MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  asclfval Structured version   Visualization version   GIF version

Theorem asclfval 19796
Description: Function value of the algebraic scalars function. (Contributed by Mario Carneiro, 8-Mar-2015.)
Hypotheses
Ref Expression
asclfval.a 𝐴 = (algSc‘𝑊)
asclfval.f 𝐹 = (Scalar‘𝑊)
asclfval.k 𝐾 = (Base‘𝐹)
asclfval.s · = ( ·𝑠𝑊)
asclfval.o 1 = (1r𝑊)
Assertion
Ref Expression
asclfval 𝐴 = (𝑥𝐾 ↦ (𝑥 · 1 ))
Distinct variable groups:   𝑥,𝐾   𝑥, 1   𝑥, ·   𝑥,𝑊
Allowed substitution hints:   𝐴(𝑥)   𝐹(𝑥)

Proof of Theorem asclfval
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 asclfval.a . 2 𝐴 = (algSc‘𝑊)
2 fveq2 6538 . . . . . . . 8 (𝑤 = 𝑊 → (Scalar‘𝑤) = (Scalar‘𝑊))
3 asclfval.f . . . . . . . 8 𝐹 = (Scalar‘𝑊)
42, 3syl6eqr 2849 . . . . . . 7 (𝑤 = 𝑊 → (Scalar‘𝑤) = 𝐹)
54fveq2d 6542 . . . . . 6 (𝑤 = 𝑊 → (Base‘(Scalar‘𝑤)) = (Base‘𝐹))
6 asclfval.k . . . . . 6 𝐾 = (Base‘𝐹)
75, 6syl6eqr 2849 . . . . 5 (𝑤 = 𝑊 → (Base‘(Scalar‘𝑤)) = 𝐾)
8 fveq2 6538 . . . . . . 7 (𝑤 = 𝑊 → ( ·𝑠𝑤) = ( ·𝑠𝑊))
9 asclfval.s . . . . . . 7 · = ( ·𝑠𝑊)
108, 9syl6eqr 2849 . . . . . 6 (𝑤 = 𝑊 → ( ·𝑠𝑤) = · )
11 eqidd 2796 . . . . . 6 (𝑤 = 𝑊𝑥 = 𝑥)
12 fveq2 6538 . . . . . . 7 (𝑤 = 𝑊 → (1r𝑤) = (1r𝑊))
13 asclfval.o . . . . . . 7 1 = (1r𝑊)
1412, 13syl6eqr 2849 . . . . . 6 (𝑤 = 𝑊 → (1r𝑤) = 1 )
1510, 11, 14oveq123d 7037 . . . . 5 (𝑤 = 𝑊 → (𝑥( ·𝑠𝑤)(1r𝑤)) = (𝑥 · 1 ))
167, 15mpteq12dv 5045 . . . 4 (𝑤 = 𝑊 → (𝑥 ∈ (Base‘(Scalar‘𝑤)) ↦ (𝑥( ·𝑠𝑤)(1r𝑤))) = (𝑥𝐾 ↦ (𝑥 · 1 )))
17 df-ascl 19776 . . . 4 algSc = (𝑤 ∈ V ↦ (𝑥 ∈ (Base‘(Scalar‘𝑤)) ↦ (𝑥( ·𝑠𝑤)(1r𝑤))))
1816, 17, 6mptfvmpt 6856 . . 3 (𝑊 ∈ V → (algSc‘𝑊) = (𝑥𝐾 ↦ (𝑥 · 1 )))
19 fvprc 6531 . . . . 5 𝑊 ∈ V → (algSc‘𝑊) = ∅)
20 mpt0 6358 . . . . 5 (𝑥 ∈ ∅ ↦ (𝑥 · 1 )) = ∅
2119, 20syl6eqr 2849 . . . 4 𝑊 ∈ V → (algSc‘𝑊) = (𝑥 ∈ ∅ ↦ (𝑥 · 1 )))
22 fvprc 6531 . . . . . . . . 9 𝑊 ∈ V → (Scalar‘𝑊) = ∅)
233, 22syl5eq 2843 . . . . . . . 8 𝑊 ∈ V → 𝐹 = ∅)
2423fveq2d 6542 . . . . . . 7 𝑊 ∈ V → (Base‘𝐹) = (Base‘∅))
25 base0 16365 . . . . . . 7 ∅ = (Base‘∅)
2624, 25syl6eqr 2849 . . . . . 6 𝑊 ∈ V → (Base‘𝐹) = ∅)
276, 26syl5eq 2843 . . . . 5 𝑊 ∈ V → 𝐾 = ∅)
2827mpteq1d 5049 . . . 4 𝑊 ∈ V → (𝑥𝐾 ↦ (𝑥 · 1 )) = (𝑥 ∈ ∅ ↦ (𝑥 · 1 )))
2921, 28eqtr4d 2834 . . 3 𝑊 ∈ V → (algSc‘𝑊) = (𝑥𝐾 ↦ (𝑥 · 1 )))
3018, 29pm2.61i 183 . 2 (algSc‘𝑊) = (𝑥𝐾 ↦ (𝑥 · 1 ))
311, 30eqtri 2819 1 𝐴 = (𝑥𝐾 ↦ (𝑥 · 1 ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1522  wcel 2081  Vcvv 3437  c0 4211  cmpt 5041  cfv 6225  (class class class)co 7016  Basecbs 16312  Scalarcsca 16397   ·𝑠 cvsca 16398  1rcur 18941  algSccascl 19773
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-rep 5081  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-ral 3110  df-rex 3111  df-reu 3112  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-nul 4212  df-if 4382  df-sn 4473  df-pr 4475  df-op 4479  df-uni 4746  df-iun 4827  df-br 4963  df-opab 5025  df-mpt 5042  df-id 5348  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-ov 7019  df-slot 16316  df-base 16318  df-ascl 19776
This theorem is referenced by:  asclval  19797  asclfn  19798  asclf  19799  rnascl  19808  ressascl  19812  asclpropd  19814  rnasclg  38661
  Copyright terms: Public domain W3C validator