Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > asclfval | Structured version Visualization version GIF version |
Description: Function value of the algebraic scalars function. (Contributed by Mario Carneiro, 8-Mar-2015.) |
Ref | Expression |
---|---|
asclfval.a | ⊢ 𝐴 = (algSc‘𝑊) |
asclfval.f | ⊢ 𝐹 = (Scalar‘𝑊) |
asclfval.k | ⊢ 𝐾 = (Base‘𝐹) |
asclfval.s | ⊢ · = ( ·𝑠 ‘𝑊) |
asclfval.o | ⊢ 1 = (1r‘𝑊) |
Ref | Expression |
---|---|
asclfval | ⊢ 𝐴 = (𝑥 ∈ 𝐾 ↦ (𝑥 · 1 )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | asclfval.a | . 2 ⊢ 𝐴 = (algSc‘𝑊) | |
2 | fveq2 6774 | . . . . . . . 8 ⊢ (𝑤 = 𝑊 → (Scalar‘𝑤) = (Scalar‘𝑊)) | |
3 | asclfval.f | . . . . . . . 8 ⊢ 𝐹 = (Scalar‘𝑊) | |
4 | 2, 3 | eqtr4di 2796 | . . . . . . 7 ⊢ (𝑤 = 𝑊 → (Scalar‘𝑤) = 𝐹) |
5 | 4 | fveq2d 6778 | . . . . . 6 ⊢ (𝑤 = 𝑊 → (Base‘(Scalar‘𝑤)) = (Base‘𝐹)) |
6 | asclfval.k | . . . . . 6 ⊢ 𝐾 = (Base‘𝐹) | |
7 | 5, 6 | eqtr4di 2796 | . . . . 5 ⊢ (𝑤 = 𝑊 → (Base‘(Scalar‘𝑤)) = 𝐾) |
8 | fveq2 6774 | . . . . . . 7 ⊢ (𝑤 = 𝑊 → ( ·𝑠 ‘𝑤) = ( ·𝑠 ‘𝑊)) | |
9 | asclfval.s | . . . . . . 7 ⊢ · = ( ·𝑠 ‘𝑊) | |
10 | 8, 9 | eqtr4di 2796 | . . . . . 6 ⊢ (𝑤 = 𝑊 → ( ·𝑠 ‘𝑤) = · ) |
11 | eqidd 2739 | . . . . . 6 ⊢ (𝑤 = 𝑊 → 𝑥 = 𝑥) | |
12 | fveq2 6774 | . . . . . . 7 ⊢ (𝑤 = 𝑊 → (1r‘𝑤) = (1r‘𝑊)) | |
13 | asclfval.o | . . . . . . 7 ⊢ 1 = (1r‘𝑊) | |
14 | 12, 13 | eqtr4di 2796 | . . . . . 6 ⊢ (𝑤 = 𝑊 → (1r‘𝑤) = 1 ) |
15 | 10, 11, 14 | oveq123d 7296 | . . . . 5 ⊢ (𝑤 = 𝑊 → (𝑥( ·𝑠 ‘𝑤)(1r‘𝑤)) = (𝑥 · 1 )) |
16 | 7, 15 | mpteq12dv 5165 | . . . 4 ⊢ (𝑤 = 𝑊 → (𝑥 ∈ (Base‘(Scalar‘𝑤)) ↦ (𝑥( ·𝑠 ‘𝑤)(1r‘𝑤))) = (𝑥 ∈ 𝐾 ↦ (𝑥 · 1 ))) |
17 | df-ascl 21062 | . . . 4 ⊢ algSc = (𝑤 ∈ V ↦ (𝑥 ∈ (Base‘(Scalar‘𝑤)) ↦ (𝑥( ·𝑠 ‘𝑤)(1r‘𝑤)))) | |
18 | 16, 17, 6 | mptfvmpt 7104 | . . 3 ⊢ (𝑊 ∈ V → (algSc‘𝑊) = (𝑥 ∈ 𝐾 ↦ (𝑥 · 1 ))) |
19 | fvprc 6766 | . . . . 5 ⊢ (¬ 𝑊 ∈ V → (algSc‘𝑊) = ∅) | |
20 | mpt0 6575 | . . . . 5 ⊢ (𝑥 ∈ ∅ ↦ (𝑥 · 1 )) = ∅ | |
21 | 19, 20 | eqtr4di 2796 | . . . 4 ⊢ (¬ 𝑊 ∈ V → (algSc‘𝑊) = (𝑥 ∈ ∅ ↦ (𝑥 · 1 ))) |
22 | fvprc 6766 | . . . . . . . . 9 ⊢ (¬ 𝑊 ∈ V → (Scalar‘𝑊) = ∅) | |
23 | 3, 22 | eqtrid 2790 | . . . . . . . 8 ⊢ (¬ 𝑊 ∈ V → 𝐹 = ∅) |
24 | 23 | fveq2d 6778 | . . . . . . 7 ⊢ (¬ 𝑊 ∈ V → (Base‘𝐹) = (Base‘∅)) |
25 | base0 16917 | . . . . . . 7 ⊢ ∅ = (Base‘∅) | |
26 | 24, 25 | eqtr4di 2796 | . . . . . 6 ⊢ (¬ 𝑊 ∈ V → (Base‘𝐹) = ∅) |
27 | 6, 26 | eqtrid 2790 | . . . . 5 ⊢ (¬ 𝑊 ∈ V → 𝐾 = ∅) |
28 | 27 | mpteq1d 5169 | . . . 4 ⊢ (¬ 𝑊 ∈ V → (𝑥 ∈ 𝐾 ↦ (𝑥 · 1 )) = (𝑥 ∈ ∅ ↦ (𝑥 · 1 ))) |
29 | 21, 28 | eqtr4d 2781 | . . 3 ⊢ (¬ 𝑊 ∈ V → (algSc‘𝑊) = (𝑥 ∈ 𝐾 ↦ (𝑥 · 1 ))) |
30 | 18, 29 | pm2.61i 182 | . 2 ⊢ (algSc‘𝑊) = (𝑥 ∈ 𝐾 ↦ (𝑥 · 1 )) |
31 | 1, 30 | eqtri 2766 | 1 ⊢ 𝐴 = (𝑥 ∈ 𝐾 ↦ (𝑥 · 1 )) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1539 ∈ wcel 2106 Vcvv 3432 ∅c0 4256 ↦ cmpt 5157 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 Scalarcsca 16965 ·𝑠 cvsca 16966 1rcur 19737 algSccascl 21059 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-1cn 10929 ax-addcl 10931 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-nn 11974 df-slot 16883 df-ndx 16895 df-base 16913 df-ascl 21062 |
This theorem is referenced by: asclval 21084 asclfn 21085 asclf 21086 rnascl 21095 ressascl 21100 asclpropd 21101 rnasclg 40223 |
Copyright terms: Public domain | W3C validator |