![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > asclfval | Structured version Visualization version GIF version |
Description: Function value of the algebraic scalars function. (Contributed by Mario Carneiro, 8-Mar-2015.) |
Ref | Expression |
---|---|
asclfval.a | ⊢ 𝐴 = (algSc‘𝑊) |
asclfval.f | ⊢ 𝐹 = (Scalar‘𝑊) |
asclfval.k | ⊢ 𝐾 = (Base‘𝐹) |
asclfval.s | ⊢ · = ( ·𝑠 ‘𝑊) |
asclfval.o | ⊢ 1 = (1r‘𝑊) |
Ref | Expression |
---|---|
asclfval | ⊢ 𝐴 = (𝑥 ∈ 𝐾 ↦ (𝑥 · 1 )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | asclfval.a | . 2 ⊢ 𝐴 = (algSc‘𝑊) | |
2 | fveq2 6920 | . . . . . . . 8 ⊢ (𝑤 = 𝑊 → (Scalar‘𝑤) = (Scalar‘𝑊)) | |
3 | asclfval.f | . . . . . . . 8 ⊢ 𝐹 = (Scalar‘𝑊) | |
4 | 2, 3 | eqtr4di 2798 | . . . . . . 7 ⊢ (𝑤 = 𝑊 → (Scalar‘𝑤) = 𝐹) |
5 | 4 | fveq2d 6924 | . . . . . 6 ⊢ (𝑤 = 𝑊 → (Base‘(Scalar‘𝑤)) = (Base‘𝐹)) |
6 | asclfval.k | . . . . . 6 ⊢ 𝐾 = (Base‘𝐹) | |
7 | 5, 6 | eqtr4di 2798 | . . . . 5 ⊢ (𝑤 = 𝑊 → (Base‘(Scalar‘𝑤)) = 𝐾) |
8 | fveq2 6920 | . . . . . . 7 ⊢ (𝑤 = 𝑊 → ( ·𝑠 ‘𝑤) = ( ·𝑠 ‘𝑊)) | |
9 | asclfval.s | . . . . . . 7 ⊢ · = ( ·𝑠 ‘𝑊) | |
10 | 8, 9 | eqtr4di 2798 | . . . . . 6 ⊢ (𝑤 = 𝑊 → ( ·𝑠 ‘𝑤) = · ) |
11 | eqidd 2741 | . . . . . 6 ⊢ (𝑤 = 𝑊 → 𝑥 = 𝑥) | |
12 | fveq2 6920 | . . . . . . 7 ⊢ (𝑤 = 𝑊 → (1r‘𝑤) = (1r‘𝑊)) | |
13 | asclfval.o | . . . . . . 7 ⊢ 1 = (1r‘𝑊) | |
14 | 12, 13 | eqtr4di 2798 | . . . . . 6 ⊢ (𝑤 = 𝑊 → (1r‘𝑤) = 1 ) |
15 | 10, 11, 14 | oveq123d 7469 | . . . . 5 ⊢ (𝑤 = 𝑊 → (𝑥( ·𝑠 ‘𝑤)(1r‘𝑤)) = (𝑥 · 1 )) |
16 | 7, 15 | mpteq12dv 5257 | . . . 4 ⊢ (𝑤 = 𝑊 → (𝑥 ∈ (Base‘(Scalar‘𝑤)) ↦ (𝑥( ·𝑠 ‘𝑤)(1r‘𝑤))) = (𝑥 ∈ 𝐾 ↦ (𝑥 · 1 ))) |
17 | df-ascl 21898 | . . . 4 ⊢ algSc = (𝑤 ∈ V ↦ (𝑥 ∈ (Base‘(Scalar‘𝑤)) ↦ (𝑥( ·𝑠 ‘𝑤)(1r‘𝑤)))) | |
18 | 16, 17, 6 | mptfvmpt 7265 | . . 3 ⊢ (𝑊 ∈ V → (algSc‘𝑊) = (𝑥 ∈ 𝐾 ↦ (𝑥 · 1 ))) |
19 | fvprc 6912 | . . . . 5 ⊢ (¬ 𝑊 ∈ V → (algSc‘𝑊) = ∅) | |
20 | mpt0 6722 | . . . . 5 ⊢ (𝑥 ∈ ∅ ↦ (𝑥 · 1 )) = ∅ | |
21 | 19, 20 | eqtr4di 2798 | . . . 4 ⊢ (¬ 𝑊 ∈ V → (algSc‘𝑊) = (𝑥 ∈ ∅ ↦ (𝑥 · 1 ))) |
22 | fvprc 6912 | . . . . . . . . 9 ⊢ (¬ 𝑊 ∈ V → (Scalar‘𝑊) = ∅) | |
23 | 3, 22 | eqtrid 2792 | . . . . . . . 8 ⊢ (¬ 𝑊 ∈ V → 𝐹 = ∅) |
24 | 23 | fveq2d 6924 | . . . . . . 7 ⊢ (¬ 𝑊 ∈ V → (Base‘𝐹) = (Base‘∅)) |
25 | base0 17263 | . . . . . . 7 ⊢ ∅ = (Base‘∅) | |
26 | 24, 25 | eqtr4di 2798 | . . . . . 6 ⊢ (¬ 𝑊 ∈ V → (Base‘𝐹) = ∅) |
27 | 6, 26 | eqtrid 2792 | . . . . 5 ⊢ (¬ 𝑊 ∈ V → 𝐾 = ∅) |
28 | 27 | mpteq1d 5261 | . . . 4 ⊢ (¬ 𝑊 ∈ V → (𝑥 ∈ 𝐾 ↦ (𝑥 · 1 )) = (𝑥 ∈ ∅ ↦ (𝑥 · 1 ))) |
29 | 21, 28 | eqtr4d 2783 | . . 3 ⊢ (¬ 𝑊 ∈ V → (algSc‘𝑊) = (𝑥 ∈ 𝐾 ↦ (𝑥 · 1 ))) |
30 | 18, 29 | pm2.61i 182 | . 2 ⊢ (algSc‘𝑊) = (𝑥 ∈ 𝐾 ↦ (𝑥 · 1 )) |
31 | 1, 30 | eqtri 2768 | 1 ⊢ 𝐴 = (𝑥 ∈ 𝐾 ↦ (𝑥 · 1 )) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ∅c0 4352 ↦ cmpt 5249 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 Scalarcsca 17314 ·𝑠 cvsca 17315 1rcur 20208 algSccascl 21895 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-1cn 11242 ax-addcl 11244 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-nn 12294 df-slot 17229 df-ndx 17241 df-base 17259 df-ascl 21898 |
This theorem is referenced by: asclval 21923 asclfn 21924 asclf 21925 rnascl 21934 ressascl 21939 asclpropd 21940 rnasclg 42454 |
Copyright terms: Public domain | W3C validator |