Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isass Structured version   Visualization version   GIF version

Theorem isass 35126
Description: The predicate "is an associative operation". (Contributed by FL, 1-Nov-2009.) (New usage is discouraged.)
Hypothesis
Ref Expression
isass.1 𝑋 = dom dom 𝐺
Assertion
Ref Expression
isass (𝐺𝐴 → (𝐺 ∈ Ass ↔ ∀𝑥𝑋𝑦𝑋𝑧𝑋 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧))))
Distinct variable groups:   𝑥,𝐺,𝑦,𝑧   𝑥,𝑋,𝑦,𝑧
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑧)

Proof of Theorem isass
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 dmeq 5774 . . . . . . . . . 10 (𝑔 = 𝐺 → dom 𝑔 = dom 𝐺)
21dmeqd 5776 . . . . . . . . 9 (𝑔 = 𝐺 → dom dom 𝑔 = dom dom 𝐺)
32eleq2d 2900 . . . . . . . 8 (𝑔 = 𝐺 → (𝑥 ∈ dom dom 𝑔𝑥 ∈ dom dom 𝐺))
42eleq2d 2900 . . . . . . . 8 (𝑔 = 𝐺 → (𝑦 ∈ dom dom 𝑔𝑦 ∈ dom dom 𝐺))
52eleq2d 2900 . . . . . . . 8 (𝑔 = 𝐺 → (𝑧 ∈ dom dom 𝑔𝑧 ∈ dom dom 𝐺))
63, 4, 53anbi123d 1432 . . . . . . 7 (𝑔 = 𝐺 → ((𝑥 ∈ dom dom 𝑔𝑦 ∈ dom dom 𝑔𝑧 ∈ dom dom 𝑔) ↔ (𝑥 ∈ dom dom 𝐺𝑦 ∈ dom dom 𝐺𝑧 ∈ dom dom 𝐺)))
7 oveq 7164 . . . . . . . . . 10 (𝑔 = 𝐺 → (𝑥𝑔𝑦) = (𝑥𝐺𝑦))
87oveq1d 7173 . . . . . . . . 9 (𝑔 = 𝐺 → ((𝑥𝑔𝑦)𝑔𝑧) = ((𝑥𝐺𝑦)𝑔𝑧))
9 oveq 7164 . . . . . . . . 9 (𝑔 = 𝐺 → ((𝑥𝐺𝑦)𝑔𝑧) = ((𝑥𝐺𝑦)𝐺𝑧))
108, 9eqtrd 2858 . . . . . . . 8 (𝑔 = 𝐺 → ((𝑥𝑔𝑦)𝑔𝑧) = ((𝑥𝐺𝑦)𝐺𝑧))
11 oveq 7164 . . . . . . . . . 10 (𝑔 = 𝐺 → (𝑦𝑔𝑧) = (𝑦𝐺𝑧))
1211oveq2d 7174 . . . . . . . . 9 (𝑔 = 𝐺 → (𝑥𝑔(𝑦𝑔𝑧)) = (𝑥𝑔(𝑦𝐺𝑧)))
13 oveq 7164 . . . . . . . . 9 (𝑔 = 𝐺 → (𝑥𝑔(𝑦𝐺𝑧)) = (𝑥𝐺(𝑦𝐺𝑧)))
1412, 13eqtrd 2858 . . . . . . . 8 (𝑔 = 𝐺 → (𝑥𝑔(𝑦𝑔𝑧)) = (𝑥𝐺(𝑦𝐺𝑧)))
1510, 14eqeq12d 2839 . . . . . . 7 (𝑔 = 𝐺 → (((𝑥𝑔𝑦)𝑔𝑧) = (𝑥𝑔(𝑦𝑔𝑧)) ↔ ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧))))
166, 15imbi12d 347 . . . . . 6 (𝑔 = 𝐺 → (((𝑥 ∈ dom dom 𝑔𝑦 ∈ dom dom 𝑔𝑧 ∈ dom dom 𝑔) → ((𝑥𝑔𝑦)𝑔𝑧) = (𝑥𝑔(𝑦𝑔𝑧))) ↔ ((𝑥 ∈ dom dom 𝐺𝑦 ∈ dom dom 𝐺𝑧 ∈ dom dom 𝐺) → ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)))))
1716albidv 1921 . . . . 5 (𝑔 = 𝐺 → (∀𝑧((𝑥 ∈ dom dom 𝑔𝑦 ∈ dom dom 𝑔𝑧 ∈ dom dom 𝑔) → ((𝑥𝑔𝑦)𝑔𝑧) = (𝑥𝑔(𝑦𝑔𝑧))) ↔ ∀𝑧((𝑥 ∈ dom dom 𝐺𝑦 ∈ dom dom 𝐺𝑧 ∈ dom dom 𝐺) → ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)))))
18172albidv 1924 . . . 4 (𝑔 = 𝐺 → (∀𝑥𝑦𝑧((𝑥 ∈ dom dom 𝑔𝑦 ∈ dom dom 𝑔𝑧 ∈ dom dom 𝑔) → ((𝑥𝑔𝑦)𝑔𝑧) = (𝑥𝑔(𝑦𝑔𝑧))) ↔ ∀𝑥𝑦𝑧((𝑥 ∈ dom dom 𝐺𝑦 ∈ dom dom 𝐺𝑧 ∈ dom dom 𝐺) → ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)))))
19 r3al 3204 . . . 4 (∀𝑥 ∈ dom dom 𝑔𝑦 ∈ dom dom 𝑔𝑧 ∈ dom dom 𝑔((𝑥𝑔𝑦)𝑔𝑧) = (𝑥𝑔(𝑦𝑔𝑧)) ↔ ∀𝑥𝑦𝑧((𝑥 ∈ dom dom 𝑔𝑦 ∈ dom dom 𝑔𝑧 ∈ dom dom 𝑔) → ((𝑥𝑔𝑦)𝑔𝑧) = (𝑥𝑔(𝑦𝑔𝑧))))
20 r3al 3204 . . . 4 (∀𝑥 ∈ dom dom 𝐺𝑦 ∈ dom dom 𝐺𝑧 ∈ dom dom 𝐺((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ↔ ∀𝑥𝑦𝑧((𝑥 ∈ dom dom 𝐺𝑦 ∈ dom dom 𝐺𝑧 ∈ dom dom 𝐺) → ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧))))
2118, 19, 203bitr4g 316 . . 3 (𝑔 = 𝐺 → (∀𝑥 ∈ dom dom 𝑔𝑦 ∈ dom dom 𝑔𝑧 ∈ dom dom 𝑔((𝑥𝑔𝑦)𝑔𝑧) = (𝑥𝑔(𝑦𝑔𝑧)) ↔ ∀𝑥 ∈ dom dom 𝐺𝑦 ∈ dom dom 𝐺𝑧 ∈ dom dom 𝐺((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧))))
22 isass.1 . . . . . 6 𝑋 = dom dom 𝐺
2322eqcomi 2832 . . . . 5 dom dom 𝐺 = 𝑋
2423a1i 11 . . . 4 (𝑔 = 𝐺 → dom dom 𝐺 = 𝑋)
2524raleqdv 3417 . . . 4 (𝑔 = 𝐺 → (∀𝑦 ∈ dom dom 𝐺𝑧 ∈ dom dom 𝐺((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ↔ ∀𝑦𝑋𝑧 ∈ dom dom 𝐺((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧))))
2624, 25raleqbidv 3403 . . 3 (𝑔 = 𝐺 → (∀𝑥 ∈ dom dom 𝐺𝑦 ∈ dom dom 𝐺𝑧 ∈ dom dom 𝐺((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ↔ ∀𝑥𝑋𝑦𝑋𝑧 ∈ dom dom 𝐺((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧))))
2724raleqdv 3417 . . . 4 (𝑔 = 𝐺 → (∀𝑧 ∈ dom dom 𝐺((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ↔ ∀𝑧𝑋 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧))))
28272ralbidv 3201 . . 3 (𝑔 = 𝐺 → (∀𝑥𝑋𝑦𝑋𝑧 ∈ dom dom 𝐺((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ↔ ∀𝑥𝑋𝑦𝑋𝑧𝑋 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧))))
2921, 26, 283bitrd 307 . 2 (𝑔 = 𝐺 → (∀𝑥 ∈ dom dom 𝑔𝑦 ∈ dom dom 𝑔𝑧 ∈ dom dom 𝑔((𝑥𝑔𝑦)𝑔𝑧) = (𝑥𝑔(𝑦𝑔𝑧)) ↔ ∀𝑥𝑋𝑦𝑋𝑧𝑋 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧))))
30 df-ass 35123 . 2 Ass = {𝑔 ∣ ∀𝑥 ∈ dom dom 𝑔𝑦 ∈ dom dom 𝑔𝑧 ∈ dom dom 𝑔((𝑥𝑔𝑦)𝑔𝑧) = (𝑥𝑔(𝑦𝑔𝑧))}
3129, 30elab2g 3670 1 (𝐺𝐴 → (𝐺 ∈ Ass ↔ ∀𝑥𝑋𝑦𝑋𝑧𝑋 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  w3a 1083  wal 1535   = wceq 1537  wcel 2114  wral 3140  dom cdm 5557  (class class class)co 7158  Asscass 35122
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ral 3145  df-rab 3149  df-v 3498  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-br 5069  df-dm 5567  df-iota 6316  df-fv 6365  df-ov 7161  df-ass 35123
This theorem is referenced by:  issmgrpOLD  35143
  Copyright terms: Public domain W3C validator