| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > asclfval | Structured version Visualization version GIF version | ||
| Description: Function value of the algebra scalar lifting function. (Contributed by Mario Carneiro, 8-Mar-2015.) |
| Ref | Expression |
|---|---|
| asclfval.a | ⊢ 𝐴 = (algSc‘𝑊) |
| asclfval.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| asclfval.k | ⊢ 𝐾 = (Base‘𝐹) |
| asclfval.s | ⊢ · = ( ·𝑠 ‘𝑊) |
| asclfval.o | ⊢ 1 = (1r‘𝑊) |
| Ref | Expression |
|---|---|
| asclfval | ⊢ 𝐴 = (𝑥 ∈ 𝐾 ↦ (𝑥 · 1 )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | asclfval.a | . 2 ⊢ 𝐴 = (algSc‘𝑊) | |
| 2 | fveq2 6858 | . . . . . . . 8 ⊢ (𝑤 = 𝑊 → (Scalar‘𝑤) = (Scalar‘𝑊)) | |
| 3 | asclfval.f | . . . . . . . 8 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 4 | 2, 3 | eqtr4di 2782 | . . . . . . 7 ⊢ (𝑤 = 𝑊 → (Scalar‘𝑤) = 𝐹) |
| 5 | 4 | fveq2d 6862 | . . . . . 6 ⊢ (𝑤 = 𝑊 → (Base‘(Scalar‘𝑤)) = (Base‘𝐹)) |
| 6 | asclfval.k | . . . . . 6 ⊢ 𝐾 = (Base‘𝐹) | |
| 7 | 5, 6 | eqtr4di 2782 | . . . . 5 ⊢ (𝑤 = 𝑊 → (Base‘(Scalar‘𝑤)) = 𝐾) |
| 8 | fveq2 6858 | . . . . . . 7 ⊢ (𝑤 = 𝑊 → ( ·𝑠 ‘𝑤) = ( ·𝑠 ‘𝑊)) | |
| 9 | asclfval.s | . . . . . . 7 ⊢ · = ( ·𝑠 ‘𝑊) | |
| 10 | 8, 9 | eqtr4di 2782 | . . . . . 6 ⊢ (𝑤 = 𝑊 → ( ·𝑠 ‘𝑤) = · ) |
| 11 | eqidd 2730 | . . . . . 6 ⊢ (𝑤 = 𝑊 → 𝑥 = 𝑥) | |
| 12 | fveq2 6858 | . . . . . . 7 ⊢ (𝑤 = 𝑊 → (1r‘𝑤) = (1r‘𝑊)) | |
| 13 | asclfval.o | . . . . . . 7 ⊢ 1 = (1r‘𝑊) | |
| 14 | 12, 13 | eqtr4di 2782 | . . . . . 6 ⊢ (𝑤 = 𝑊 → (1r‘𝑤) = 1 ) |
| 15 | 10, 11, 14 | oveq123d 7408 | . . . . 5 ⊢ (𝑤 = 𝑊 → (𝑥( ·𝑠 ‘𝑤)(1r‘𝑤)) = (𝑥 · 1 )) |
| 16 | 7, 15 | mpteq12dv 5194 | . . . 4 ⊢ (𝑤 = 𝑊 → (𝑥 ∈ (Base‘(Scalar‘𝑤)) ↦ (𝑥( ·𝑠 ‘𝑤)(1r‘𝑤))) = (𝑥 ∈ 𝐾 ↦ (𝑥 · 1 ))) |
| 17 | df-ascl 21764 | . . . 4 ⊢ algSc = (𝑤 ∈ V ↦ (𝑥 ∈ (Base‘(Scalar‘𝑤)) ↦ (𝑥( ·𝑠 ‘𝑤)(1r‘𝑤)))) | |
| 18 | 16, 17, 6 | mptfvmpt 7202 | . . 3 ⊢ (𝑊 ∈ V → (algSc‘𝑊) = (𝑥 ∈ 𝐾 ↦ (𝑥 · 1 ))) |
| 19 | fvprc 6850 | . . . . 5 ⊢ (¬ 𝑊 ∈ V → (algSc‘𝑊) = ∅) | |
| 20 | mpt0 6660 | . . . . 5 ⊢ (𝑥 ∈ ∅ ↦ (𝑥 · 1 )) = ∅ | |
| 21 | 19, 20 | eqtr4di 2782 | . . . 4 ⊢ (¬ 𝑊 ∈ V → (algSc‘𝑊) = (𝑥 ∈ ∅ ↦ (𝑥 · 1 ))) |
| 22 | fvprc 6850 | . . . . . . . . 9 ⊢ (¬ 𝑊 ∈ V → (Scalar‘𝑊) = ∅) | |
| 23 | 3, 22 | eqtrid 2776 | . . . . . . . 8 ⊢ (¬ 𝑊 ∈ V → 𝐹 = ∅) |
| 24 | 23 | fveq2d 6862 | . . . . . . 7 ⊢ (¬ 𝑊 ∈ V → (Base‘𝐹) = (Base‘∅)) |
| 25 | base0 17184 | . . . . . . 7 ⊢ ∅ = (Base‘∅) | |
| 26 | 24, 25 | eqtr4di 2782 | . . . . . 6 ⊢ (¬ 𝑊 ∈ V → (Base‘𝐹) = ∅) |
| 27 | 6, 26 | eqtrid 2776 | . . . . 5 ⊢ (¬ 𝑊 ∈ V → 𝐾 = ∅) |
| 28 | 27 | mpteq1d 5197 | . . . 4 ⊢ (¬ 𝑊 ∈ V → (𝑥 ∈ 𝐾 ↦ (𝑥 · 1 )) = (𝑥 ∈ ∅ ↦ (𝑥 · 1 ))) |
| 29 | 21, 28 | eqtr4d 2767 | . . 3 ⊢ (¬ 𝑊 ∈ V → (algSc‘𝑊) = (𝑥 ∈ 𝐾 ↦ (𝑥 · 1 ))) |
| 30 | 18, 29 | pm2.61i 182 | . 2 ⊢ (algSc‘𝑊) = (𝑥 ∈ 𝐾 ↦ (𝑥 · 1 )) |
| 31 | 1, 30 | eqtri 2752 | 1 ⊢ 𝐴 = (𝑥 ∈ 𝐾 ↦ (𝑥 · 1 )) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2109 Vcvv 3447 ∅c0 4296 ↦ cmpt 5188 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 Scalarcsca 17223 ·𝑠 cvsca 17224 1rcur 20090 algSccascl 21761 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-1cn 11126 ax-addcl 11128 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-nn 12187 df-slot 17152 df-ndx 17164 df-base 17180 df-ascl 21764 |
| This theorem is referenced by: asclval 21789 asclfn 21790 asclf 21791 rnascl 21800 ressascl 21805 asclpropd 21806 rnasclg 42487 |
| Copyright terms: Public domain | W3C validator |