefan O'Rear, 29-Mar-2015.) |
⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ · = ( ·𝑠 ‘𝑃) & ⊢ 𝑁 = (mulGrp‘𝑃) & ⊢ ↑ = (.g‘𝑁) & ⊢ 𝐴 = (algSc‘𝑃) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐾) → (𝐴‘𝐹) = (𝐹 · (0 ↑ 𝑋))) | ||
Theorem | coe1sclmul 21453 | Coefficient vector of a polynomial multiplied on the left by a scalar. (Contributed by Stefan O'Rear, 29-Mar-2015.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐴 = (algSc‘𝑃) & ⊢ ∙ = (.r‘𝑃) & ⊢ · = (.r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → (coe1‘((𝐴‘𝑋) ∙ 𝑌)) = ((ℕ0 × {𝑋}) ∘f · (coe1‘𝑌))) | ||
Theorem | coe1sclmulfv 21454 | A single coefficient of a polynomial multiplied on the left by a scalar. (Contributed by Stefan O'Rear, 1-Apr-2015.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐴 = (algSc‘𝑃) & ⊢ ∙ = (.r‘𝑃) & ⊢ · = (.r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) ∧ 0 ∈ ℕ0) → ((coe1‘((𝐴‘𝑋) ∙ 𝑌))‘ 0 ) = (𝑋 · ((coe1‘𝑌)‘ 0 ))) | ||
Theorem | coe1sclmul2 21455 | Coefficient vector of a polynomial multiplied on the right by a scalar. (Contributed by Stefan O'Rear, 29-Mar-2015.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐴 = (algSc‘𝑃) & ⊢ ∙ = (.r‘𝑃) & ⊢ · = (.r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → (coe1‘(𝑌 ∙ (𝐴‘𝑋))) = ((coe1‘𝑌) ∘f · (ℕ0 × {𝑋}))) | ||
Theorem | ply1sclf 21456 | A scalar polynomial is a polynomial. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐴 = (algSc‘𝑃) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) ⇒ ⊢ (𝑅 ∈ Ring → 𝐴:𝐾⟶𝐵) | ||
Theorem | ply1sclcl 21457 | The value of the algebra scalars function for (univariate) polynomials applied to a scalar results in a constant polynomial. (Contributed by AV, 27-Nov-2019.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐴 = (algSc‘𝑃) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐾) → (𝐴‘𝑆) ∈ 𝐵) | ||
Theorem | coe1scl 21458* | Coefficient vector of a scalar. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐴 = (algSc‘𝑃) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾) → (coe1‘(𝐴‘𝑋)) = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, 𝑋, 0 ))) | ||
Theorem | ply1sclid 21459 | Recover the base scalar from a scalar polynomial. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐴 = (algSc‘𝑃) & ⊢ 𝐾 = (Base‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾) → 𝑋 = ((coe1‘(𝐴‘𝑋))‘0)) | ||
Theorem | ply1sclf1 21460 | The polynomial scalar function is injective. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐴 = (algSc‘𝑃) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) ⇒ ⊢ (𝑅 ∈ Ring → 𝐴:𝐾–1-1→𝐵) | ||
Theorem | ply1scl0 21461 | The zero scalar is zero. (Contributed by Stefan O'Rear, 29-Mar-2015.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐴 = (algSc‘𝑃) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑌 = (0g‘𝑃) ⇒ ⊢ (𝑅 ∈ Ring → (𝐴‘ 0 ) = 𝑌) | ||
Theorem | ply1scln0 21462 | Nonzero scalars create nonzero polynomials. (Contributed by Stefan O'Rear, 29-Mar-2015.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐴 = (algSc‘𝑃) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑌 = (0g‘𝑃) & ⊢ 𝐾 = (Base‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0 ) → (𝐴‘𝑋) ≠ 𝑌) | ||
Theorem | ply1scl1 21463 | The one scalar is the unit polynomial. (Contributed by Stefan O'Rear, 1-Apr-2015.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐴 = (algSc‘𝑃) & ⊢ 1 = (1r‘𝑅) & ⊢ 𝑁 = (1r‘𝑃) ⇒ ⊢ (𝑅 ∈ Ring → (𝐴‘ 1 ) = 𝑁) | ||
Theorem | ply1idvr1 21464 | The identity of a polynomial ring expressed as power of the polynomial variable. (Contributed by AV, 14-Aug-2019.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ 𝑁 = (mulGrp‘𝑃) & ⊢ ↑ = (.g‘𝑁) ⇒ ⊢ (𝑅 ∈ Ring → (0 ↑ 𝑋) = (1r‘𝑃)) | ||
Theorem | cply1mul 21465* | The product of two constant polynomials is a constant polynomial. (Contributed by AV, 18-Nov-2019.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 0 = (0g‘𝑅) & ⊢ × = (.r‘𝑃) ⇒ ⊢ ((𝑅 ∈ Ring ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) → (∀𝑐 ∈ ℕ (((coe1‘𝐹)‘𝑐) = 0 ∧ ((coe1‘𝐺)‘𝑐) = 0 ) → ∀𝑐 ∈ ℕ ((coe1‘(𝐹 × 𝐺))‘𝑐) = 0 )) | ||
Theorem | ply1coefsupp 21466* | The decomposition of a univariate polynomial is finitely supported. Formerly part of proof for ply1coe 21467. (Contributed by Stefan O'Rear, 21-Mar-2015.) (Revised by AV, 8-Aug-2019.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ · = ( ·𝑠 ‘𝑃) & ⊢ 𝑀 = (mulGrp‘𝑃) & ⊢ ↑ = (.g‘𝑀) & ⊢ 𝐴 = (coe1‘𝐾) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) → (𝑘 ∈ ℕ0 ↦ ((𝐴‘𝑘) · (𝑘 ↑ 𝑋))) finSupp (0g‘𝑃)) | ||
Theorem | ply1coe 21467* | Decompose a univariate polynomial as a sum of powers. (Contributed by Stefan O'Rear, 21-Mar-2015.) (Revised by AV, 7-Oct-2019.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ · = ( ·𝑠 ‘𝑃) & ⊢ 𝑀 = (mulGrp‘𝑃) & ⊢ ↑ = (.g‘𝑀) & ⊢ 𝐴 = (coe1‘𝐾) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵) → 𝐾 = (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝐴‘𝑘) · (𝑘 ↑ 𝑋))))) | ||
Theorem | eqcoe1ply1eq 21468* | Two polynomials over the same ring are equal if they have identical coefficients. (Contributed by AV, 7-Oct-2019.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝐴 = (coe1‘𝐾) & ⊢ 𝐶 = (coe1‘𝐿) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) → (∀𝑘 ∈ ℕ0 (𝐴‘𝑘) = (𝐶‘𝑘) → 𝐾 = 𝐿)) | ||
Theorem | ply1coe1eq 21469* | Two polynomials over the same ring are equal iff they have identical coefficients. (Contributed by AV, 13-Oct-2019.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝐴 = (coe1‘𝐾) & ⊢ 𝐶 = (coe1‘𝐿) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵) → (∀𝑘 ∈ ℕ0 (𝐴‘𝑘) = (𝐶‘𝑘) ↔ 𝐾 = 𝐿)) | ||
Theorem | cply1coe0 21470* | All but the first coefficient of a constant polynomial ( i.e. a "lifted scalar") are zero. (Contributed by AV, 16-Nov-2019.) |
⊢ 𝐾 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝐴 = (algSc‘𝑃) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐾) → ∀𝑛 ∈ ℕ ((coe1‘(𝐴‘𝑆))‘𝑛) = 0 ) | ||
Theorem | cply1coe0bi 21471* | A polynomial is constant (i.e. a "lifted scalar") iff all but the first coefficient are zero. (Contributed by AV, 16-Nov-2019.) |
⊢ 𝐾 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝐴 = (algSc‘𝑃) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (∃𝑠 ∈ 𝐾 𝑀 = (𝐴‘𝑠) ↔ ∀𝑛 ∈ ℕ ((coe1‘𝑀)‘𝑛) = 0 )) | ||
Theorem | coe1fzgsumdlem 21472* | Lemma for coe1fzgsumd 21473 (induction step). (Contributed by AV, 8-Oct-2019.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐾 ∈ ℕ0) ⇒ ⊢ ((𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑) → ((∀𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 → ((coe1‘(𝑃 Σg (𝑥 ∈ 𝑚 ↦ 𝑀)))‘𝐾) = (𝑅 Σg (𝑥 ∈ 𝑚 ↦ ((coe1‘𝑀)‘𝐾)))) → (∀𝑥 ∈ (𝑚 ∪ {𝑎})𝑀 ∈ 𝐵 → ((coe1‘(𝑃 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ 𝑀)))‘𝐾) = (𝑅 Σg (𝑥 ∈ (𝑚 ∪ {𝑎}) ↦ ((coe1‘𝑀)‘𝐾)))))) | ||
Theorem | coe1fzgsumd 21473* | Value of an evaluated coefficient in a finite group sum of polynomials. (Contributed by AV, 8-Oct-2019.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐾 ∈ ℕ0) & ⊢ (𝜑 → ∀𝑥 ∈ 𝑁 𝑀 ∈ 𝐵) & ⊢ (𝜑 → 𝑁 ∈ Fin) ⇒ ⊢ (𝜑 → ((coe1‘(𝑃 Σg (𝑥 ∈ 𝑁 ↦ 𝑀)))‘𝐾) = (𝑅 Σg (𝑥 ∈ 𝑁 ↦ ((coe1‘𝑀)‘𝐾)))) | ||
Theorem | gsumsmonply1 21474* | A finite group sum of scaled monomials is a univariate polynomial. (Contributed by AV, 8-Oct-2019.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ ↑ = (.g‘(mulGrp‘𝑃)) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ ∗ = ( ·𝑠 ‘𝑃) & ⊢ 0 = (0g‘𝑅) & ⊢ (𝜑 → ∀𝑘 ∈ ℕ0 𝐴 ∈ 𝐾) & ⊢ (𝜑 → (𝑘 ∈ ℕ0 ↦ 𝐴) finSupp 0 ) ⇒ ⊢ (𝜑 → (𝑃 Σg (𝑘 ∈ ℕ0 ↦ (𝐴 ∗ (𝑘 ↑ 𝑋)))) ∈ 𝐵) | ||
Theorem | gsummoncoe1 21475* | A coefficient of the polynomial represented as a sum of scaled monomials is the coefficient of the corresponding scaled monomial. (Contributed by AV, 13-Oct-2019.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ ↑ = (.g‘(mulGrp‘𝑃)) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ ∗ = ( ·𝑠 ‘𝑃) & ⊢ 0 = (0g‘𝑅) & ⊢ (𝜑 → ∀𝑘 ∈ ℕ0 𝐴 ∈ 𝐾) & ⊢ (𝜑 → (𝑘 ∈ ℕ0 ↦ 𝐴) finSupp 0 ) & ⊢ (𝜑 → 𝐿 ∈ ℕ0) ⇒ ⊢ (𝜑 → ((coe1‘(𝑃 Σg (𝑘 ∈ ℕ0 ↦ (𝐴 ∗ (𝑘 ↑ 𝑋)))))‘𝐿) = ⦋𝐿 / 𝑘⦌𝐴) | ||
Theorem | gsumply1eq 21476* | Two univariate polynomials given as (finitely supported) sum of scaled monomials are equal iff the corresponding coefficients are equal. (Contributed by AV, 21-Nov-2019.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ ↑ = (.g‘(mulGrp‘𝑃)) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ ∗ = ( ·𝑠 ‘𝑃) & ⊢ 0 = (0g‘𝑅) & ⊢ (𝜑 → ∀𝑘 ∈ ℕ0 𝐴 ∈ 𝐾) & ⊢ (𝜑 → (𝑘 ∈ ℕ0 ↦ 𝐴) finSupp 0 ) & ⊢ (𝜑 → ∀𝑘 ∈ ℕ0 𝐵 ∈ 𝐾) & ⊢ (𝜑 → (𝑘 ∈ ℕ0 ↦ 𝐵) finSupp 0 ) & ⊢ (𝜑 → 𝑂 = (𝑃 Σg (𝑘 ∈ ℕ0 ↦ (𝐴 ∗ (𝑘 ↑ 𝑋))))) & ⊢ (𝜑 → 𝑄 = (𝑃 Σg (𝑘 ∈ ℕ0 ↦ (𝐵 ∗ (𝑘 ↑ 𝑋))))) ⇒ ⊢ (𝜑 → (𝑂 = 𝑄 ↔ ∀𝑘 ∈ ℕ0 𝐴 = 𝐵)) | ||
Theorem | lply1binom 21477* | The binomial theorem for linear polynomials (monic polynomials of degree 1) over commutative rings: (𝑋 + 𝐴)↑𝑁 is the sum from 𝑘 = 0 to 𝑁 of (𝑁C𝑘) · ((𝐴↑(𝑁 − 𝑘)) · (𝑋↑𝑘)). (Contributed by AV, 25-Aug-2019.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ + = (+g‘𝑃) & ⊢ × = (.r‘𝑃) & ⊢ · = (.g‘𝑃) & ⊢ 𝐺 = (mulGrp‘𝑃) & ⊢ ↑ = (.g‘𝐺) & ⊢ 𝐵 = (Base‘𝑃) ⇒ ⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝐵) → (𝑁 ↑ (𝑋 + 𝐴)) = (𝑃 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁 − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝑋)))))) | ||
Theorem | lply1binomsc 21478* | The binomial theorem for linear polynomials (monic polynomials of degree 1) over commutative rings, expressed by an element of this ring: (𝑋 + 𝐴)↑𝑁 is the sum from 𝑘 = 0 to 𝑁 of (𝑁C𝑘) · ((𝐴↑(𝑁 − 𝑘)) · (𝑋↑𝑘)). (Contributed by AV, 25-Aug-2019.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑋 = (var1‘𝑅) & ⊢ + = (+g‘𝑃) & ⊢ × = (.r‘𝑃) & ⊢ · = (.g‘𝑃) & ⊢ 𝐺 = (mulGrp‘𝑃) & ⊢ ↑ = (.g‘𝐺) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ 𝑆 = (algSc‘𝑃) & ⊢ 𝐻 = (mulGrp‘𝑅) & ⊢ 𝐸 = (.g‘𝐻) ⇒ ⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝐾) → (𝑁 ↑ (𝑋 + (𝑆‘𝐴))) = (𝑃 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · ((𝑆‘((𝑁 − 𝑘)𝐸𝐴)) × (𝑘 ↑ 𝑋)))))) | ||
Syntax | ces1 21479 | Evaluation of a univariate polynomial in a subring. |
class evalSub1 | ||
Syntax | ce1 21480 | Evaluation of a univariate polynomial. |
class eval1 | ||
Definition | df-evls1 21481* | Define the evaluation map for the univariate polynomial algebra. The function (𝑆 evalSub1 𝑅):𝑉⟶(𝑆 ↑m 𝑆) makes sense when 𝑆 is a ring and 𝑅 is a subring of 𝑆, and where 𝑉 is the set of polynomials in (Poly1‘𝑅). This function maps an element of the formal polynomial algebra (with coefficients in 𝑅) to a function from assignments to the variable from 𝑆 into an element of 𝑆 formed by evaluating the polynomial with the given assignment. (Contributed by Mario Carneiro, 12-Jun-2015.) |
⊢ evalSub1 = (𝑠 ∈ V, 𝑟 ∈ 𝒫 (Base‘𝑠) ↦ ⦋(Base‘𝑠) / 𝑏⦌((𝑥 ∈ (𝑏 ↑m (𝑏 ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ 𝑏 ↦ (1o × {𝑦})))) ∘ ((1o evalSub 𝑠)‘𝑟))) | ||
Definition | df-evl1 21482* | Define the evaluation map for the univariate polynomial algebra. The function (eval1‘𝑅):𝑉⟶(𝑅 ↑m 𝑅) makes sense when 𝑅 is a ring, and 𝑉 is the set of polynomials in (Poly1‘𝑅). This function maps an element of the formal polynomial algebra (with coefficients in 𝑅) to a function from assignments to the variable from 𝑅 into an element of 𝑅 formed by evaluating the polynomial with the given assignment. (Contributed by Mario Carneiro, 12-Jun-2015.) |
⊢ eval1 = (𝑟 ∈ V ↦ ⦋(Base‘𝑟) / 𝑏⦌((𝑥 ∈ (𝑏 ↑m (𝑏 ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ 𝑏 ↦ (1o × {𝑦})))) ∘ (1o eval 𝑟))) | ||
Theorem | reldmevls1 21483 | Well-behaved binary operation property of evalSub1. (Contributed by AV, 7-Sep-2019.) |
⊢ Rel dom evalSub1 | ||
Theorem | ply1frcl 21484 | Reverse closure for the set of univariate polynomial functions. (Contributed by AV, 9-Sep-2019.) |
⊢ 𝑄 = ran (𝑆 evalSub1 𝑅) ⇒ ⊢ (𝑋 ∈ 𝑄 → (𝑆 ∈ V ∧ 𝑅 ∈ 𝒫 (Base‘𝑆))) | ||
Theorem | evls1fval 21485* | Value of the univariate polynomial evaluation map function. (Contributed by AV, 7-Sep-2019.) |
⊢ 𝑄 = (𝑆 evalSub1 𝑅) & ⊢ 𝐸 = (1o evalSub 𝑆) & ⊢ 𝐵 = (Base‘𝑆) ⇒ ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑅 ∈ 𝒫 𝐵) → 𝑄 = ((𝑥 ∈ (𝐵 ↑m (𝐵 ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) ∘ (𝐸‘𝑅))) | ||
Theorem | evls1val 21486* | Value of the univariate polynomial evaluation map. (Contributed by AV, 10-Sep-2019.) |
⊢ 𝑄 = (𝑆 evalSub1 𝑅) & ⊢ 𝐸 = (1o evalSub 𝑆) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ 𝑀 = (1o mPoly (𝑆 ↾s 𝑅)) & ⊢ 𝐾 = (Base‘𝑀) ⇒ ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆) ∧ 𝐴 ∈ 𝐾) → (𝑄‘𝐴) = (((𝐸‘𝑅)‘𝐴) ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) | ||
Theorem | evls1rhmlem 21487* | Lemma for evl1rhm 21498 and evls1rhm 21488 (formerly part of the proof of evl1rhm 21498): The first function of the composition forming the univariate polynomial evaluation map function for a (sub)ring is a ring homomorphism. (Contributed by AV, 11-Sep-2019.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑇 = (𝑅 ↑s 𝐵) & ⊢ 𝐹 = (𝑥 ∈ (𝐵 ↑m (𝐵 ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) ⇒ ⊢ (𝑅 ∈ CRing → 𝐹 ∈ ((𝑅 ↑s (𝐵 ↑m 1o)) RingHom 𝑇)) | ||
Theorem | evls1rhm 21488 | Polynomial evaluation is a homomorphism (into the product ring). (Contributed by AV, 11-Sep-2019.) |
⊢ 𝑄 = (𝑆 evalSub1 𝑅) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ 𝑇 = (𝑆 ↑s 𝐵) & ⊢ 𝑈 = (𝑆 ↾s 𝑅) & ⊢ 𝑊 = (Poly1‘𝑈) ⇒ ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑄 ∈ (𝑊 RingHom 𝑇)) | ||
Theorem | evls1sca 21489 | Univariate polynomial evaluation maps scalars to constant functions. (Contributed by AV, 8-Sep-2019.) |
⊢ 𝑄 = (𝑆 evalSub1 𝑅) & ⊢ 𝑊 = (Poly1‘𝑈) & ⊢ 𝑈 = (𝑆 ↾s 𝑅) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ 𝐴 = (algSc‘𝑊) & ⊢ (𝜑 → 𝑆 ∈ CRing) & ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) & ⊢ (𝜑 → 𝑋 ∈ 𝑅) ⇒ ⊢ (𝜑 → (𝑄‘(𝐴‘𝑋)) = (𝐵 × {𝑋})) | ||
Theorem | evls1gsumadd 21490* | Univariate polynomial evaluation maps (additive) group sums to group sums. (Contributed by AV, 14-Sep-2019.) |
⊢ 𝑄 = (𝑆 evalSub1 𝑅) & ⊢ 𝐾 = (Base‘𝑆) & ⊢ 𝑊 = (Poly1‘𝑈) & ⊢ 0 = (0g‘𝑊) & ⊢ 𝑈 = (𝑆 ↾s 𝑅) & ⊢ 𝑃 = (𝑆 ↑s 𝐾) & ⊢ 𝐵 = (Base‘𝑊) & ⊢ (𝜑 → 𝑆 ∈ CRing) & ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑁) → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑁 ⊆ ℕ0) & ⊢ (𝜑 → (𝑥 ∈ 𝑁 ↦ 𝑌) finSupp 0 ) ⇒ ⊢ (𝜑 → (𝑄‘(𝑊 Σg (𝑥 ∈ 𝑁 ↦ 𝑌))) = (𝑃 Σg (𝑥 ∈ 𝑁 ↦ (𝑄‘𝑌)))) | ||
Theorem | evls1gsummul 21491* | Univariate polynomial evaluation maps (multiplicative) group sums to group sums. (Contributed by AV, 14-Sep-2019.) |
⊢ 𝑄 = (𝑆 evalSub1 𝑅) & ⊢ 𝐾 = (Base‘𝑆) & ⊢ 𝑊 = (Poly1‘𝑈) & ⊢ 𝐺 = (mulGrp‘𝑊) & ⊢ 1 = (1r‘𝑊) & ⊢ 𝑈 = (𝑆 ↾s 𝑅) & ⊢ 𝑃 = (𝑆 ↑s 𝐾) & ⊢ 𝐻 = (mulGrp‘𝑃) & ⊢ 𝐵 = (Base‘𝑊) & ⊢ (𝜑 → 𝑆 ∈ CRing) & ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑁) → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑁 ⊆ ℕ0) & ⊢ (𝜑 → (𝑥 ∈ 𝑁 ↦ 𝑌) finSupp 1 ) ⇒ ⊢ (𝜑 → (𝑄‘(𝐺 Σg (𝑥 ∈ 𝑁 ↦ 𝑌))) = (𝐻 Σg (𝑥 ∈ 𝑁 ↦ (𝑄‘𝑌)))) | ||
Theorem | evls1pw 21492 | Univariate polynomial evaluation for subrings maps the exponentiation of a polynomial to the exponentiation of the evaluated polynomial. (Contributed by SN, 29-Feb-2024.) |
⊢ 𝑄 = (𝑆 evalSub1 𝑅) & ⊢ 𝑈 = (𝑆 ↾s 𝑅) & ⊢ 𝑊 = (Poly1‘𝑈) & ⊢ 𝐺 = (mulGrp‘𝑊) & ⊢ 𝐾 = (Base‘𝑆) & ⊢ 𝐵 = (Base‘𝑊) & ⊢ ↑ = (.g‘𝐺) & ⊢ (𝜑 → 𝑆 ∈ CRing) & ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑄‘(𝑁 ↑ 𝑋)) = (𝑁(.g‘(mulGrp‘(𝑆 ↑s 𝐾)))(𝑄‘𝑋))) | ||
Theorem | evls1varpw 21493 | Univariate polynomial evaluation for subrings maps the exponentiation of a variable to the exponentiation of the evaluated variable. (Contributed by AV, 14-Sep-2019.) |
⊢ 𝑄 = (𝑆 evalSub1 𝑅) & ⊢ 𝑈 = (𝑆 ↾s 𝑅) & ⊢ 𝑊 = (Poly1‘𝑈) & ⊢ 𝐺 = (mulGrp‘𝑊) & ⊢ 𝑋 = (var1‘𝑈) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ ↑ = (.g‘𝐺) & ⊢ (𝜑 → 𝑆 ∈ CRing) & ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝑄‘(𝑁 ↑ 𝑋)) = (𝑁(.g‘(mulGrp‘(𝑆 ↑s 𝐵)))(𝑄‘𝑋))) | ||
Theorem | evl1fval 21494* | Value of the simple/same ring evaluation map. (Contributed by Mario Carneiro, 12-Jun-2015.) |
⊢ 𝑂 = (eval1‘𝑅) & ⊢ 𝑄 = (1o eval 𝑅) & ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ 𝑂 = ((𝑥 ∈ (𝐵 ↑m (𝐵 ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) ∘ 𝑄) | ||
Theorem | evl1val 21495* | Value of the simple/same ring evaluation map. (Contributed by Mario Carneiro, 12-Jun-2015.) |
⊢ 𝑂 = (eval1‘𝑅) & ⊢ 𝑄 = (1o eval 𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑀 = (1o mPoly 𝑅) & ⊢ 𝐾 = (Base‘𝑀) ⇒ ⊢ ((𝑅 ∈ CRing ∧ 𝐴 ∈ 𝐾) → (𝑂‘𝐴) = ((𝑄‘𝐴) ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) | ||
Theorem | evl1fval1lem 21496 | Lemma for evl1fval1 21497. (Contributed by AV, 11-Sep-2019.) |
⊢ 𝑄 = (eval1‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ (𝑅 ∈ 𝑉 → 𝑄 = (𝑅 evalSub1 𝐵)) | ||
Theorem | evl1fval1 21497 | Value of the simple/same ring evaluation map function for univariate polynomials. (Contributed by AV, 11-Sep-2019.) |
⊢ 𝑄 = (eval1‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ 𝑄 = (𝑅 evalSub1 𝐵) | ||
Theorem | evl1rhm 21498 | Polynomial evaluation is a homomorphism (into the product ring). (Contributed by Mario Carneiro, 12-Jun-2015.) (Proof shortened by AV, 13-Sep-2019.) |
⊢ 𝑂 = (eval1‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑇 = (𝑅 ↑s 𝐵) & ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ (𝑅 ∈ CRing → 𝑂 ∈ (𝑃 RingHom 𝑇)) | ||
Theorem | fveval1fvcl 21499 | The function value of the evaluation function of a polynomial is an element of the underlying ring. (Contributed by AV, 17-Sep-2019.) |
⊢ 𝑂 = (eval1‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑈 = (Base‘𝑃) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑀 ∈ 𝑈) ⇒ ⊢ (𝜑 → ((𝑂‘𝑀)‘𝑌) ∈ 𝐵) | ||
Theorem | evl1sca 21500 | Polynomial evaluation maps scalars to constant functions. (Contributed by Mario Carneiro, 12-Jun-2015.) |
⊢ 𝑂 = (eval1‘𝑅) & ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐴 = (algSc‘𝑃) ⇒ ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵) → (𝑂‘(𝐴‘𝑋)) = (𝐵 × {𝑋})) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |