| Metamath
Proof Explorer Theorem List (p. 218 of 500) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30909) |
(30910-32432) |
(32433-49920) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | frlm0 21701 | Zero in a free module (ring constraint is stronger than necessary, but allows use of frlmlss 21698). (Contributed by Stefan O'Rear, 4-Feb-2015.) |
| ⊢ 𝐹 = (𝑅 freeLMod 𝐼) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) → (𝐼 × { 0 }) = (0g‘𝐹)) | ||
| Theorem | frlmbas 21702* | Base set of the free module. (Contributed by Stefan O'Rear, 1-Feb-2015.) (Revised by AV, 23-Jun-2019.) |
| ⊢ 𝐹 = (𝑅 freeLMod 𝐼) & ⊢ 𝑁 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐵 = {𝑘 ∈ (𝑁 ↑m 𝐼) ∣ 𝑘 finSupp 0 } ⇒ ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → 𝐵 = (Base‘𝐹)) | ||
| Theorem | frlmelbas 21703 | Membership in the base set of the free module. (Contributed by Stefan O'Rear, 1-Feb-2015.) (Revised by AV, 23-Jun-2019.) |
| ⊢ 𝐹 = (𝑅 freeLMod 𝐼) & ⊢ 𝑁 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐵 = (Base‘𝐹) ⇒ ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → (𝑋 ∈ 𝐵 ↔ (𝑋 ∈ (𝑁 ↑m 𝐼) ∧ 𝑋 finSupp 0 ))) | ||
| Theorem | frlmrcl 21704 | If a free module is inhabited, this is sufficient to conclude that the ring expression defines a set. (Contributed by Stefan O'Rear, 3-Feb-2015.) |
| ⊢ 𝐹 = (𝑅 freeLMod 𝐼) & ⊢ 𝐵 = (Base‘𝐹) ⇒ ⊢ (𝑋 ∈ 𝐵 → 𝑅 ∈ V) | ||
| Theorem | frlmbasfsupp 21705 | Elements of the free module are finitely supported. (Contributed by Stefan O'Rear, 3-Feb-2015.) (Revised by Thierry Arnoux, 21-Jun-2019.) (Proof shortened by AV, 20-Jul-2019.) |
| ⊢ 𝐹 = (𝑅 freeLMod 𝐼) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐵 = (Base‘𝐹) ⇒ ⊢ ((𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) → 𝑋 finSupp 0 ) | ||
| Theorem | frlmbasmap 21706 | Elements of the free module are set functions. (Contributed by Stefan O'Rear, 3-Feb-2015.) (Proof shortened by AV, 21-Jul-2019.) |
| ⊢ 𝐹 = (𝑅 freeLMod 𝐼) & ⊢ 𝑁 = (Base‘𝑅) & ⊢ 𝐵 = (Base‘𝐹) ⇒ ⊢ ((𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ (𝑁 ↑m 𝐼)) | ||
| Theorem | frlmbasf 21707 | Elements of the free module are functions. (Contributed by Stefan O'Rear, 3-Feb-2015.) |
| ⊢ 𝐹 = (𝑅 freeLMod 𝐼) & ⊢ 𝑁 = (Base‘𝑅) & ⊢ 𝐵 = (Base‘𝐹) ⇒ ⊢ ((𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) → 𝑋:𝐼⟶𝑁) | ||
| Theorem | frlmlvec 21708 | The free module over a division ring is a left vector space. (Contributed by Steven Nguyen, 29-Apr-2023.) |
| ⊢ 𝐹 = (𝑅 freeLMod 𝐼) ⇒ ⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑊) → 𝐹 ∈ LVec) | ||
| Theorem | frlmfibas 21709 | The base set of the finite free module as a set exponential. (Contributed by AV, 6-Dec-2018.) |
| ⊢ 𝐹 = (𝑅 freeLMod 𝐼) & ⊢ 𝑁 = (Base‘𝑅) ⇒ ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ Fin) → (𝑁 ↑m 𝐼) = (Base‘𝐹)) | ||
| Theorem | elfrlmbasn0 21710 | If the dimension of a free module over a ring is not 0, every element of its base set is not empty. (Contributed by AV, 10-Feb-2019.) |
| ⊢ 𝐹 = (𝑅 freeLMod 𝐼) & ⊢ 𝑁 = (Base‘𝑅) & ⊢ 𝐵 = (Base‘𝐹) ⇒ ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐼 ≠ ∅) → (𝑋 ∈ 𝐵 → 𝑋 ≠ ∅)) | ||
| Theorem | frlmplusgval 21711 | Addition in a free module. (Contributed by Stefan O'Rear, 1-Feb-2015.) (Revised by Stefan O'Rear, 6-May-2015.) |
| ⊢ 𝑌 = (𝑅 freeLMod 𝐼) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ (𝜑 → 𝑅 ∈ 𝑉) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) & ⊢ (𝜑 → 𝐺 ∈ 𝐵) & ⊢ + = (+g‘𝑅) & ⊢ ✚ = (+g‘𝑌) ⇒ ⊢ (𝜑 → (𝐹 ✚ 𝐺) = (𝐹 ∘f + 𝐺)) | ||
| Theorem | frlmsubgval 21712 | Subtraction in a free module. (Contributed by Thierry Arnoux, 30-Jun-2019.) |
| ⊢ 𝑌 = (𝑅 freeLMod 𝐼) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) & ⊢ (𝜑 → 𝐺 ∈ 𝐵) & ⊢ − = (-g‘𝑅) & ⊢ 𝑀 = (-g‘𝑌) ⇒ ⊢ (𝜑 → (𝐹𝑀𝐺) = (𝐹 ∘f − 𝐺)) | ||
| Theorem | frlmvscafval 21713 | Scalar multiplication in a free module. (Contributed by Stefan O'Rear, 1-Feb-2015.) (Revised by Stefan O'Rear, 6-May-2015.) |
| ⊢ 𝑌 = (𝑅 freeLMod 𝐼) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝐴 ∈ 𝐾) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ ∙ = ( ·𝑠 ‘𝑌) & ⊢ · = (.r‘𝑅) ⇒ ⊢ (𝜑 → (𝐴 ∙ 𝑋) = ((𝐼 × {𝐴}) ∘f · 𝑋)) | ||
| Theorem | frlmvplusgvalc 21714 | Coordinates of a sum with respect to a basis in a free module. (Contributed by AV, 16-Jan-2023.) |
| ⊢ 𝐹 = (𝑅 freeLMod 𝐼) & ⊢ 𝐵 = (Base‘𝐹) & ⊢ (𝜑 → 𝑅 ∈ 𝑉) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝐽 ∈ 𝐼) & ⊢ + = (+g‘𝑅) & ⊢ ✚ = (+g‘𝐹) ⇒ ⊢ (𝜑 → ((𝑋 ✚ 𝑌)‘𝐽) = ((𝑋‘𝐽) + (𝑌‘𝐽))) | ||
| Theorem | frlmvscaval 21715 | Coordinates of a scalar multiple with respect to a basis in a free module. (Contributed by Stefan O'Rear, 3-Feb-2015.) |
| ⊢ 𝑌 = (𝑅 freeLMod 𝐼) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝐴 ∈ 𝐾) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝐽 ∈ 𝐼) & ⊢ ∙ = ( ·𝑠 ‘𝑌) & ⊢ · = (.r‘𝑅) ⇒ ⊢ (𝜑 → ((𝐴 ∙ 𝑋)‘𝐽) = (𝐴 · (𝑋‘𝐽))) | ||
| Theorem | frlmplusgvalb 21716* | Addition in a free module at the coordinates. (Contributed by AV, 16-Jan-2023.) |
| ⊢ 𝐹 = (𝑅 freeLMod 𝐼) & ⊢ 𝐵 = (Base‘𝐹) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ + = (+g‘𝑅) & ⊢ ✚ = (+g‘𝐹) ⇒ ⊢ (𝜑 → (𝑍 = (𝑋 ✚ 𝑌) ↔ ∀𝑖 ∈ 𝐼 (𝑍‘𝑖) = ((𝑋‘𝑖) + (𝑌‘𝑖)))) | ||
| Theorem | frlmvscavalb 21717* | Scalar multiplication in a free module at the coordinates. (Contributed by AV, 16-Jan-2023.) |
| ⊢ 𝐹 = (𝑅 freeLMod 𝐼) & ⊢ 𝐵 = (Base‘𝐹) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ (𝜑 → 𝐴 ∈ 𝐾) & ⊢ ∙ = ( ·𝑠 ‘𝐹) & ⊢ · = (.r‘𝑅) ⇒ ⊢ (𝜑 → (𝑍 = (𝐴 ∙ 𝑋) ↔ ∀𝑖 ∈ 𝐼 (𝑍‘𝑖) = (𝐴 · (𝑋‘𝑖)))) | ||
| Theorem | frlmvplusgscavalb 21718* | Addition combined with scalar multiplication in a free module at the coordinates. (Contributed by AV, 16-Jan-2023.) |
| ⊢ 𝐹 = (𝑅 freeLMod 𝐼) & ⊢ 𝐵 = (Base‘𝐹) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ (𝜑 → 𝐴 ∈ 𝐾) & ⊢ ∙ = ( ·𝑠 ‘𝐹) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ + = (+g‘𝑅) & ⊢ ✚ = (+g‘𝐹) & ⊢ (𝜑 → 𝐶 ∈ 𝐾) ⇒ ⊢ (𝜑 → (𝑍 = ((𝐴 ∙ 𝑋) ✚ (𝐶 ∙ 𝑌)) ↔ ∀𝑖 ∈ 𝐼 (𝑍‘𝑖) = ((𝐴 · (𝑋‘𝑖)) + (𝐶 · (𝑌‘𝑖))))) | ||
| Theorem | frlmgsum 21719* | Finite commutative sums in a free module are taken componentwise. (Contributed by Stefan O'Rear, 1-Feb-2015.) (Revised by Mario Carneiro, 5-Jul-2015.) (Revised by AV, 23-Jun-2019.) |
| ⊢ 𝑌 = (𝑅 freeLMod 𝐼) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ 0 = (0g‘𝑌) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝐽 ∈ 𝑊) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐽) → (𝑥 ∈ 𝐼 ↦ 𝑈) ∈ 𝐵) & ⊢ (𝜑 → (𝑦 ∈ 𝐽 ↦ (𝑥 ∈ 𝐼 ↦ 𝑈)) finSupp 0 ) ⇒ ⊢ (𝜑 → (𝑌 Σg (𝑦 ∈ 𝐽 ↦ (𝑥 ∈ 𝐼 ↦ 𝑈))) = (𝑥 ∈ 𝐼 ↦ (𝑅 Σg (𝑦 ∈ 𝐽 ↦ 𝑈)))) | ||
| Theorem | frlmsplit2 21720* | Restriction is homomorphic on free modules. (Contributed by Stefan O'Rear, 3-Feb-2015.) (Proof shortened by AV, 21-Jul-2019.) |
| ⊢ 𝑌 = (𝑅 freeLMod 𝑈) & ⊢ 𝑍 = (𝑅 freeLMod 𝑉) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ 𝐶 = (Base‘𝑍) & ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ (𝑥 ↾ 𝑉)) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) → 𝐹 ∈ (𝑌 LMHom 𝑍)) | ||
| Theorem | frlmsslss 21721* | A subset of a free module obtained by restricting the support set is a submodule. 𝐽 is the set of forbidden unit vectors. (Contributed by Stefan O'Rear, 4-Feb-2015.) |
| ⊢ 𝑌 = (𝑅 freeLMod 𝐼) & ⊢ 𝑈 = (LSubSp‘𝑌) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐶 = {𝑥 ∈ 𝐵 ∣ (𝑥 ↾ 𝐽) = (𝐽 × { 0 })} ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → 𝐶 ∈ 𝑈) | ||
| Theorem | frlmsslss2 21722* | A subset of a free module obtained by restricting the support set is a submodule. 𝐽 is the set of permitted unit vectors. (Contributed by Stefan O'Rear, 5-Feb-2015.) (Revised by AV, 23-Jun-2019.) |
| ⊢ 𝑌 = (𝑅 freeLMod 𝐼) & ⊢ 𝑈 = (LSubSp‘𝑌) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐶 = {𝑥 ∈ 𝐵 ∣ (𝑥 supp 0 ) ⊆ 𝐽} ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → 𝐶 ∈ 𝑈) | ||
| Theorem | frlmbas3 21723 | An element of the base set of a finite free module with a Cartesian product as index set as operation value. (Contributed by AV, 14-Feb-2019.) |
| ⊢ 𝐹 = (𝑅 freeLMod (𝑁 × 𝑀)) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑉 = (Base‘𝐹) ⇒ ⊢ (((𝑅 ∈ 𝑊 ∧ 𝑋 ∈ 𝑉) ∧ (𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑀)) → (𝐼𝑋𝐽) ∈ 𝐵) | ||
| Theorem | mpofrlmd 21724* | Elements of the free module are mappings with two arguments defined by their operation values. (Contributed by AV, 20-Feb-2019.) (Proof shortened by AV, 3-Jul-2022.) |
| ⊢ 𝐹 = (𝑅 freeLMod (𝑁 × 𝑀)) & ⊢ 𝑉 = (Base‘𝐹) & ⊢ ((𝑖 = 𝑎 ∧ 𝑗 = 𝑏) → 𝐴 = 𝐵) & ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑀) → 𝐴 ∈ 𝑋) & ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑀) → 𝐵 ∈ 𝑌) & ⊢ (𝜑 → (𝑁 ∈ 𝑈 ∧ 𝑀 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉)) ⇒ ⊢ (𝜑 → (𝑍 = (𝑎 ∈ 𝑁, 𝑏 ∈ 𝑀 ↦ 𝐵) ↔ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑀 (𝑖𝑍𝑗) = 𝐴)) | ||
| Theorem | frlmip 21725* | The inner product of a free module. (Contributed by Thierry Arnoux, 20-Jun-2019.) |
| ⊢ 𝑌 = (𝑅 freeLMod 𝐼) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ ((𝐼 ∈ 𝑊 ∧ 𝑅 ∈ 𝑉) → (𝑓 ∈ (𝐵 ↑m 𝐼), 𝑔 ∈ (𝐵 ↑m 𝐼) ↦ (𝑅 Σg (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥) · (𝑔‘𝑥))))) = (·𝑖‘𝑌)) | ||
| Theorem | frlmipval 21726 | The inner product of a free module. (Contributed by Thierry Arnoux, 21-Jun-2019.) |
| ⊢ 𝑌 = (𝑅 freeLMod 𝐼) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 𝑉 = (Base‘𝑌) & ⊢ , = (·𝑖‘𝑌) ⇒ ⊢ (((𝐼 ∈ 𝑊 ∧ 𝑅 ∈ 𝑋) ∧ (𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑉)) → (𝐹 , 𝐺) = (𝑅 Σg (𝐹 ∘f · 𝐺))) | ||
| Theorem | frlmphllem 21727* | Lemma for frlmphl 21728. (Contributed by AV, 21-Jul-2019.) |
| ⊢ 𝑌 = (𝑅 freeLMod 𝐼) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 𝑉 = (Base‘𝑌) & ⊢ , = (·𝑖‘𝑌) & ⊢ 𝑂 = (0g‘𝑌) & ⊢ 0 = (0g‘𝑅) & ⊢ ∗ = (*𝑟‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Field) & ⊢ ((𝜑 ∧ 𝑔 ∈ 𝑉 ∧ (𝑔 , 𝑔) = 0 ) → 𝑔 = 𝑂) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ( ∗ ‘𝑥) = 𝑥) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) ⇒ ⊢ ((𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉) → (𝑥 ∈ 𝐼 ↦ ((𝑔‘𝑥) · (ℎ‘𝑥))) finSupp 0 ) | ||
| Theorem | frlmphl 21728* | Conditions for a free module to be a pre-Hilbert space. (Contributed by Thierry Arnoux, 21-Jun-2019.) (Proof shortened by AV, 21-Jul-2019.) |
| ⊢ 𝑌 = (𝑅 freeLMod 𝐼) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 𝑉 = (Base‘𝑌) & ⊢ , = (·𝑖‘𝑌) & ⊢ 𝑂 = (0g‘𝑌) & ⊢ 0 = (0g‘𝑅) & ⊢ ∗ = (*𝑟‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Field) & ⊢ ((𝜑 ∧ 𝑔 ∈ 𝑉 ∧ (𝑔 , 𝑔) = 0 ) → 𝑔 = 𝑂) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ( ∗ ‘𝑥) = 𝑥) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) ⇒ ⊢ (𝜑 → 𝑌 ∈ PreHil) | ||
According to Wikipedia ("Standard basis", 16-Mar-2019, https://en.wikipedia.org/wiki/Standard_basis) "In mathematics, the standard basis (also called natural basis) for a Euclidean space is the set of unit vectors pointing in the direction of the axes of a Cartesian coordinate system.", and ("Unit vector", 16-Mar-2019, https://en.wikipedia.org/wiki/Unit_vector) "In mathematics, a unit vector in a normed vector space is a vector (often a spatial vector) of length 1.". In the following, the term "unit vector" (or more specific "basic unit vector") is used for the (special) unit vectors forming the standard basis of free modules. However, the length of the unit vectors is not considered here, so it is not required to regard normed spaces. | ||
| Syntax | cuvc 21729 | Class of basic unit vectors for an explicit free module. |
| class unitVec | ||
| Definition | df-uvc 21730* | ((𝑅 unitVec 𝐼)‘𝑗) is the unit vector in (𝑅 freeLMod 𝐼) along the 𝑗 axis. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
| ⊢ unitVec = (𝑟 ∈ V, 𝑖 ∈ V ↦ (𝑗 ∈ 𝑖 ↦ (𝑘 ∈ 𝑖 ↦ if(𝑘 = 𝑗, (1r‘𝑟), (0g‘𝑟))))) | ||
| Theorem | uvcfval 21731* | Value of the unit-vector generator for a free module. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
| ⊢ 𝑈 = (𝑅 unitVec 𝐼) & ⊢ 1 = (1r‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → 𝑈 = (𝑗 ∈ 𝐼 ↦ (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑗, 1 , 0 )))) | ||
| Theorem | uvcval 21732* | Value of a single unit vector in a free module. (Contributed by Stefan O'Rear, 3-Feb-2015.) |
| ⊢ 𝑈 = (𝑅 unitVec 𝐼) & ⊢ 1 = (1r‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ∧ 𝐽 ∈ 𝐼) → (𝑈‘𝐽) = (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝐽, 1 , 0 ))) | ||
| Theorem | uvcvval 21733 | Value of a unit vector coordinate in a free module. (Contributed by Stefan O'Rear, 3-Feb-2015.) |
| ⊢ 𝑈 = (𝑅 unitVec 𝐼) & ⊢ 1 = (1r‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ (((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ∧ 𝐽 ∈ 𝐼) ∧ 𝐾 ∈ 𝐼) → ((𝑈‘𝐽)‘𝐾) = if(𝐾 = 𝐽, 1 , 0 )) | ||
| Theorem | uvcvvcl 21734 | A coordinate of a unit vector is either 0 or 1. (Contributed by Stefan O'Rear, 3-Feb-2015.) |
| ⊢ 𝑈 = (𝑅 unitVec 𝐼) & ⊢ 1 = (1r‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ (((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ∧ 𝐽 ∈ 𝐼) ∧ 𝐾 ∈ 𝐼) → ((𝑈‘𝐽)‘𝐾) ∈ { 0 , 1 }) | ||
| Theorem | uvcvvcl2 21735 | A unit vector coordinate is a ring element. (Contributed by Stefan O'Rear, 3-Feb-2015.) |
| ⊢ 𝑈 = (𝑅 unitVec 𝐼) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝐽 ∈ 𝐼) & ⊢ (𝜑 → 𝐾 ∈ 𝐼) ⇒ ⊢ (𝜑 → ((𝑈‘𝐽)‘𝐾) ∈ 𝐵) | ||
| Theorem | uvcvv1 21736 | The unit vector is one at its designated coordinate. (Contributed by Stefan O'Rear, 3-Feb-2015.) |
| ⊢ 𝑈 = (𝑅 unitVec 𝐼) & ⊢ (𝜑 → 𝑅 ∈ 𝑉) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝐽 ∈ 𝐼) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ (𝜑 → ((𝑈‘𝐽)‘𝐽) = 1 ) | ||
| Theorem | uvcvv0 21737 | The unit vector is zero at its designated coordinate. (Contributed by Stefan O'Rear, 3-Feb-2015.) |
| ⊢ 𝑈 = (𝑅 unitVec 𝐼) & ⊢ (𝜑 → 𝑅 ∈ 𝑉) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝐽 ∈ 𝐼) & ⊢ (𝜑 → 𝐾 ∈ 𝐼) & ⊢ (𝜑 → 𝐽 ≠ 𝐾) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ (𝜑 → ((𝑈‘𝐽)‘𝐾) = 0 ) | ||
| Theorem | uvcff 21738 | Domain and codomain of the unit vector generator; ring condition required to be sure 1 and 0 are actually in the ring. (Contributed by Stefan O'Rear, 1-Feb-2015.) (Proof shortened by AV, 21-Jul-2019.) |
| ⊢ 𝑈 = (𝑅 unitVec 𝐼) & ⊢ 𝑌 = (𝑅 freeLMod 𝐼) & ⊢ 𝐵 = (Base‘𝑌) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) → 𝑈:𝐼⟶𝐵) | ||
| Theorem | uvcf1 21739 | In a nonzero ring, each unit vector is different. (Contributed by Stefan O'Rear, 7-Feb-2015.) (Revised by Mario Carneiro, 14-Jun-2015.) |
| ⊢ 𝑈 = (𝑅 unitVec 𝐼) & ⊢ 𝑌 = (𝑅 freeLMod 𝐼) & ⊢ 𝐵 = (Base‘𝑌) ⇒ ⊢ ((𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑊) → 𝑈:𝐼–1-1→𝐵) | ||
| Theorem | uvcresum 21740 | Any element of a free module can be expressed as a finite linear combination of unit vectors. (Contributed by Stefan O'Rear, 3-Feb-2015.) (Proof shortened by Mario Carneiro, 5-Jul-2015.) |
| ⊢ 𝑈 = (𝑅 unitVec 𝐼) & ⊢ 𝑌 = (𝑅 freeLMod 𝐼) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ · = ( ·𝑠 ‘𝑌) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) → 𝑋 = (𝑌 Σg (𝑋 ∘f · 𝑈))) | ||
| Theorem | frlmssuvc1 21741* | A scalar multiple of a unit vector included in a support-restriction subspace is included in the subspace. (Contributed by Stefan O'Rear, 5-Feb-2015.) (Revised by AV, 24-Jun-2019.) |
| ⊢ 𝐹 = (𝑅 freeLMod 𝐼) & ⊢ 𝑈 = (𝑅 unitVec 𝐼) & ⊢ 𝐵 = (Base‘𝐹) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ · = ( ·𝑠 ‘𝐹) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐶 = {𝑥 ∈ 𝐵 ∣ (𝑥 supp 0 ) ⊆ 𝐽} & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝐽 ⊆ 𝐼) & ⊢ (𝜑 → 𝐿 ∈ 𝐽) & ⊢ (𝜑 → 𝑋 ∈ 𝐾) ⇒ ⊢ (𝜑 → (𝑋 · (𝑈‘𝐿)) ∈ 𝐶) | ||
| Theorem | frlmssuvc2 21742* | A nonzero scalar multiple of a unit vector not included in a support-restriction subspace is not included in the subspace. (Contributed by Stefan O'Rear, 5-Feb-2015.) (Revised by AV, 24-Jun-2019.) |
| ⊢ 𝐹 = (𝑅 freeLMod 𝐼) & ⊢ 𝑈 = (𝑅 unitVec 𝐼) & ⊢ 𝐵 = (Base‘𝐹) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ · = ( ·𝑠 ‘𝐹) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐶 = {𝑥 ∈ 𝐵 ∣ (𝑥 supp 0 ) ⊆ 𝐽} & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝐽 ⊆ 𝐼) & ⊢ (𝜑 → 𝐿 ∈ (𝐼 ∖ 𝐽)) & ⊢ (𝜑 → 𝑋 ∈ (𝐾 ∖ { 0 })) ⇒ ⊢ (𝜑 → ¬ (𝑋 · (𝑈‘𝐿)) ∈ 𝐶) | ||
| Theorem | frlmsslsp 21743* | A subset of a free module obtained by restricting the support set is spanned by the relevant unit vectors. (Contributed by Stefan O'Rear, 6-Feb-2015.) (Revised by AV, 24-Jun-2019.) |
| ⊢ 𝑌 = (𝑅 freeLMod 𝐼) & ⊢ 𝑈 = (𝑅 unitVec 𝐼) & ⊢ 𝐾 = (LSpan‘𝑌) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐶 = {𝑥 ∈ 𝐵 ∣ (𝑥 supp 0 ) ⊆ 𝐽} ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → (𝐾‘(𝑈 “ 𝐽)) = 𝐶) | ||
| Theorem | frlmlbs 21744 | The unit vectors comprise a basis for a free module. (Contributed by Stefan O'Rear, 6-Feb-2015.) (Proof shortened by AV, 21-Jul-2019.) |
| ⊢ 𝐹 = (𝑅 freeLMod 𝐼) & ⊢ 𝑈 = (𝑅 unitVec 𝐼) & ⊢ 𝐽 = (LBasis‘𝐹) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) → ran 𝑈 ∈ 𝐽) | ||
| Theorem | frlmup1 21745* | Any assignment of unit vectors to target vectors can be extended (uniquely) to a homomorphism from a free module to an arbitrary other module on the same base ring. (Contributed by Stefan O'Rear, 7-Feb-2015.) (Proof shortened by AV, 21-Jul-2019.) |
| ⊢ 𝐹 = (𝑅 freeLMod 𝐼) & ⊢ 𝐵 = (Base‘𝐹) & ⊢ 𝐶 = (Base‘𝑇) & ⊢ · = ( ·𝑠 ‘𝑇) & ⊢ 𝐸 = (𝑥 ∈ 𝐵 ↦ (𝑇 Σg (𝑥 ∘f · 𝐴))) & ⊢ (𝜑 → 𝑇 ∈ LMod) & ⊢ (𝜑 → 𝐼 ∈ 𝑋) & ⊢ (𝜑 → 𝑅 = (Scalar‘𝑇)) & ⊢ (𝜑 → 𝐴:𝐼⟶𝐶) ⇒ ⊢ (𝜑 → 𝐸 ∈ (𝐹 LMHom 𝑇)) | ||
| Theorem | frlmup2 21746* | The evaluation map has the intended behavior on the unit vectors. (Contributed by Stefan O'Rear, 7-Feb-2015.) (Proof shortened by AV, 21-Jul-2019.) |
| ⊢ 𝐹 = (𝑅 freeLMod 𝐼) & ⊢ 𝐵 = (Base‘𝐹) & ⊢ 𝐶 = (Base‘𝑇) & ⊢ · = ( ·𝑠 ‘𝑇) & ⊢ 𝐸 = (𝑥 ∈ 𝐵 ↦ (𝑇 Σg (𝑥 ∘f · 𝐴))) & ⊢ (𝜑 → 𝑇 ∈ LMod) & ⊢ (𝜑 → 𝐼 ∈ 𝑋) & ⊢ (𝜑 → 𝑅 = (Scalar‘𝑇)) & ⊢ (𝜑 → 𝐴:𝐼⟶𝐶) & ⊢ (𝜑 → 𝑌 ∈ 𝐼) & ⊢ 𝑈 = (𝑅 unitVec 𝐼) ⇒ ⊢ (𝜑 → (𝐸‘(𝑈‘𝑌)) = (𝐴‘𝑌)) | ||
| Theorem | frlmup3 21747* | The range of such an evaluation map is the finite linear combinations of the target vectors and also the span of the target vectors. (Contributed by Stefan O'Rear, 6-Feb-2015.) |
| ⊢ 𝐹 = (𝑅 freeLMod 𝐼) & ⊢ 𝐵 = (Base‘𝐹) & ⊢ 𝐶 = (Base‘𝑇) & ⊢ · = ( ·𝑠 ‘𝑇) & ⊢ 𝐸 = (𝑥 ∈ 𝐵 ↦ (𝑇 Σg (𝑥 ∘f · 𝐴))) & ⊢ (𝜑 → 𝑇 ∈ LMod) & ⊢ (𝜑 → 𝐼 ∈ 𝑋) & ⊢ (𝜑 → 𝑅 = (Scalar‘𝑇)) & ⊢ (𝜑 → 𝐴:𝐼⟶𝐶) & ⊢ 𝐾 = (LSpan‘𝑇) ⇒ ⊢ (𝜑 → ran 𝐸 = (𝐾‘ran 𝐴)) | ||
| Theorem | frlmup4 21748* | Universal property of the free module by existential uniqueness. (Contributed by Stefan O'Rear, 7-Mar-2015.) |
| ⊢ 𝑅 = (Scalar‘𝑇) & ⊢ 𝐹 = (𝑅 freeLMod 𝐼) & ⊢ 𝑈 = (𝑅 unitVec 𝐼) & ⊢ 𝐶 = (Base‘𝑇) ⇒ ⊢ ((𝑇 ∈ LMod ∧ 𝐼 ∈ 𝑋 ∧ 𝐴:𝐼⟶𝐶) → ∃!𝑚 ∈ (𝐹 LMHom 𝑇)(𝑚 ∘ 𝑈) = 𝐴) | ||
| Theorem | ellspd 21749* | The elements of the span of an indexed collection of basic vectors are those vectors which can be written as finite linear combinations of basic vectors. (Contributed by Stefan O'Rear, 7-Feb-2015.) (Revised by AV, 24-Jun-2019.) (Revised by AV, 11-Apr-2024.) |
| ⊢ 𝑁 = (LSpan‘𝑀) & ⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝐾 = (Base‘𝑆) & ⊢ 𝑆 = (Scalar‘𝑀) & ⊢ 0 = (0g‘𝑆) & ⊢ · = ( ·𝑠 ‘𝑀) & ⊢ (𝜑 → 𝐹:𝐼⟶𝐵) & ⊢ (𝜑 → 𝑀 ∈ LMod) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝑋 ∈ (𝑁‘(𝐹 “ 𝐼)) ↔ ∃𝑓 ∈ (𝐾 ↑m 𝐼)(𝑓 finSupp 0 ∧ 𝑋 = (𝑀 Σg (𝑓 ∘f · 𝐹))))) | ||
| Theorem | elfilspd 21750* | Simplified version of ellspd 21749 when the spanning set is finite: all linear combinations are then acceptable. (Contributed by Stefan O'Rear, 7-Feb-2015.) (Proof shortened by AV, 21-Jul-2019.) |
| ⊢ 𝑁 = (LSpan‘𝑀) & ⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝐾 = (Base‘𝑆) & ⊢ 𝑆 = (Scalar‘𝑀) & ⊢ 0 = (0g‘𝑆) & ⊢ · = ( ·𝑠 ‘𝑀) & ⊢ (𝜑 → 𝐹:𝐼⟶𝐵) & ⊢ (𝜑 → 𝑀 ∈ LMod) & ⊢ (𝜑 → 𝐼 ∈ Fin) ⇒ ⊢ (𝜑 → (𝑋 ∈ (𝑁‘(𝐹 “ 𝐼)) ↔ ∃𝑓 ∈ (𝐾 ↑m 𝐼)𝑋 = (𝑀 Σg (𝑓 ∘f · 𝐹)))) | ||
According to the definition in [Lang] p. 129: "A subset S of a module M is said to be linearly independent (over A) if whenever we have a linear combination ∑x∈Saxx which is equal to 0, then ax = 0 for all x ∈ S", and according to the Definition in [Lang] p. 130: "a familiy {xi}i∈I of elements of M is said to be linearly independent (over A) if whenever we have a linear combination ∑i∈Iaixi = 0, then ai = 0 for all i ∈ I." These definitions correspond to Definitions df-linds 21754 and df-lindf 21753 respectively, where it is claimed that a nonzero summand can be extracted (∑i∈{I\{j}}aixi = -ajxj) and be represented as a linear combination of the remaining elements of the family. | ||
| Syntax | clindf 21751 | The class relationship of independent families in a module. |
| class LIndF | ||
| Syntax | clinds 21752 | The class generator of independent sets in a module. |
| class LIndS | ||
| Definition | df-lindf 21753* |
An independent family is a family of vectors, no nonzero multiple of
which can be expressed as a linear combination of other elements of the
family. This is almost, but not quite, the same as a function into an
independent set.
This is a defined concept because it matters in many cases whether independence is taken at a set or family level. For instance, a number is transcedental iff its nonzero powers are linearly independent. Is 1 transcedental? It has only one nonzero power. We can almost define family independence as a family of unequal elements with independent range, as islindf3 21773, but taking that as primitive would lead to unpleasant corner case behavior with the zero ring. This is equivalent to the common definition of having no nontrivial representations of zero (islindf4 21785) and only one representation for each element of the range (islindf5 21786). (Contributed by Stefan O'Rear, 24-Feb-2015.) |
| ⊢ LIndF = {〈𝑓, 𝑤〉 ∣ (𝑓:dom 𝑓⟶(Base‘𝑤) ∧ [(Scalar‘𝑤) / 𝑠]∀𝑥 ∈ dom 𝑓∀𝑘 ∈ ((Base‘𝑠) ∖ {(0g‘𝑠)}) ¬ (𝑘( ·𝑠 ‘𝑤)(𝑓‘𝑥)) ∈ ((LSpan‘𝑤)‘(𝑓 “ (dom 𝑓 ∖ {𝑥}))))} | ||
| Definition | df-linds 21754* | An independent set is a set which is independent as a family. See also islinds3 21781 and islinds4 21782. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
| ⊢ LIndS = (𝑤 ∈ V ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ ( I ↾ 𝑠) LIndF 𝑤}) | ||
| Theorem | rellindf 21755 | The independent-family predicate is a proper relation and can be used with brrelex1i 5677. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
| ⊢ Rel LIndF | ||
| Theorem | islinds 21756 | Property of an independent set of vectors in terms of an independent family. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
| ⊢ 𝐵 = (Base‘𝑊) ⇒ ⊢ (𝑊 ∈ 𝑉 → (𝑋 ∈ (LIndS‘𝑊) ↔ (𝑋 ⊆ 𝐵 ∧ ( I ↾ 𝑋) LIndF 𝑊))) | ||
| Theorem | linds1 21757 | An independent set of vectors is a set of vectors. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
| ⊢ 𝐵 = (Base‘𝑊) ⇒ ⊢ (𝑋 ∈ (LIndS‘𝑊) → 𝑋 ⊆ 𝐵) | ||
| Theorem | linds2 21758 | An independent set of vectors is independent as a family. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
| ⊢ (𝑋 ∈ (LIndS‘𝑊) → ( I ↾ 𝑋) LIndF 𝑊) | ||
| Theorem | islindf 21759* | Property of an independent family of vectors. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
| ⊢ 𝐵 = (Base‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐾 = (LSpan‘𝑊) & ⊢ 𝑆 = (Scalar‘𝑊) & ⊢ 𝑁 = (Base‘𝑆) & ⊢ 0 = (0g‘𝑆) ⇒ ⊢ ((𝑊 ∈ 𝑌 ∧ 𝐹 ∈ 𝑋) → (𝐹 LIndF 𝑊 ↔ (𝐹:dom 𝐹⟶𝐵 ∧ ∀𝑥 ∈ dom 𝐹∀𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · (𝐹‘𝑥)) ∈ (𝐾‘(𝐹 “ (dom 𝐹 ∖ {𝑥})))))) | ||
| Theorem | islinds2 21760* | Expanded property of an independent set of vectors. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
| ⊢ 𝐵 = (Base‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐾 = (LSpan‘𝑊) & ⊢ 𝑆 = (Scalar‘𝑊) & ⊢ 𝑁 = (Base‘𝑆) & ⊢ 0 = (0g‘𝑆) ⇒ ⊢ (𝑊 ∈ 𝑌 → (𝐹 ∈ (LIndS‘𝑊) ↔ (𝐹 ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝐹 ∀𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · 𝑥) ∈ (𝐾‘(𝐹 ∖ {𝑥}))))) | ||
| Theorem | islindf2 21761* | Property of an independent family of vectors with prior constrained domain and codomain. (Contributed by Stefan O'Rear, 26-Feb-2015.) |
| ⊢ 𝐵 = (Base‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐾 = (LSpan‘𝑊) & ⊢ 𝑆 = (Scalar‘𝑊) & ⊢ 𝑁 = (Base‘𝑆) & ⊢ 0 = (0g‘𝑆) ⇒ ⊢ ((𝑊 ∈ 𝑌 ∧ 𝐼 ∈ 𝑋 ∧ 𝐹:𝐼⟶𝐵) → (𝐹 LIndF 𝑊 ↔ ∀𝑥 ∈ 𝐼 ∀𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · (𝐹‘𝑥)) ∈ (𝐾‘(𝐹 “ (𝐼 ∖ {𝑥}))))) | ||
| Theorem | lindff 21762 | Functional property of a linearly independent family. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
| ⊢ 𝐵 = (Base‘𝑊) ⇒ ⊢ ((𝐹 LIndF 𝑊 ∧ 𝑊 ∈ 𝑌) → 𝐹:dom 𝐹⟶𝐵) | ||
| Theorem | lindfind 21763 | A linearly independent family is independent: no nonzero element multiple can be expressed as a linear combination of the others. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
| ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ 𝐿 = (Scalar‘𝑊) & ⊢ 0 = (0g‘𝐿) & ⊢ 𝐾 = (Base‘𝐿) ⇒ ⊢ (((𝐹 LIndF 𝑊 ∧ 𝐸 ∈ dom 𝐹) ∧ (𝐴 ∈ 𝐾 ∧ 𝐴 ≠ 0 )) → ¬ (𝐴 · (𝐹‘𝐸)) ∈ (𝑁‘(𝐹 “ (dom 𝐹 ∖ {𝐸})))) | ||
| Theorem | lindsind 21764 | A linearly independent set is independent: no nonzero element multiple can be expressed as a linear combination of the others. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
| ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ 𝐿 = (Scalar‘𝑊) & ⊢ 0 = (0g‘𝐿) & ⊢ 𝐾 = (Base‘𝐿) ⇒ ⊢ (((𝐹 ∈ (LIndS‘𝑊) ∧ 𝐸 ∈ 𝐹) ∧ (𝐴 ∈ 𝐾 ∧ 𝐴 ≠ 0 )) → ¬ (𝐴 · 𝐸) ∈ (𝑁‘(𝐹 ∖ {𝐸}))) | ||
| Theorem | lindfind2 21765 | In a linearly independent family in a module over a nonzero ring, no element is contained in the span of any non-containing set. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
| ⊢ 𝐾 = (LSpan‘𝑊) & ⊢ 𝐿 = (Scalar‘𝑊) ⇒ ⊢ (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ 𝐹 LIndF 𝑊 ∧ 𝐸 ∈ dom 𝐹) → ¬ (𝐹‘𝐸) ∈ (𝐾‘(𝐹 “ (dom 𝐹 ∖ {𝐸})))) | ||
| Theorem | lindsind2 21766 | In a linearly independent set in a module over a nonzero ring, no element is contained in the span of any non-containing set. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
| ⊢ 𝐾 = (LSpan‘𝑊) & ⊢ 𝐿 = (Scalar‘𝑊) ⇒ ⊢ (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝐸 ∈ 𝐹) → ¬ 𝐸 ∈ (𝐾‘(𝐹 ∖ {𝐸}))) | ||
| Theorem | lindff1 21767 | A linearly independent family over a nonzero ring has no repeated elements. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
| ⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝐿 = (Scalar‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) → 𝐹:dom 𝐹–1-1→𝐵) | ||
| Theorem | lindfrn 21768 | The range of an independent family is an independent set. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
| ⊢ ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊) → ran 𝐹 ∈ (LIndS‘𝑊)) | ||
| Theorem | f1lindf 21769 | Rearranging and deleting elements from an independent family gives an independent family. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
| ⊢ ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊 ∧ 𝐺:𝐾–1-1→dom 𝐹) → (𝐹 ∘ 𝐺) LIndF 𝑊) | ||
| Theorem | lindfres 21770 | Any restriction of an independent family is independent. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
| ⊢ ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊) → (𝐹 ↾ 𝑋) LIndF 𝑊) | ||
| Theorem | lindsss 21771 | Any subset of an independent set is independent. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
| ⊢ ((𝑊 ∈ LMod ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝐺 ⊆ 𝐹) → 𝐺 ∈ (LIndS‘𝑊)) | ||
| Theorem | f1linds 21772 | A family constructed from non-repeated elements of an independent set is independent. (Contributed by Stefan O'Rear, 26-Feb-2015.) |
| ⊢ ((𝑊 ∈ LMod ∧ 𝑆 ∈ (LIndS‘𝑊) ∧ 𝐹:𝐷–1-1→𝑆) → 𝐹 LIndF 𝑊) | ||
| Theorem | islindf3 21773 | In a nonzero ring, independent families can be equivalently characterized as renamings of independent sets. (Contributed by Stefan O'Rear, 26-Feb-2015.) |
| ⊢ 𝐿 = (Scalar‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) → (𝐹 LIndF 𝑊 ↔ (𝐹:dom 𝐹–1-1→V ∧ ran 𝐹 ∈ (LIndS‘𝑊)))) | ||
| Theorem | lindfmm 21774 | Linear independence of a family is unchanged by injective linear functions. (Contributed by Stefan O'Rear, 26-Feb-2015.) (Revised by Stefan O'Rear, 6-May-2015.) |
| ⊢ 𝐵 = (Base‘𝑆) & ⊢ 𝐶 = (Base‘𝑇) ⇒ ⊢ ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶 ∧ 𝐹:𝐼⟶𝐵) → (𝐹 LIndF 𝑆 ↔ (𝐺 ∘ 𝐹) LIndF 𝑇)) | ||
| Theorem | lindsmm 21775 | Linear independence of a set is unchanged by injective linear functions. (Contributed by Stefan O'Rear, 26-Feb-2015.) |
| ⊢ 𝐵 = (Base‘𝑆) & ⊢ 𝐶 = (Base‘𝑇) ⇒ ⊢ ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶 ∧ 𝐹 ⊆ 𝐵) → (𝐹 ∈ (LIndS‘𝑆) ↔ (𝐺 “ 𝐹) ∈ (LIndS‘𝑇))) | ||
| Theorem | lindsmm2 21776 | The monomorphic image of an independent set is independent. (Contributed by Stefan O'Rear, 26-Feb-2015.) |
| ⊢ 𝐵 = (Base‘𝑆) & ⊢ 𝐶 = (Base‘𝑇) ⇒ ⊢ ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶 ∧ 𝐹 ∈ (LIndS‘𝑆)) → (𝐺 “ 𝐹) ∈ (LIndS‘𝑇)) | ||
| Theorem | lsslindf 21777 | Linear independence is unchanged by working in a subspace. (Contributed by Stefan O'Rear, 24-Feb-2015.) (Revised by Stefan O'Rear, 6-May-2015.) |
| ⊢ 𝑈 = (LSubSp‘𝑊) & ⊢ 𝑋 = (𝑊 ↾s 𝑆) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑆 ∈ 𝑈 ∧ ran 𝐹 ⊆ 𝑆) → (𝐹 LIndF 𝑋 ↔ 𝐹 LIndF 𝑊)) | ||
| Theorem | lsslinds 21778 | Linear independence is unchanged by working in a subspace. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
| ⊢ 𝑈 = (LSubSp‘𝑊) & ⊢ 𝑋 = (𝑊 ↾s 𝑆) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑆 ∈ 𝑈 ∧ 𝐹 ⊆ 𝑆) → (𝐹 ∈ (LIndS‘𝑋) ↔ 𝐹 ∈ (LIndS‘𝑊))) | ||
| Theorem | islbs4 21779 | A basis is an independent spanning set. This could have been used as alternative definition of a basis: LBasis = (𝑤 ∈ V ↦ {𝑏 ∈ 𝒫 (Base‘𝑤) ∣ (((LSpan‘𝑤) ‘𝑏) = (Base‘𝑤) ∧ 𝑏 ∈ (LIndS‘𝑤))}). (Contributed by Stefan O'Rear, 24-Feb-2015.) |
| ⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝐽 = (LBasis‘𝑊) & ⊢ 𝐾 = (LSpan‘𝑊) ⇒ ⊢ (𝑋 ∈ 𝐽 ↔ (𝑋 ∈ (LIndS‘𝑊) ∧ (𝐾‘𝑋) = 𝐵)) | ||
| Theorem | lbslinds 21780 | A basis is independent. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
| ⊢ 𝐽 = (LBasis‘𝑊) ⇒ ⊢ 𝐽 ⊆ (LIndS‘𝑊) | ||
| Theorem | islinds3 21781 | A subset is linearly independent iff it is a basis of its span. (Contributed by Stefan O'Rear, 25-Feb-2015.) |
| ⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝐾 = (LSpan‘𝑊) & ⊢ 𝑋 = (𝑊 ↾s (𝐾‘𝑌)) & ⊢ 𝐽 = (LBasis‘𝑋) ⇒ ⊢ (𝑊 ∈ LMod → (𝑌 ∈ (LIndS‘𝑊) ↔ 𝑌 ∈ 𝐽)) | ||
| Theorem | islinds4 21782* | A set is independent in a vector space iff it is a subset of some basis. This is an axiom of choice equivalent. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
| ⊢ 𝐽 = (LBasis‘𝑊) ⇒ ⊢ (𝑊 ∈ LVec → (𝑌 ∈ (LIndS‘𝑊) ↔ ∃𝑏 ∈ 𝐽 𝑌 ⊆ 𝑏)) | ||
| Theorem | lmimlbs 21783 | The isomorphic image of a basis is a basis. (Contributed by Stefan O'Rear, 26-Feb-2015.) |
| ⊢ 𝐽 = (LBasis‘𝑆) & ⊢ 𝐾 = (LBasis‘𝑇) ⇒ ⊢ ((𝐹 ∈ (𝑆 LMIso 𝑇) ∧ 𝐵 ∈ 𝐽) → (𝐹 “ 𝐵) ∈ 𝐾) | ||
| Theorem | lmiclbs 21784 | Having a basis is an isomorphism invariant. (Contributed by Stefan O'Rear, 26-Feb-2015.) |
| ⊢ 𝐽 = (LBasis‘𝑆) & ⊢ 𝐾 = (LBasis‘𝑇) ⇒ ⊢ (𝑆 ≃𝑚 𝑇 → (𝐽 ≠ ∅ → 𝐾 ≠ ∅)) | ||
| Theorem | islindf4 21785* | A family is independent iff it has no nontrivial representations of zero. (Contributed by Stefan O'Rear, 28-Feb-2015.) |
| ⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 0 = (0g‘𝑊) & ⊢ 𝑌 = (0g‘𝑅) & ⊢ 𝐿 = (Base‘(𝑅 freeLMod 𝐼)) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝐼 ∈ 𝑋 ∧ 𝐹:𝐼⟶𝐵) → (𝐹 LIndF 𝑊 ↔ ∀𝑥 ∈ 𝐿 ((𝑊 Σg (𝑥 ∘f · 𝐹)) = 0 → 𝑥 = (𝐼 × {𝑌})))) | ||
| Theorem | islindf5 21786* | A family is independent iff the linear combinations homomorphism is injective. (Contributed by Stefan O'Rear, 28-Feb-2015.) |
| ⊢ 𝐹 = (𝑅 freeLMod 𝐼) & ⊢ 𝐵 = (Base‘𝐹) & ⊢ 𝐶 = (Base‘𝑇) & ⊢ · = ( ·𝑠 ‘𝑇) & ⊢ 𝐸 = (𝑥 ∈ 𝐵 ↦ (𝑇 Σg (𝑥 ∘f · 𝐴))) & ⊢ (𝜑 → 𝑇 ∈ LMod) & ⊢ (𝜑 → 𝐼 ∈ 𝑋) & ⊢ (𝜑 → 𝑅 = (Scalar‘𝑇)) & ⊢ (𝜑 → 𝐴:𝐼⟶𝐶) ⇒ ⊢ (𝜑 → (𝐴 LIndF 𝑇 ↔ 𝐸:𝐵–1-1→𝐶)) | ||
| Theorem | indlcim 21787* | An independent, spanning family extends to an isomorphism from a free module. (Contributed by Stefan O'Rear, 26-Feb-2015.) |
| ⊢ 𝐹 = (𝑅 freeLMod 𝐼) & ⊢ 𝐵 = (Base‘𝐹) & ⊢ 𝐶 = (Base‘𝑇) & ⊢ · = ( ·𝑠 ‘𝑇) & ⊢ 𝑁 = (LSpan‘𝑇) & ⊢ 𝐸 = (𝑥 ∈ 𝐵 ↦ (𝑇 Σg (𝑥 ∘f · 𝐴))) & ⊢ (𝜑 → 𝑇 ∈ LMod) & ⊢ (𝜑 → 𝐼 ∈ 𝑋) & ⊢ (𝜑 → 𝑅 = (Scalar‘𝑇)) & ⊢ (𝜑 → 𝐴:𝐼–onto→𝐽) & ⊢ (𝜑 → 𝐴 LIndF 𝑇) & ⊢ (𝜑 → (𝑁‘𝐽) = 𝐶) ⇒ ⊢ (𝜑 → 𝐸 ∈ (𝐹 LMIso 𝑇)) | ||
| Theorem | lbslcic 21788 | A module with a basis is isomorphic to a free module with the same cardinality. (Contributed by Stefan O'Rear, 26-Feb-2015.) |
| ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐽 = (LBasis‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝐵 ∈ 𝐽 ∧ 𝐼 ≈ 𝐵) → 𝑊 ≃𝑚 (𝐹 freeLMod 𝐼)) | ||
| Theorem | lmisfree 21789* | A module has a basis iff it is isomorphic to a free module. In settings where isomorphic objects are not distinguished, it is common to define "free module" as any module with a basis; thus for instance lbsex 21112 might be described as "every vector space is free". (Contributed by Stefan O'Rear, 26-Feb-2015.) |
| ⊢ 𝐽 = (LBasis‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) ⇒ ⊢ (𝑊 ∈ LMod → (𝐽 ≠ ∅ ↔ ∃𝑘 𝑊 ≃𝑚 (𝐹 freeLMod 𝑘))) | ||
| Theorem | lvecisfrlm 21790* | Every vector space is isomorphic to a free module. (Contributed by AV, 7-Mar-2019.) |
| ⊢ 𝐹 = (Scalar‘𝑊) ⇒ ⊢ (𝑊 ∈ LVec → ∃𝑘 𝑊 ≃𝑚 (𝐹 freeLMod 𝑘)) | ||
| Theorem | lmimco 21791 | The composition of two isomorphisms of modules is an isomorphism of modules. (Contributed by AV, 10-Mar-2019.) |
| ⊢ ((𝐹 ∈ (𝑆 LMIso 𝑇) ∧ 𝐺 ∈ (𝑅 LMIso 𝑆)) → (𝐹 ∘ 𝐺) ∈ (𝑅 LMIso 𝑇)) | ||
| Theorem | lmictra 21792 | Module isomorphism is transitive. (Contributed by AV, 10-Mar-2019.) |
| ⊢ ((𝑅 ≃𝑚 𝑆 ∧ 𝑆 ≃𝑚 𝑇) → 𝑅 ≃𝑚 𝑇) | ||
| Theorem | uvcf1o 21793 | In a nonzero ring, the mapping of the index set of a free module onto the unit vectors of the free module is a 1-1 onto function. (Contributed by AV, 10-Mar-2019.) |
| ⊢ 𝑈 = (𝑅 unitVec 𝐼) ⇒ ⊢ ((𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑊) → 𝑈:𝐼–1-1-onto→ran 𝑈) | ||
| Theorem | uvcendim 21794 | In a nonzero ring, the number of unit vectors of a free module corresponds to the dimension of the free module. (Contributed by AV, 10-Mar-2019.) |
| ⊢ 𝑈 = (𝑅 unitVec 𝐼) ⇒ ⊢ ((𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑊) → 𝐼 ≈ ran 𝑈) | ||
| Theorem | frlmisfrlm 21795 | A free module is isomorphic to a free module over the same (nonzero) ring, with the same cardinality. (Contributed by AV, 10-Mar-2019.) |
| ⊢ ((𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑌 ∧ 𝐼 ≈ 𝐽) → (𝑅 freeLMod 𝐼) ≃𝑚 (𝑅 freeLMod 𝐽)) | ||
| Theorem | frlmiscvec 21796 | Every free module is isomorphic to the free module of "column vectors" of the same dimension over the same (nonzero) ring. (Contributed by AV, 10-Mar-2019.) |
| ⊢ ((𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑌) → (𝑅 freeLMod 𝐼) ≃𝑚 (𝑅 freeLMod (𝐼 × {∅}))) | ||
| Syntax | casa 21797 | Associative algebra. |
| class AssAlg | ||
| Syntax | casp 21798 | Algebraic span function. |
| class AlgSpan | ||
| Syntax | cascl 21799 | Class of algebra scalar lifting function. |
| class algSc | ||
| Definition | df-assa 21800* | Definition of an associative algebra. An associative algebra is a set equipped with a left-module structure on a ring, coupled with a multiplicative internal operation on the vectors of the module that is associative and distributive for the additive structure of the left-module (so giving the vectors a ring structure) and that is also bilinear under the scalar product. (Contributed by Mario Carneiro, 29-Dec-2014.) (Revised by SN, 2-Mar-2025.) |
| ⊢ AssAlg = {𝑤 ∈ (LMod ∩ Ring) ∣ [(Scalar‘𝑤) / 𝑓]∀𝑟 ∈ (Base‘𝑓)∀𝑥 ∈ (Base‘𝑤)∀𝑦 ∈ (Base‘𝑤)[( ·𝑠 ‘𝑤) / 𝑠][(.r‘𝑤) / 𝑡](((𝑟𝑠𝑥)𝑡𝑦) = (𝑟𝑠(𝑥𝑡𝑦)) ∧ (𝑥𝑡(𝑟𝑠𝑦)) = (𝑟𝑠(𝑥𝑡𝑦)))} | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |