| Step | Hyp | Ref
| Expression |
| 1 | | dmeq 5914 |
. . . . . . . . . 10
⊢ (𝑔 = 𝐺 → dom 𝑔 = dom 𝐺) |
| 2 | 1 | dmeqd 5916 |
. . . . . . . . 9
⊢ (𝑔 = 𝐺 → dom dom 𝑔 = dom dom 𝐺) |
| 3 | 2 | eleq2d 2827 |
. . . . . . . 8
⊢ (𝑔 = 𝐺 → (𝑥 ∈ dom dom 𝑔 ↔ 𝑥 ∈ dom dom 𝐺)) |
| 4 | 2 | eleq2d 2827 |
. . . . . . . 8
⊢ (𝑔 = 𝐺 → (𝑦 ∈ dom dom 𝑔 ↔ 𝑦 ∈ dom dom 𝐺)) |
| 5 | 2 | eleq2d 2827 |
. . . . . . . 8
⊢ (𝑔 = 𝐺 → (𝑧 ∈ dom dom 𝑔 ↔ 𝑧 ∈ dom dom 𝐺)) |
| 6 | 3, 4, 5 | 3anbi123d 1438 |
. . . . . . 7
⊢ (𝑔 = 𝐺 → ((𝑥 ∈ dom dom 𝑔 ∧ 𝑦 ∈ dom dom 𝑔 ∧ 𝑧 ∈ dom dom 𝑔) ↔ (𝑥 ∈ dom dom 𝐺 ∧ 𝑦 ∈ dom dom 𝐺 ∧ 𝑧 ∈ dom dom 𝐺))) |
| 7 | | oveq 7437 |
. . . . . . . . . 10
⊢ (𝑔 = 𝐺 → (𝑥𝑔𝑦) = (𝑥𝐺𝑦)) |
| 8 | 7 | oveq1d 7446 |
. . . . . . . . 9
⊢ (𝑔 = 𝐺 → ((𝑥𝑔𝑦)𝑔𝑧) = ((𝑥𝐺𝑦)𝑔𝑧)) |
| 9 | | oveq 7437 |
. . . . . . . . 9
⊢ (𝑔 = 𝐺 → ((𝑥𝐺𝑦)𝑔𝑧) = ((𝑥𝐺𝑦)𝐺𝑧)) |
| 10 | 8, 9 | eqtrd 2777 |
. . . . . . . 8
⊢ (𝑔 = 𝐺 → ((𝑥𝑔𝑦)𝑔𝑧) = ((𝑥𝐺𝑦)𝐺𝑧)) |
| 11 | | oveq 7437 |
. . . . . . . . . 10
⊢ (𝑔 = 𝐺 → (𝑦𝑔𝑧) = (𝑦𝐺𝑧)) |
| 12 | 11 | oveq2d 7447 |
. . . . . . . . 9
⊢ (𝑔 = 𝐺 → (𝑥𝑔(𝑦𝑔𝑧)) = (𝑥𝑔(𝑦𝐺𝑧))) |
| 13 | | oveq 7437 |
. . . . . . . . 9
⊢ (𝑔 = 𝐺 → (𝑥𝑔(𝑦𝐺𝑧)) = (𝑥𝐺(𝑦𝐺𝑧))) |
| 14 | 12, 13 | eqtrd 2777 |
. . . . . . . 8
⊢ (𝑔 = 𝐺 → (𝑥𝑔(𝑦𝑔𝑧)) = (𝑥𝐺(𝑦𝐺𝑧))) |
| 15 | 10, 14 | eqeq12d 2753 |
. . . . . . 7
⊢ (𝑔 = 𝐺 → (((𝑥𝑔𝑦)𝑔𝑧) = (𝑥𝑔(𝑦𝑔𝑧)) ↔ ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)))) |
| 16 | 6, 15 | imbi12d 344 |
. . . . . 6
⊢ (𝑔 = 𝐺 → (((𝑥 ∈ dom dom 𝑔 ∧ 𝑦 ∈ dom dom 𝑔 ∧ 𝑧 ∈ dom dom 𝑔) → ((𝑥𝑔𝑦)𝑔𝑧) = (𝑥𝑔(𝑦𝑔𝑧))) ↔ ((𝑥 ∈ dom dom 𝐺 ∧ 𝑦 ∈ dom dom 𝐺 ∧ 𝑧 ∈ dom dom 𝐺) → ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧))))) |
| 17 | 16 | albidv 1920 |
. . . . 5
⊢ (𝑔 = 𝐺 → (∀𝑧((𝑥 ∈ dom dom 𝑔 ∧ 𝑦 ∈ dom dom 𝑔 ∧ 𝑧 ∈ dom dom 𝑔) → ((𝑥𝑔𝑦)𝑔𝑧) = (𝑥𝑔(𝑦𝑔𝑧))) ↔ ∀𝑧((𝑥 ∈ dom dom 𝐺 ∧ 𝑦 ∈ dom dom 𝐺 ∧ 𝑧 ∈ dom dom 𝐺) → ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧))))) |
| 18 | 17 | 2albidv 1923 |
. . . 4
⊢ (𝑔 = 𝐺 → (∀𝑥∀𝑦∀𝑧((𝑥 ∈ dom dom 𝑔 ∧ 𝑦 ∈ dom dom 𝑔 ∧ 𝑧 ∈ dom dom 𝑔) → ((𝑥𝑔𝑦)𝑔𝑧) = (𝑥𝑔(𝑦𝑔𝑧))) ↔ ∀𝑥∀𝑦∀𝑧((𝑥 ∈ dom dom 𝐺 ∧ 𝑦 ∈ dom dom 𝐺 ∧ 𝑧 ∈ dom dom 𝐺) → ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧))))) |
| 19 | | r3al 3197 |
. . . 4
⊢
(∀𝑥 ∈
dom dom 𝑔∀𝑦 ∈ dom dom 𝑔∀𝑧 ∈ dom dom 𝑔((𝑥𝑔𝑦)𝑔𝑧) = (𝑥𝑔(𝑦𝑔𝑧)) ↔ ∀𝑥∀𝑦∀𝑧((𝑥 ∈ dom dom 𝑔 ∧ 𝑦 ∈ dom dom 𝑔 ∧ 𝑧 ∈ dom dom 𝑔) → ((𝑥𝑔𝑦)𝑔𝑧) = (𝑥𝑔(𝑦𝑔𝑧)))) |
| 20 | | r3al 3197 |
. . . 4
⊢
(∀𝑥 ∈
dom dom 𝐺∀𝑦 ∈ dom dom 𝐺∀𝑧 ∈ dom dom 𝐺((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ↔ ∀𝑥∀𝑦∀𝑧((𝑥 ∈ dom dom 𝐺 ∧ 𝑦 ∈ dom dom 𝐺 ∧ 𝑧 ∈ dom dom 𝐺) → ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)))) |
| 21 | 18, 19, 20 | 3bitr4g 314 |
. . 3
⊢ (𝑔 = 𝐺 → (∀𝑥 ∈ dom dom 𝑔∀𝑦 ∈ dom dom 𝑔∀𝑧 ∈ dom dom 𝑔((𝑥𝑔𝑦)𝑔𝑧) = (𝑥𝑔(𝑦𝑔𝑧)) ↔ ∀𝑥 ∈ dom dom 𝐺∀𝑦 ∈ dom dom 𝐺∀𝑧 ∈ dom dom 𝐺((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)))) |
| 22 | | isass.1 |
. . . . . 6
⊢ 𝑋 = dom dom 𝐺 |
| 23 | 22 | eqcomi 2746 |
. . . . 5
⊢ dom dom
𝐺 = 𝑋 |
| 24 | 23 | a1i 11 |
. . . 4
⊢ (𝑔 = 𝐺 → dom dom 𝐺 = 𝑋) |
| 25 | 24 | raleqdv 3326 |
. . . 4
⊢ (𝑔 = 𝐺 → (∀𝑦 ∈ dom dom 𝐺∀𝑧 ∈ dom dom 𝐺((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ↔ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ dom dom 𝐺((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)))) |
| 26 | 24, 25 | raleqbidv 3346 |
. . 3
⊢ (𝑔 = 𝐺 → (∀𝑥 ∈ dom dom 𝐺∀𝑦 ∈ dom dom 𝐺∀𝑧 ∈ dom dom 𝐺((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ↔ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ dom dom 𝐺((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)))) |
| 27 | 24 | raleqdv 3326 |
. . . 4
⊢ (𝑔 = 𝐺 → (∀𝑧 ∈ dom dom 𝐺((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ↔ ∀𝑧 ∈ 𝑋 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)))) |
| 28 | 27 | 2ralbidv 3221 |
. . 3
⊢ (𝑔 = 𝐺 → (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ dom dom 𝐺((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ↔ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)))) |
| 29 | 21, 26, 28 | 3bitrd 305 |
. 2
⊢ (𝑔 = 𝐺 → (∀𝑥 ∈ dom dom 𝑔∀𝑦 ∈ dom dom 𝑔∀𝑧 ∈ dom dom 𝑔((𝑥𝑔𝑦)𝑔𝑧) = (𝑥𝑔(𝑦𝑔𝑧)) ↔ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)))) |
| 30 | | df-ass 37850 |
. 2
⊢ Ass =
{𝑔 ∣ ∀𝑥 ∈ dom dom 𝑔∀𝑦 ∈ dom dom 𝑔∀𝑧 ∈ dom dom 𝑔((𝑥𝑔𝑦)𝑔𝑧) = (𝑥𝑔(𝑦𝑔𝑧))} |
| 31 | 29, 30 | elab2g 3680 |
1
⊢ (𝐺 ∈ 𝐴 → (𝐺 ∈ Ass ↔ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)))) |