Detailed syntax breakdown of Definition df-assa
| Step | Hyp | Ref
| Expression |
| 1 | | casa 21870 |
. 2
class
AssAlg |
| 2 | | vr |
. . . . . . . . . . . . . 14
setvar 𝑟 |
| 3 | 2 | cv 1539 |
. . . . . . . . . . . . 13
class 𝑟 |
| 4 | | vx |
. . . . . . . . . . . . . 14
setvar 𝑥 |
| 5 | 4 | cv 1539 |
. . . . . . . . . . . . 13
class 𝑥 |
| 6 | | vs |
. . . . . . . . . . . . . 14
setvar 𝑠 |
| 7 | 6 | cv 1539 |
. . . . . . . . . . . . 13
class 𝑠 |
| 8 | 3, 5, 7 | co 7431 |
. . . . . . . . . . . 12
class (𝑟𝑠𝑥) |
| 9 | | vy |
. . . . . . . . . . . . 13
setvar 𝑦 |
| 10 | 9 | cv 1539 |
. . . . . . . . . . . 12
class 𝑦 |
| 11 | | vt |
. . . . . . . . . . . . 13
setvar 𝑡 |
| 12 | 11 | cv 1539 |
. . . . . . . . . . . 12
class 𝑡 |
| 13 | 8, 10, 12 | co 7431 |
. . . . . . . . . . 11
class ((𝑟𝑠𝑥)𝑡𝑦) |
| 14 | 5, 10, 12 | co 7431 |
. . . . . . . . . . . 12
class (𝑥𝑡𝑦) |
| 15 | 3, 14, 7 | co 7431 |
. . . . . . . . . . 11
class (𝑟𝑠(𝑥𝑡𝑦)) |
| 16 | 13, 15 | wceq 1540 |
. . . . . . . . . 10
wff ((𝑟𝑠𝑥)𝑡𝑦) = (𝑟𝑠(𝑥𝑡𝑦)) |
| 17 | 3, 10, 7 | co 7431 |
. . . . . . . . . . . 12
class (𝑟𝑠𝑦) |
| 18 | 5, 17, 12 | co 7431 |
. . . . . . . . . . 11
class (𝑥𝑡(𝑟𝑠𝑦)) |
| 19 | 18, 15 | wceq 1540 |
. . . . . . . . . 10
wff (𝑥𝑡(𝑟𝑠𝑦)) = (𝑟𝑠(𝑥𝑡𝑦)) |
| 20 | 16, 19 | wa 395 |
. . . . . . . . 9
wff (((𝑟𝑠𝑥)𝑡𝑦) = (𝑟𝑠(𝑥𝑡𝑦)) ∧ (𝑥𝑡(𝑟𝑠𝑦)) = (𝑟𝑠(𝑥𝑡𝑦))) |
| 21 | | vw |
. . . . . . . . . . 11
setvar 𝑤 |
| 22 | 21 | cv 1539 |
. . . . . . . . . 10
class 𝑤 |
| 23 | | cmulr 17298 |
. . . . . . . . . 10
class
.r |
| 24 | 22, 23 | cfv 6561 |
. . . . . . . . 9
class
(.r‘𝑤) |
| 25 | 20, 11, 24 | wsbc 3788 |
. . . . . . . 8
wff
[(.r‘𝑤) / 𝑡](((𝑟𝑠𝑥)𝑡𝑦) = (𝑟𝑠(𝑥𝑡𝑦)) ∧ (𝑥𝑡(𝑟𝑠𝑦)) = (𝑟𝑠(𝑥𝑡𝑦))) |
| 26 | | cvsca 17301 |
. . . . . . . . 9
class
·𝑠 |
| 27 | 22, 26 | cfv 6561 |
. . . . . . . 8
class (
·𝑠 ‘𝑤) |
| 28 | 25, 6, 27 | wsbc 3788 |
. . . . . . 7
wff [(
·𝑠 ‘𝑤) / 𝑠][(.r‘𝑤) / 𝑡](((𝑟𝑠𝑥)𝑡𝑦) = (𝑟𝑠(𝑥𝑡𝑦)) ∧ (𝑥𝑡(𝑟𝑠𝑦)) = (𝑟𝑠(𝑥𝑡𝑦))) |
| 29 | | cbs 17247 |
. . . . . . . 8
class
Base |
| 30 | 22, 29 | cfv 6561 |
. . . . . . 7
class
(Base‘𝑤) |
| 31 | 28, 9, 30 | wral 3061 |
. . . . . 6
wff
∀𝑦 ∈
(Base‘𝑤)[(
·𝑠 ‘𝑤) / 𝑠][(.r‘𝑤) / 𝑡](((𝑟𝑠𝑥)𝑡𝑦) = (𝑟𝑠(𝑥𝑡𝑦)) ∧ (𝑥𝑡(𝑟𝑠𝑦)) = (𝑟𝑠(𝑥𝑡𝑦))) |
| 32 | 31, 4, 30 | wral 3061 |
. . . . 5
wff
∀𝑥 ∈
(Base‘𝑤)∀𝑦 ∈ (Base‘𝑤)[(
·𝑠 ‘𝑤) / 𝑠][(.r‘𝑤) / 𝑡](((𝑟𝑠𝑥)𝑡𝑦) = (𝑟𝑠(𝑥𝑡𝑦)) ∧ (𝑥𝑡(𝑟𝑠𝑦)) = (𝑟𝑠(𝑥𝑡𝑦))) |
| 33 | | vf |
. . . . . . 7
setvar 𝑓 |
| 34 | 33 | cv 1539 |
. . . . . 6
class 𝑓 |
| 35 | 34, 29 | cfv 6561 |
. . . . 5
class
(Base‘𝑓) |
| 36 | 32, 2, 35 | wral 3061 |
. . . 4
wff
∀𝑟 ∈
(Base‘𝑓)∀𝑥 ∈ (Base‘𝑤)∀𝑦 ∈ (Base‘𝑤)[(
·𝑠 ‘𝑤) / 𝑠][(.r‘𝑤) / 𝑡](((𝑟𝑠𝑥)𝑡𝑦) = (𝑟𝑠(𝑥𝑡𝑦)) ∧ (𝑥𝑡(𝑟𝑠𝑦)) = (𝑟𝑠(𝑥𝑡𝑦))) |
| 37 | | csca 17300 |
. . . . 5
class
Scalar |
| 38 | 22, 37 | cfv 6561 |
. . . 4
class
(Scalar‘𝑤) |
| 39 | 36, 33, 38 | wsbc 3788 |
. . 3
wff
[(Scalar‘𝑤) / 𝑓]∀𝑟 ∈ (Base‘𝑓)∀𝑥 ∈ (Base‘𝑤)∀𝑦 ∈ (Base‘𝑤)[(
·𝑠 ‘𝑤) / 𝑠][(.r‘𝑤) / 𝑡](((𝑟𝑠𝑥)𝑡𝑦) = (𝑟𝑠(𝑥𝑡𝑦)) ∧ (𝑥𝑡(𝑟𝑠𝑦)) = (𝑟𝑠(𝑥𝑡𝑦))) |
| 40 | | clmod 20858 |
. . . 4
class
LMod |
| 41 | | crg 20230 |
. . . 4
class
Ring |
| 42 | 40, 41 | cin 3950 |
. . 3
class (LMod
∩ Ring) |
| 43 | 39, 21, 42 | crab 3436 |
. 2
class {𝑤 ∈ (LMod ∩ Ring)
∣ [(Scalar‘𝑤) / 𝑓]∀𝑟 ∈ (Base‘𝑓)∀𝑥 ∈ (Base‘𝑤)∀𝑦 ∈ (Base‘𝑤)[(
·𝑠 ‘𝑤) / 𝑠][(.r‘𝑤) / 𝑡](((𝑟𝑠𝑥)𝑡𝑦) = (𝑟𝑠(𝑥𝑡𝑦)) ∧ (𝑥𝑡(𝑟𝑠𝑦)) = (𝑟𝑠(𝑥𝑡𝑦)))} |
| 44 | 1, 43 | wceq 1540 |
1
wff AssAlg =
{𝑤 ∈ (LMod ∩ Ring)
∣ [(Scalar‘𝑤) / 𝑓]∀𝑟 ∈ (Base‘𝑓)∀𝑥 ∈ (Base‘𝑤)∀𝑦 ∈ (Base‘𝑤)[(
·𝑠 ‘𝑤) / 𝑠][(.r‘𝑤) / 𝑡](((𝑟𝑠𝑥)𝑡𝑦) = (𝑟𝑠(𝑥𝑡𝑦)) ∧ (𝑥𝑡(𝑟𝑠𝑦)) = (𝑟𝑠(𝑥𝑡𝑦)))} |