Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > asclfval | Structured version Visualization version GIF version |
Description: Function value of the algebraic scalars function. (Contributed by Mario Carneiro, 8-Mar-2015.) |
Ref | Expression |
---|---|
asclfval.a | ⊢ 𝐴 = (algSc‘𝑊) |
asclfval.f | ⊢ 𝐹 = (Scalar‘𝑊) |
asclfval.k | ⊢ 𝐾 = (Base‘𝐹) |
asclfval.s | ⊢ · = ( ·𝑠 ‘𝑊) |
asclfval.o | ⊢ 1 = (1r‘𝑊) |
Ref | Expression |
---|---|
asclfval | ⊢ 𝐴 = (𝑥 ∈ 𝐾 ↦ (𝑥 · 1 )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | asclfval.a | . 2 ⊢ 𝐴 = (algSc‘𝑊) | |
2 | fveq2 6819 | . . . . . . . 8 ⊢ (𝑤 = 𝑊 → (Scalar‘𝑤) = (Scalar‘𝑊)) | |
3 | asclfval.f | . . . . . . . 8 ⊢ 𝐹 = (Scalar‘𝑊) | |
4 | 2, 3 | eqtr4di 2794 | . . . . . . 7 ⊢ (𝑤 = 𝑊 → (Scalar‘𝑤) = 𝐹) |
5 | 4 | fveq2d 6823 | . . . . . 6 ⊢ (𝑤 = 𝑊 → (Base‘(Scalar‘𝑤)) = (Base‘𝐹)) |
6 | asclfval.k | . . . . . 6 ⊢ 𝐾 = (Base‘𝐹) | |
7 | 5, 6 | eqtr4di 2794 | . . . . 5 ⊢ (𝑤 = 𝑊 → (Base‘(Scalar‘𝑤)) = 𝐾) |
8 | fveq2 6819 | . . . . . . 7 ⊢ (𝑤 = 𝑊 → ( ·𝑠 ‘𝑤) = ( ·𝑠 ‘𝑊)) | |
9 | asclfval.s | . . . . . . 7 ⊢ · = ( ·𝑠 ‘𝑊) | |
10 | 8, 9 | eqtr4di 2794 | . . . . . 6 ⊢ (𝑤 = 𝑊 → ( ·𝑠 ‘𝑤) = · ) |
11 | eqidd 2737 | . . . . . 6 ⊢ (𝑤 = 𝑊 → 𝑥 = 𝑥) | |
12 | fveq2 6819 | . . . . . . 7 ⊢ (𝑤 = 𝑊 → (1r‘𝑤) = (1r‘𝑊)) | |
13 | asclfval.o | . . . . . . 7 ⊢ 1 = (1r‘𝑊) | |
14 | 12, 13 | eqtr4di 2794 | . . . . . 6 ⊢ (𝑤 = 𝑊 → (1r‘𝑤) = 1 ) |
15 | 10, 11, 14 | oveq123d 7350 | . . . . 5 ⊢ (𝑤 = 𝑊 → (𝑥( ·𝑠 ‘𝑤)(1r‘𝑤)) = (𝑥 · 1 )) |
16 | 7, 15 | mpteq12dv 5180 | . . . 4 ⊢ (𝑤 = 𝑊 → (𝑥 ∈ (Base‘(Scalar‘𝑤)) ↦ (𝑥( ·𝑠 ‘𝑤)(1r‘𝑤))) = (𝑥 ∈ 𝐾 ↦ (𝑥 · 1 ))) |
17 | df-ascl 21160 | . . . 4 ⊢ algSc = (𝑤 ∈ V ↦ (𝑥 ∈ (Base‘(Scalar‘𝑤)) ↦ (𝑥( ·𝑠 ‘𝑤)(1r‘𝑤)))) | |
18 | 16, 17, 6 | mptfvmpt 7154 | . . 3 ⊢ (𝑊 ∈ V → (algSc‘𝑊) = (𝑥 ∈ 𝐾 ↦ (𝑥 · 1 ))) |
19 | fvprc 6811 | . . . . 5 ⊢ (¬ 𝑊 ∈ V → (algSc‘𝑊) = ∅) | |
20 | mpt0 6620 | . . . . 5 ⊢ (𝑥 ∈ ∅ ↦ (𝑥 · 1 )) = ∅ | |
21 | 19, 20 | eqtr4di 2794 | . . . 4 ⊢ (¬ 𝑊 ∈ V → (algSc‘𝑊) = (𝑥 ∈ ∅ ↦ (𝑥 · 1 ))) |
22 | fvprc 6811 | . . . . . . . . 9 ⊢ (¬ 𝑊 ∈ V → (Scalar‘𝑊) = ∅) | |
23 | 3, 22 | eqtrid 2788 | . . . . . . . 8 ⊢ (¬ 𝑊 ∈ V → 𝐹 = ∅) |
24 | 23 | fveq2d 6823 | . . . . . . 7 ⊢ (¬ 𝑊 ∈ V → (Base‘𝐹) = (Base‘∅)) |
25 | base0 17006 | . . . . . . 7 ⊢ ∅ = (Base‘∅) | |
26 | 24, 25 | eqtr4di 2794 | . . . . . 6 ⊢ (¬ 𝑊 ∈ V → (Base‘𝐹) = ∅) |
27 | 6, 26 | eqtrid 2788 | . . . . 5 ⊢ (¬ 𝑊 ∈ V → 𝐾 = ∅) |
28 | 27 | mpteq1d 5184 | . . . 4 ⊢ (¬ 𝑊 ∈ V → (𝑥 ∈ 𝐾 ↦ (𝑥 · 1 )) = (𝑥 ∈ ∅ ↦ (𝑥 · 1 ))) |
29 | 21, 28 | eqtr4d 2779 | . . 3 ⊢ (¬ 𝑊 ∈ V → (algSc‘𝑊) = (𝑥 ∈ 𝐾 ↦ (𝑥 · 1 ))) |
30 | 18, 29 | pm2.61i 182 | . 2 ⊢ (algSc‘𝑊) = (𝑥 ∈ 𝐾 ↦ (𝑥 · 1 )) |
31 | 1, 30 | eqtri 2764 | 1 ⊢ 𝐴 = (𝑥 ∈ 𝐾 ↦ (𝑥 · 1 )) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2105 Vcvv 3441 ∅c0 4268 ↦ cmpt 5172 ‘cfv 6473 (class class class)co 7329 Basecbs 17001 Scalarcsca 17054 ·𝑠 cvsca 17055 1rcur 19824 algSccascl 21157 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5226 ax-sep 5240 ax-nul 5247 ax-pow 5305 ax-pr 5369 ax-un 7642 ax-cnex 11020 ax-1cn 11022 ax-addcl 11024 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4269 df-if 4473 df-pw 4548 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-iun 4940 df-br 5090 df-opab 5152 df-mpt 5173 df-tr 5207 df-id 5512 df-eprel 5518 df-po 5526 df-so 5527 df-fr 5569 df-we 5571 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6232 df-ord 6299 df-on 6300 df-lim 6301 df-suc 6302 df-iota 6425 df-fun 6475 df-fn 6476 df-f 6477 df-f1 6478 df-fo 6479 df-f1o 6480 df-fv 6481 df-ov 7332 df-om 7773 df-2nd 7892 df-frecs 8159 df-wrecs 8190 df-recs 8264 df-rdg 8303 df-nn 12067 df-slot 16972 df-ndx 16984 df-base 17002 df-ascl 21160 |
This theorem is referenced by: asclval 21182 asclfn 21183 asclf 21184 rnascl 21193 ressascl 21198 asclpropd 21199 rnasclg 40470 |
Copyright terms: Public domain | W3C validator |