MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-assa Structured version   Visualization version   GIF version

Definition df-assa 21275
Description: Definition of an associative algebra. An associative algebra is a set equipped with a left-module structure on a (commutative) ring, coupled with a multiplicative internal operation on the vectors of the module that is associative and distributive for the additive structure of the left-module (so giving the vectors a ring structure) and that is also bilinear under the scalar product. (Contributed by Mario Carneiro, 29-Dec-2014.)
Assertion
Ref Expression
df-assa AssAlg = {𝑀 ∈ (LMod ∩ Ring) ∣ [(Scalarβ€˜π‘€) / 𝑓](𝑓 ∈ CRing ∧ βˆ€π‘Ÿ ∈ (Baseβ€˜π‘“)βˆ€π‘₯ ∈ (Baseβ€˜π‘€)βˆ€π‘¦ ∈ (Baseβ€˜π‘€)[( ·𝑠 β€˜π‘€) / 𝑠][(.rβ€˜π‘€) / 𝑑](((π‘Ÿπ‘ π‘₯)𝑑𝑦) = (π‘Ÿπ‘ (π‘₯𝑑𝑦)) ∧ (π‘₯𝑑(π‘Ÿπ‘ π‘¦)) = (π‘Ÿπ‘ (π‘₯𝑑𝑦))))}
Distinct variable group:   𝑓,π‘Ÿ,𝑠,𝑑,𝑀,π‘₯,𝑦

Detailed syntax breakdown of Definition df-assa
StepHypRef Expression
1 casa 21272 . 2 class AssAlg
2 vf . . . . . . 7 setvar 𝑓
32cv 1541 . . . . . 6 class 𝑓
4 ccrg 19970 . . . . . 6 class CRing
53, 4wcel 2107 . . . . 5 wff 𝑓 ∈ CRing
6 vr . . . . . . . . . . . . . . 15 setvar π‘Ÿ
76cv 1541 . . . . . . . . . . . . . 14 class π‘Ÿ
8 vx . . . . . . . . . . . . . . 15 setvar π‘₯
98cv 1541 . . . . . . . . . . . . . 14 class π‘₯
10 vs . . . . . . . . . . . . . . 15 setvar 𝑠
1110cv 1541 . . . . . . . . . . . . . 14 class 𝑠
127, 9, 11co 7358 . . . . . . . . . . . . 13 class (π‘Ÿπ‘ π‘₯)
13 vy . . . . . . . . . . . . . 14 setvar 𝑦
1413cv 1541 . . . . . . . . . . . . 13 class 𝑦
15 vt . . . . . . . . . . . . . 14 setvar 𝑑
1615cv 1541 . . . . . . . . . . . . 13 class 𝑑
1712, 14, 16co 7358 . . . . . . . . . . . 12 class ((π‘Ÿπ‘ π‘₯)𝑑𝑦)
189, 14, 16co 7358 . . . . . . . . . . . . 13 class (π‘₯𝑑𝑦)
197, 18, 11co 7358 . . . . . . . . . . . 12 class (π‘Ÿπ‘ (π‘₯𝑑𝑦))
2017, 19wceq 1542 . . . . . . . . . . 11 wff ((π‘Ÿπ‘ π‘₯)𝑑𝑦) = (π‘Ÿπ‘ (π‘₯𝑑𝑦))
217, 14, 11co 7358 . . . . . . . . . . . . 13 class (π‘Ÿπ‘ π‘¦)
229, 21, 16co 7358 . . . . . . . . . . . 12 class (π‘₯𝑑(π‘Ÿπ‘ π‘¦))
2322, 19wceq 1542 . . . . . . . . . . 11 wff (π‘₯𝑑(π‘Ÿπ‘ π‘¦)) = (π‘Ÿπ‘ (π‘₯𝑑𝑦))
2420, 23wa 397 . . . . . . . . . 10 wff (((π‘Ÿπ‘ π‘₯)𝑑𝑦) = (π‘Ÿπ‘ (π‘₯𝑑𝑦)) ∧ (π‘₯𝑑(π‘Ÿπ‘ π‘¦)) = (π‘Ÿπ‘ (π‘₯𝑑𝑦)))
25 vw . . . . . . . . . . . 12 setvar 𝑀
2625cv 1541 . . . . . . . . . . 11 class 𝑀
27 cmulr 17139 . . . . . . . . . . 11 class .r
2826, 27cfv 6497 . . . . . . . . . 10 class (.rβ€˜π‘€)
2924, 15, 28wsbc 3740 . . . . . . . . 9 wff [(.rβ€˜π‘€) / 𝑑](((π‘Ÿπ‘ π‘₯)𝑑𝑦) = (π‘Ÿπ‘ (π‘₯𝑑𝑦)) ∧ (π‘₯𝑑(π‘Ÿπ‘ π‘¦)) = (π‘Ÿπ‘ (π‘₯𝑑𝑦)))
30 cvsca 17142 . . . . . . . . . 10 class ·𝑠
3126, 30cfv 6497 . . . . . . . . 9 class ( ·𝑠 β€˜π‘€)
3229, 10, 31wsbc 3740 . . . . . . . 8 wff [( ·𝑠 β€˜π‘€) / 𝑠][(.rβ€˜π‘€) / 𝑑](((π‘Ÿπ‘ π‘₯)𝑑𝑦) = (π‘Ÿπ‘ (π‘₯𝑑𝑦)) ∧ (π‘₯𝑑(π‘Ÿπ‘ π‘¦)) = (π‘Ÿπ‘ (π‘₯𝑑𝑦)))
33 cbs 17088 . . . . . . . . 9 class Base
3426, 33cfv 6497 . . . . . . . 8 class (Baseβ€˜π‘€)
3532, 13, 34wral 3061 . . . . . . 7 wff βˆ€π‘¦ ∈ (Baseβ€˜π‘€)[( ·𝑠 β€˜π‘€) / 𝑠][(.rβ€˜π‘€) / 𝑑](((π‘Ÿπ‘ π‘₯)𝑑𝑦) = (π‘Ÿπ‘ (π‘₯𝑑𝑦)) ∧ (π‘₯𝑑(π‘Ÿπ‘ π‘¦)) = (π‘Ÿπ‘ (π‘₯𝑑𝑦)))
3635, 8, 34wral 3061 . . . . . 6 wff βˆ€π‘₯ ∈ (Baseβ€˜π‘€)βˆ€π‘¦ ∈ (Baseβ€˜π‘€)[( ·𝑠 β€˜π‘€) / 𝑠][(.rβ€˜π‘€) / 𝑑](((π‘Ÿπ‘ π‘₯)𝑑𝑦) = (π‘Ÿπ‘ (π‘₯𝑑𝑦)) ∧ (π‘₯𝑑(π‘Ÿπ‘ π‘¦)) = (π‘Ÿπ‘ (π‘₯𝑑𝑦)))
373, 33cfv 6497 . . . . . 6 class (Baseβ€˜π‘“)
3836, 6, 37wral 3061 . . . . 5 wff βˆ€π‘Ÿ ∈ (Baseβ€˜π‘“)βˆ€π‘₯ ∈ (Baseβ€˜π‘€)βˆ€π‘¦ ∈ (Baseβ€˜π‘€)[( ·𝑠 β€˜π‘€) / 𝑠][(.rβ€˜π‘€) / 𝑑](((π‘Ÿπ‘ π‘₯)𝑑𝑦) = (π‘Ÿπ‘ (π‘₯𝑑𝑦)) ∧ (π‘₯𝑑(π‘Ÿπ‘ π‘¦)) = (π‘Ÿπ‘ (π‘₯𝑑𝑦)))
395, 38wa 397 . . . 4 wff (𝑓 ∈ CRing ∧ βˆ€π‘Ÿ ∈ (Baseβ€˜π‘“)βˆ€π‘₯ ∈ (Baseβ€˜π‘€)βˆ€π‘¦ ∈ (Baseβ€˜π‘€)[( ·𝑠 β€˜π‘€) / 𝑠][(.rβ€˜π‘€) / 𝑑](((π‘Ÿπ‘ π‘₯)𝑑𝑦) = (π‘Ÿπ‘ (π‘₯𝑑𝑦)) ∧ (π‘₯𝑑(π‘Ÿπ‘ π‘¦)) = (π‘Ÿπ‘ (π‘₯𝑑𝑦))))
40 csca 17141 . . . . 5 class Scalar
4126, 40cfv 6497 . . . 4 class (Scalarβ€˜π‘€)
4239, 2, 41wsbc 3740 . . 3 wff [(Scalarβ€˜π‘€) / 𝑓](𝑓 ∈ CRing ∧ βˆ€π‘Ÿ ∈ (Baseβ€˜π‘“)βˆ€π‘₯ ∈ (Baseβ€˜π‘€)βˆ€π‘¦ ∈ (Baseβ€˜π‘€)[( ·𝑠 β€˜π‘€) / 𝑠][(.rβ€˜π‘€) / 𝑑](((π‘Ÿπ‘ π‘₯)𝑑𝑦) = (π‘Ÿπ‘ (π‘₯𝑑𝑦)) ∧ (π‘₯𝑑(π‘Ÿπ‘ π‘¦)) = (π‘Ÿπ‘ (π‘₯𝑑𝑦))))
43 clmod 20336 . . . 4 class LMod
44 crg 19969 . . . 4 class Ring
4543, 44cin 3910 . . 3 class (LMod ∩ Ring)
4642, 25, 45crab 3406 . 2 class {𝑀 ∈ (LMod ∩ Ring) ∣ [(Scalarβ€˜π‘€) / 𝑓](𝑓 ∈ CRing ∧ βˆ€π‘Ÿ ∈ (Baseβ€˜π‘“)βˆ€π‘₯ ∈ (Baseβ€˜π‘€)βˆ€π‘¦ ∈ (Baseβ€˜π‘€)[( ·𝑠 β€˜π‘€) / 𝑠][(.rβ€˜π‘€) / 𝑑](((π‘Ÿπ‘ π‘₯)𝑑𝑦) = (π‘Ÿπ‘ (π‘₯𝑑𝑦)) ∧ (π‘₯𝑑(π‘Ÿπ‘ π‘¦)) = (π‘Ÿπ‘ (π‘₯𝑑𝑦))))}
471, 46wceq 1542 1 wff AssAlg = {𝑀 ∈ (LMod ∩ Ring) ∣ [(Scalarβ€˜π‘€) / 𝑓](𝑓 ∈ CRing ∧ βˆ€π‘Ÿ ∈ (Baseβ€˜π‘“)βˆ€π‘₯ ∈ (Baseβ€˜π‘€)βˆ€π‘¦ ∈ (Baseβ€˜π‘€)[( ·𝑠 β€˜π‘€) / 𝑠][(.rβ€˜π‘€) / 𝑑](((π‘Ÿπ‘ π‘₯)𝑑𝑦) = (π‘Ÿπ‘ (π‘₯𝑑𝑦)) ∧ (π‘₯𝑑(π‘Ÿπ‘ π‘¦)) = (π‘Ÿπ‘ (π‘₯𝑑𝑦))))}
Colors of variables: wff setvar class
This definition is referenced by:  isassa  21278
  Copyright terms: Public domain W3C validator