Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > asclfval | Structured version Visualization version GIF version |
Description: Function value of the algebraic scalars function. (Contributed by Mario Carneiro, 8-Mar-2015.) |
Ref | Expression |
---|---|
asclfval.a | ⊢ 𝐴 = (algSc‘𝑊) |
asclfval.f | ⊢ 𝐹 = (Scalar‘𝑊) |
asclfval.k | ⊢ 𝐾 = (Base‘𝐹) |
asclfval.s | ⊢ · = ( ·𝑠 ‘𝑊) |
asclfval.o | ⊢ 1 = (1r‘𝑊) |
Ref | Expression |
---|---|
asclfval | ⊢ 𝐴 = (𝑥 ∈ 𝐾 ↦ (𝑥 · 1 )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | asclfval.a | . 2 ⊢ 𝐴 = (algSc‘𝑊) | |
2 | fveq2 6756 | . . . . . . . 8 ⊢ (𝑤 = 𝑊 → (Scalar‘𝑤) = (Scalar‘𝑊)) | |
3 | asclfval.f | . . . . . . . 8 ⊢ 𝐹 = (Scalar‘𝑊) | |
4 | 2, 3 | eqtr4di 2797 | . . . . . . 7 ⊢ (𝑤 = 𝑊 → (Scalar‘𝑤) = 𝐹) |
5 | 4 | fveq2d 6760 | . . . . . 6 ⊢ (𝑤 = 𝑊 → (Base‘(Scalar‘𝑤)) = (Base‘𝐹)) |
6 | asclfval.k | . . . . . 6 ⊢ 𝐾 = (Base‘𝐹) | |
7 | 5, 6 | eqtr4di 2797 | . . . . 5 ⊢ (𝑤 = 𝑊 → (Base‘(Scalar‘𝑤)) = 𝐾) |
8 | fveq2 6756 | . . . . . . 7 ⊢ (𝑤 = 𝑊 → ( ·𝑠 ‘𝑤) = ( ·𝑠 ‘𝑊)) | |
9 | asclfval.s | . . . . . . 7 ⊢ · = ( ·𝑠 ‘𝑊) | |
10 | 8, 9 | eqtr4di 2797 | . . . . . 6 ⊢ (𝑤 = 𝑊 → ( ·𝑠 ‘𝑤) = · ) |
11 | eqidd 2739 | . . . . . 6 ⊢ (𝑤 = 𝑊 → 𝑥 = 𝑥) | |
12 | fveq2 6756 | . . . . . . 7 ⊢ (𝑤 = 𝑊 → (1r‘𝑤) = (1r‘𝑊)) | |
13 | asclfval.o | . . . . . . 7 ⊢ 1 = (1r‘𝑊) | |
14 | 12, 13 | eqtr4di 2797 | . . . . . 6 ⊢ (𝑤 = 𝑊 → (1r‘𝑤) = 1 ) |
15 | 10, 11, 14 | oveq123d 7276 | . . . . 5 ⊢ (𝑤 = 𝑊 → (𝑥( ·𝑠 ‘𝑤)(1r‘𝑤)) = (𝑥 · 1 )) |
16 | 7, 15 | mpteq12dv 5161 | . . . 4 ⊢ (𝑤 = 𝑊 → (𝑥 ∈ (Base‘(Scalar‘𝑤)) ↦ (𝑥( ·𝑠 ‘𝑤)(1r‘𝑤))) = (𝑥 ∈ 𝐾 ↦ (𝑥 · 1 ))) |
17 | df-ascl 20972 | . . . 4 ⊢ algSc = (𝑤 ∈ V ↦ (𝑥 ∈ (Base‘(Scalar‘𝑤)) ↦ (𝑥( ·𝑠 ‘𝑤)(1r‘𝑤)))) | |
18 | 16, 17, 6 | mptfvmpt 7086 | . . 3 ⊢ (𝑊 ∈ V → (algSc‘𝑊) = (𝑥 ∈ 𝐾 ↦ (𝑥 · 1 ))) |
19 | fvprc 6748 | . . . . 5 ⊢ (¬ 𝑊 ∈ V → (algSc‘𝑊) = ∅) | |
20 | mpt0 6559 | . . . . 5 ⊢ (𝑥 ∈ ∅ ↦ (𝑥 · 1 )) = ∅ | |
21 | 19, 20 | eqtr4di 2797 | . . . 4 ⊢ (¬ 𝑊 ∈ V → (algSc‘𝑊) = (𝑥 ∈ ∅ ↦ (𝑥 · 1 ))) |
22 | fvprc 6748 | . . . . . . . . 9 ⊢ (¬ 𝑊 ∈ V → (Scalar‘𝑊) = ∅) | |
23 | 3, 22 | eqtrid 2790 | . . . . . . . 8 ⊢ (¬ 𝑊 ∈ V → 𝐹 = ∅) |
24 | 23 | fveq2d 6760 | . . . . . . 7 ⊢ (¬ 𝑊 ∈ V → (Base‘𝐹) = (Base‘∅)) |
25 | base0 16845 | . . . . . . 7 ⊢ ∅ = (Base‘∅) | |
26 | 24, 25 | eqtr4di 2797 | . . . . . 6 ⊢ (¬ 𝑊 ∈ V → (Base‘𝐹) = ∅) |
27 | 6, 26 | eqtrid 2790 | . . . . 5 ⊢ (¬ 𝑊 ∈ V → 𝐾 = ∅) |
28 | 27 | mpteq1d 5165 | . . . 4 ⊢ (¬ 𝑊 ∈ V → (𝑥 ∈ 𝐾 ↦ (𝑥 · 1 )) = (𝑥 ∈ ∅ ↦ (𝑥 · 1 ))) |
29 | 21, 28 | eqtr4d 2781 | . . 3 ⊢ (¬ 𝑊 ∈ V → (algSc‘𝑊) = (𝑥 ∈ 𝐾 ↦ (𝑥 · 1 ))) |
30 | 18, 29 | pm2.61i 182 | . 2 ⊢ (algSc‘𝑊) = (𝑥 ∈ 𝐾 ↦ (𝑥 · 1 )) |
31 | 1, 30 | eqtri 2766 | 1 ⊢ 𝐴 = (𝑥 ∈ 𝐾 ↦ (𝑥 · 1 )) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ∅c0 4253 ↦ cmpt 5153 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 Scalarcsca 16891 ·𝑠 cvsca 16892 1rcur 19652 algSccascl 20969 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-1cn 10860 ax-addcl 10862 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-nn 11904 df-slot 16811 df-ndx 16823 df-base 16841 df-ascl 20972 |
This theorem is referenced by: asclval 20994 asclfn 20995 asclf 20996 rnascl 21005 ressascl 21010 asclpropd 21011 rnasclg 40149 |
Copyright terms: Public domain | W3C validator |