Step | Hyp | Ref
| Expression |
1 | | casa 21272 |
. 2
class
AssAlg |
2 | | vf |
. . . . . . 7
setvar π |
3 | 2 | cv 1541 |
. . . . . 6
class π |
4 | | ccrg 19970 |
. . . . . 6
class
CRing |
5 | 3, 4 | wcel 2107 |
. . . . 5
wff π β CRing |
6 | | vr |
. . . . . . . . . . . . . . 15
setvar π |
7 | 6 | cv 1541 |
. . . . . . . . . . . . . 14
class π |
8 | | vx |
. . . . . . . . . . . . . . 15
setvar π₯ |
9 | 8 | cv 1541 |
. . . . . . . . . . . . . 14
class π₯ |
10 | | vs |
. . . . . . . . . . . . . . 15
setvar π |
11 | 10 | cv 1541 |
. . . . . . . . . . . . . 14
class π |
12 | 7, 9, 11 | co 7358 |
. . . . . . . . . . . . 13
class (ππ π₯) |
13 | | vy |
. . . . . . . . . . . . . 14
setvar π¦ |
14 | 13 | cv 1541 |
. . . . . . . . . . . . 13
class π¦ |
15 | | vt |
. . . . . . . . . . . . . 14
setvar π‘ |
16 | 15 | cv 1541 |
. . . . . . . . . . . . 13
class π‘ |
17 | 12, 14, 16 | co 7358 |
. . . . . . . . . . . 12
class ((ππ π₯)π‘π¦) |
18 | 9, 14, 16 | co 7358 |
. . . . . . . . . . . . 13
class (π₯π‘π¦) |
19 | 7, 18, 11 | co 7358 |
. . . . . . . . . . . 12
class (ππ (π₯π‘π¦)) |
20 | 17, 19 | wceq 1542 |
. . . . . . . . . . 11
wff ((ππ π₯)π‘π¦) = (ππ (π₯π‘π¦)) |
21 | 7, 14, 11 | co 7358 |
. . . . . . . . . . . . 13
class (ππ π¦) |
22 | 9, 21, 16 | co 7358 |
. . . . . . . . . . . 12
class (π₯π‘(ππ π¦)) |
23 | 22, 19 | wceq 1542 |
. . . . . . . . . . 11
wff (π₯π‘(ππ π¦)) = (ππ (π₯π‘π¦)) |
24 | 20, 23 | wa 397 |
. . . . . . . . . 10
wff (((ππ π₯)π‘π¦) = (ππ (π₯π‘π¦)) β§ (π₯π‘(ππ π¦)) = (ππ (π₯π‘π¦))) |
25 | | vw |
. . . . . . . . . . . 12
setvar π€ |
26 | 25 | cv 1541 |
. . . . . . . . . . 11
class π€ |
27 | | cmulr 17139 |
. . . . . . . . . . 11
class
.r |
28 | 26, 27 | cfv 6497 |
. . . . . . . . . 10
class
(.rβπ€) |
29 | 24, 15, 28 | wsbc 3740 |
. . . . . . . . 9
wff
[(.rβπ€) / π‘](((ππ π₯)π‘π¦) = (ππ (π₯π‘π¦)) β§ (π₯π‘(ππ π¦)) = (ππ (π₯π‘π¦))) |
30 | | cvsca 17142 |
. . . . . . . . . 10
class
Β·π |
31 | 26, 30 | cfv 6497 |
. . . . . . . . 9
class (
Β·π βπ€) |
32 | 29, 10, 31 | wsbc 3740 |
. . . . . . . 8
wff [(
Β·π βπ€) / π ][(.rβπ€) / π‘](((ππ π₯)π‘π¦) = (ππ (π₯π‘π¦)) β§ (π₯π‘(ππ π¦)) = (ππ (π₯π‘π¦))) |
33 | | cbs 17088 |
. . . . . . . . 9
class
Base |
34 | 26, 33 | cfv 6497 |
. . . . . . . 8
class
(Baseβπ€) |
35 | 32, 13, 34 | wral 3061 |
. . . . . . 7
wff
βπ¦ β
(Baseβπ€)[(
Β·π βπ€) / π ][(.rβπ€) / π‘](((ππ π₯)π‘π¦) = (ππ (π₯π‘π¦)) β§ (π₯π‘(ππ π¦)) = (ππ (π₯π‘π¦))) |
36 | 35, 8, 34 | wral 3061 |
. . . . . 6
wff
βπ₯ β
(Baseβπ€)βπ¦ β (Baseβπ€)[(
Β·π βπ€) / π ][(.rβπ€) / π‘](((ππ π₯)π‘π¦) = (ππ (π₯π‘π¦)) β§ (π₯π‘(ππ π¦)) = (ππ (π₯π‘π¦))) |
37 | 3, 33 | cfv 6497 |
. . . . . 6
class
(Baseβπ) |
38 | 36, 6, 37 | wral 3061 |
. . . . 5
wff
βπ β
(Baseβπ)βπ₯ β (Baseβπ€)βπ¦ β (Baseβπ€)[(
Β·π βπ€) / π ][(.rβπ€) / π‘](((ππ π₯)π‘π¦) = (ππ (π₯π‘π¦)) β§ (π₯π‘(ππ π¦)) = (ππ (π₯π‘π¦))) |
39 | 5, 38 | wa 397 |
. . . 4
wff (π β CRing β§
βπ β
(Baseβπ)βπ₯ β (Baseβπ€)βπ¦ β (Baseβπ€)[(
Β·π βπ€) / π ][(.rβπ€) / π‘](((ππ π₯)π‘π¦) = (ππ (π₯π‘π¦)) β§ (π₯π‘(ππ π¦)) = (ππ (π₯π‘π¦)))) |
40 | | csca 17141 |
. . . . 5
class
Scalar |
41 | 26, 40 | cfv 6497 |
. . . 4
class
(Scalarβπ€) |
42 | 39, 2, 41 | wsbc 3740 |
. . 3
wff
[(Scalarβπ€) / π](π β CRing β§ βπ β (Baseβπ)βπ₯ β (Baseβπ€)βπ¦ β (Baseβπ€)[(
Β·π βπ€) / π ][(.rβπ€) / π‘](((ππ π₯)π‘π¦) = (ππ (π₯π‘π¦)) β§ (π₯π‘(ππ π¦)) = (ππ (π₯π‘π¦)))) |
43 | | clmod 20336 |
. . . 4
class
LMod |
44 | | crg 19969 |
. . . 4
class
Ring |
45 | 43, 44 | cin 3910 |
. . 3
class (LMod
β© Ring) |
46 | 42, 25, 45 | crab 3406 |
. 2
class {π€ β (LMod β© Ring)
β£ [(Scalarβπ€) / π](π β CRing β§ βπ β (Baseβπ)βπ₯ β (Baseβπ€)βπ¦ β (Baseβπ€)[(
Β·π βπ€) / π ][(.rβπ€) / π‘](((ππ π₯)π‘π¦) = (ππ (π₯π‘π¦)) β§ (π₯π‘(ππ π¦)) = (ππ (π₯π‘π¦))))} |
47 | 1, 46 | wceq 1542 |
1
wff AssAlg =
{π€ β (LMod β© Ring)
β£ [(Scalarβπ€) / π](π β CRing β§ βπ β (Baseβπ)βπ₯ β (Baseβπ€)βπ¦ β (Baseβπ€)[(
Β·π βπ€) / π ][(.rβπ€) / π‘](((ππ π₯)π‘π¦) = (ππ (π₯π‘π¦)) β§ (π₯π‘(ππ π¦)) = (ππ (π₯π‘π¦))))} |