Step | Hyp | Ref
| Expression |
1 | | dmeq 5812 |
. . . . . . . . . 10
⊢ (𝑔 = 𝐺 → dom 𝑔 = dom 𝐺) |
2 | 1 | dmeqd 5814 |
. . . . . . . . 9
⊢ (𝑔 = 𝐺 → dom dom 𝑔 = dom dom 𝐺) |
3 | 2 | eleq2d 2824 |
. . . . . . . 8
⊢ (𝑔 = 𝐺 → (𝑥 ∈ dom dom 𝑔 ↔ 𝑥 ∈ dom dom 𝐺)) |
4 | 2 | eleq2d 2824 |
. . . . . . . 8
⊢ (𝑔 = 𝐺 → (𝑦 ∈ dom dom 𝑔 ↔ 𝑦 ∈ dom dom 𝐺)) |
5 | 2 | eleq2d 2824 |
. . . . . . . 8
⊢ (𝑔 = 𝐺 → (𝑧 ∈ dom dom 𝑔 ↔ 𝑧 ∈ dom dom 𝐺)) |
6 | 3, 4, 5 | 3anbi123d 1435 |
. . . . . . 7
⊢ (𝑔 = 𝐺 → ((𝑥 ∈ dom dom 𝑔 ∧ 𝑦 ∈ dom dom 𝑔 ∧ 𝑧 ∈ dom dom 𝑔) ↔ (𝑥 ∈ dom dom 𝐺 ∧ 𝑦 ∈ dom dom 𝐺 ∧ 𝑧 ∈ dom dom 𝐺))) |
7 | | oveq 7281 |
. . . . . . . . . 10
⊢ (𝑔 = 𝐺 → (𝑥𝑔𝑦) = (𝑥𝐺𝑦)) |
8 | 7 | oveq1d 7290 |
. . . . . . . . 9
⊢ (𝑔 = 𝐺 → ((𝑥𝑔𝑦)𝑔𝑧) = ((𝑥𝐺𝑦)𝑔𝑧)) |
9 | | oveq 7281 |
. . . . . . . . 9
⊢ (𝑔 = 𝐺 → ((𝑥𝐺𝑦)𝑔𝑧) = ((𝑥𝐺𝑦)𝐺𝑧)) |
10 | 8, 9 | eqtrd 2778 |
. . . . . . . 8
⊢ (𝑔 = 𝐺 → ((𝑥𝑔𝑦)𝑔𝑧) = ((𝑥𝐺𝑦)𝐺𝑧)) |
11 | | oveq 7281 |
. . . . . . . . . 10
⊢ (𝑔 = 𝐺 → (𝑦𝑔𝑧) = (𝑦𝐺𝑧)) |
12 | 11 | oveq2d 7291 |
. . . . . . . . 9
⊢ (𝑔 = 𝐺 → (𝑥𝑔(𝑦𝑔𝑧)) = (𝑥𝑔(𝑦𝐺𝑧))) |
13 | | oveq 7281 |
. . . . . . . . 9
⊢ (𝑔 = 𝐺 → (𝑥𝑔(𝑦𝐺𝑧)) = (𝑥𝐺(𝑦𝐺𝑧))) |
14 | 12, 13 | eqtrd 2778 |
. . . . . . . 8
⊢ (𝑔 = 𝐺 → (𝑥𝑔(𝑦𝑔𝑧)) = (𝑥𝐺(𝑦𝐺𝑧))) |
15 | 10, 14 | eqeq12d 2754 |
. . . . . . 7
⊢ (𝑔 = 𝐺 → (((𝑥𝑔𝑦)𝑔𝑧) = (𝑥𝑔(𝑦𝑔𝑧)) ↔ ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)))) |
16 | 6, 15 | imbi12d 345 |
. . . . . 6
⊢ (𝑔 = 𝐺 → (((𝑥 ∈ dom dom 𝑔 ∧ 𝑦 ∈ dom dom 𝑔 ∧ 𝑧 ∈ dom dom 𝑔) → ((𝑥𝑔𝑦)𝑔𝑧) = (𝑥𝑔(𝑦𝑔𝑧))) ↔ ((𝑥 ∈ dom dom 𝐺 ∧ 𝑦 ∈ dom dom 𝐺 ∧ 𝑧 ∈ dom dom 𝐺) → ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧))))) |
17 | 16 | albidv 1923 |
. . . . 5
⊢ (𝑔 = 𝐺 → (∀𝑧((𝑥 ∈ dom dom 𝑔 ∧ 𝑦 ∈ dom dom 𝑔 ∧ 𝑧 ∈ dom dom 𝑔) → ((𝑥𝑔𝑦)𝑔𝑧) = (𝑥𝑔(𝑦𝑔𝑧))) ↔ ∀𝑧((𝑥 ∈ dom dom 𝐺 ∧ 𝑦 ∈ dom dom 𝐺 ∧ 𝑧 ∈ dom dom 𝐺) → ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧))))) |
18 | 17 | 2albidv 1926 |
. . . 4
⊢ (𝑔 = 𝐺 → (∀𝑥∀𝑦∀𝑧((𝑥 ∈ dom dom 𝑔 ∧ 𝑦 ∈ dom dom 𝑔 ∧ 𝑧 ∈ dom dom 𝑔) → ((𝑥𝑔𝑦)𝑔𝑧) = (𝑥𝑔(𝑦𝑔𝑧))) ↔ ∀𝑥∀𝑦∀𝑧((𝑥 ∈ dom dom 𝐺 ∧ 𝑦 ∈ dom dom 𝐺 ∧ 𝑧 ∈ dom dom 𝐺) → ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧))))) |
19 | | r3al 3119 |
. . . 4
⊢
(∀𝑥 ∈
dom dom 𝑔∀𝑦 ∈ dom dom 𝑔∀𝑧 ∈ dom dom 𝑔((𝑥𝑔𝑦)𝑔𝑧) = (𝑥𝑔(𝑦𝑔𝑧)) ↔ ∀𝑥∀𝑦∀𝑧((𝑥 ∈ dom dom 𝑔 ∧ 𝑦 ∈ dom dom 𝑔 ∧ 𝑧 ∈ dom dom 𝑔) → ((𝑥𝑔𝑦)𝑔𝑧) = (𝑥𝑔(𝑦𝑔𝑧)))) |
20 | | r3al 3119 |
. . . 4
⊢
(∀𝑥 ∈
dom dom 𝐺∀𝑦 ∈ dom dom 𝐺∀𝑧 ∈ dom dom 𝐺((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ↔ ∀𝑥∀𝑦∀𝑧((𝑥 ∈ dom dom 𝐺 ∧ 𝑦 ∈ dom dom 𝐺 ∧ 𝑧 ∈ dom dom 𝐺) → ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)))) |
21 | 18, 19, 20 | 3bitr4g 314 |
. . 3
⊢ (𝑔 = 𝐺 → (∀𝑥 ∈ dom dom 𝑔∀𝑦 ∈ dom dom 𝑔∀𝑧 ∈ dom dom 𝑔((𝑥𝑔𝑦)𝑔𝑧) = (𝑥𝑔(𝑦𝑔𝑧)) ↔ ∀𝑥 ∈ dom dom 𝐺∀𝑦 ∈ dom dom 𝐺∀𝑧 ∈ dom dom 𝐺((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)))) |
22 | | isass.1 |
. . . . . 6
⊢ 𝑋 = dom dom 𝐺 |
23 | 22 | eqcomi 2747 |
. . . . 5
⊢ dom dom
𝐺 = 𝑋 |
24 | 23 | a1i 11 |
. . . 4
⊢ (𝑔 = 𝐺 → dom dom 𝐺 = 𝑋) |
25 | 24 | raleqdv 3348 |
. . . 4
⊢ (𝑔 = 𝐺 → (∀𝑦 ∈ dom dom 𝐺∀𝑧 ∈ dom dom 𝐺((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ↔ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ dom dom 𝐺((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)))) |
26 | 24, 25 | raleqbidv 3336 |
. . 3
⊢ (𝑔 = 𝐺 → (∀𝑥 ∈ dom dom 𝐺∀𝑦 ∈ dom dom 𝐺∀𝑧 ∈ dom dom 𝐺((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ↔ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ dom dom 𝐺((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)))) |
27 | 24 | raleqdv 3348 |
. . . 4
⊢ (𝑔 = 𝐺 → (∀𝑧 ∈ dom dom 𝐺((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ↔ ∀𝑧 ∈ 𝑋 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)))) |
28 | 27 | 2ralbidv 3129 |
. . 3
⊢ (𝑔 = 𝐺 → (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ dom dom 𝐺((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ↔ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)))) |
29 | 21, 26, 28 | 3bitrd 305 |
. 2
⊢ (𝑔 = 𝐺 → (∀𝑥 ∈ dom dom 𝑔∀𝑦 ∈ dom dom 𝑔∀𝑧 ∈ dom dom 𝑔((𝑥𝑔𝑦)𝑔𝑧) = (𝑥𝑔(𝑦𝑔𝑧)) ↔ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)))) |
30 | | df-ass 36001 |
. 2
⊢ Ass =
{𝑔 ∣ ∀𝑥 ∈ dom dom 𝑔∀𝑦 ∈ dom dom 𝑔∀𝑧 ∈ dom dom 𝑔((𝑥𝑔𝑦)𝑔𝑧) = (𝑥𝑔(𝑦𝑔𝑧))} |
31 | 29, 30 | elab2g 3611 |
1
⊢ (𝐺 ∈ 𝐴 → (𝐺 ∈ Ass ↔ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)))) |