Detailed syntax breakdown of Definition df-ass
| Step | Hyp | Ref
| Expression |
| 1 | | cass 37849 |
. 2
class
Ass |
| 2 | | vx |
. . . . . . . . . 10
setvar 𝑥 |
| 3 | 2 | cv 1539 |
. . . . . . . . 9
class 𝑥 |
| 4 | | vy |
. . . . . . . . . 10
setvar 𝑦 |
| 5 | 4 | cv 1539 |
. . . . . . . . 9
class 𝑦 |
| 6 | | vg |
. . . . . . . . . 10
setvar 𝑔 |
| 7 | 6 | cv 1539 |
. . . . . . . . 9
class 𝑔 |
| 8 | 3, 5, 7 | co 7431 |
. . . . . . . 8
class (𝑥𝑔𝑦) |
| 9 | | vz |
. . . . . . . . 9
setvar 𝑧 |
| 10 | 9 | cv 1539 |
. . . . . . . 8
class 𝑧 |
| 11 | 8, 10, 7 | co 7431 |
. . . . . . 7
class ((𝑥𝑔𝑦)𝑔𝑧) |
| 12 | 5, 10, 7 | co 7431 |
. . . . . . . 8
class (𝑦𝑔𝑧) |
| 13 | 3, 12, 7 | co 7431 |
. . . . . . 7
class (𝑥𝑔(𝑦𝑔𝑧)) |
| 14 | 11, 13 | wceq 1540 |
. . . . . 6
wff ((𝑥𝑔𝑦)𝑔𝑧) = (𝑥𝑔(𝑦𝑔𝑧)) |
| 15 | 7 | cdm 5685 |
. . . . . . 7
class dom 𝑔 |
| 16 | 15 | cdm 5685 |
. . . . . 6
class dom dom
𝑔 |
| 17 | 14, 9, 16 | wral 3061 |
. . . . 5
wff
∀𝑧 ∈ dom
dom 𝑔((𝑥𝑔𝑦)𝑔𝑧) = (𝑥𝑔(𝑦𝑔𝑧)) |
| 18 | 17, 4, 16 | wral 3061 |
. . . 4
wff
∀𝑦 ∈ dom
dom 𝑔∀𝑧 ∈ dom dom 𝑔((𝑥𝑔𝑦)𝑔𝑧) = (𝑥𝑔(𝑦𝑔𝑧)) |
| 19 | 18, 2, 16 | wral 3061 |
. . 3
wff
∀𝑥 ∈ dom
dom 𝑔∀𝑦 ∈ dom dom 𝑔∀𝑧 ∈ dom dom 𝑔((𝑥𝑔𝑦)𝑔𝑧) = (𝑥𝑔(𝑦𝑔𝑧)) |
| 20 | 19, 6 | cab 2714 |
. 2
class {𝑔 ∣ ∀𝑥 ∈ dom dom 𝑔∀𝑦 ∈ dom dom 𝑔∀𝑧 ∈ dom dom 𝑔((𝑥𝑔𝑦)𝑔𝑧) = (𝑥𝑔(𝑦𝑔𝑧))} |
| 21 | 1, 20 | wceq 1540 |
1
wff Ass =
{𝑔 ∣ ∀𝑥 ∈ dom dom 𝑔∀𝑦 ∈ dom dom 𝑔∀𝑧 ∈ dom dom 𝑔((𝑥𝑔𝑦)𝑔𝑧) = (𝑥𝑔(𝑦𝑔𝑧))} |