| Metamath
Proof Explorer Theorem List (p. 218 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30847) |
(30848-32370) |
(32371-49794) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | uvcf1 21701 | In a nonzero ring, each unit vector is different. (Contributed by Stefan O'Rear, 7-Feb-2015.) (Revised by Mario Carneiro, 14-Jun-2015.) |
| ⊢ 𝑈 = (𝑅 unitVec 𝐼) & ⊢ 𝑌 = (𝑅 freeLMod 𝐼) & ⊢ 𝐵 = (Base‘𝑌) ⇒ ⊢ ((𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑊) → 𝑈:𝐼–1-1→𝐵) | ||
| Theorem | uvcresum 21702 | Any element of a free module can be expressed as a finite linear combination of unit vectors. (Contributed by Stefan O'Rear, 3-Feb-2015.) (Proof shortened by Mario Carneiro, 5-Jul-2015.) |
| ⊢ 𝑈 = (𝑅 unitVec 𝐼) & ⊢ 𝑌 = (𝑅 freeLMod 𝐼) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ · = ( ·𝑠 ‘𝑌) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) → 𝑋 = (𝑌 Σg (𝑋 ∘f · 𝑈))) | ||
| Theorem | frlmssuvc1 21703* | A scalar multiple of a unit vector included in a support-restriction subspace is included in the subspace. (Contributed by Stefan O'Rear, 5-Feb-2015.) (Revised by AV, 24-Jun-2019.) |
| ⊢ 𝐹 = (𝑅 freeLMod 𝐼) & ⊢ 𝑈 = (𝑅 unitVec 𝐼) & ⊢ 𝐵 = (Base‘𝐹) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ · = ( ·𝑠 ‘𝐹) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐶 = {𝑥 ∈ 𝐵 ∣ (𝑥 supp 0 ) ⊆ 𝐽} & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝐽 ⊆ 𝐼) & ⊢ (𝜑 → 𝐿 ∈ 𝐽) & ⊢ (𝜑 → 𝑋 ∈ 𝐾) ⇒ ⊢ (𝜑 → (𝑋 · (𝑈‘𝐿)) ∈ 𝐶) | ||
| Theorem | frlmssuvc2 21704* | A nonzero scalar multiple of a unit vector not included in a support-restriction subspace is not included in the subspace. (Contributed by Stefan O'Rear, 5-Feb-2015.) (Revised by AV, 24-Jun-2019.) |
| ⊢ 𝐹 = (𝑅 freeLMod 𝐼) & ⊢ 𝑈 = (𝑅 unitVec 𝐼) & ⊢ 𝐵 = (Base‘𝐹) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ · = ( ·𝑠 ‘𝐹) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐶 = {𝑥 ∈ 𝐵 ∣ (𝑥 supp 0 ) ⊆ 𝐽} & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝐽 ⊆ 𝐼) & ⊢ (𝜑 → 𝐿 ∈ (𝐼 ∖ 𝐽)) & ⊢ (𝜑 → 𝑋 ∈ (𝐾 ∖ { 0 })) ⇒ ⊢ (𝜑 → ¬ (𝑋 · (𝑈‘𝐿)) ∈ 𝐶) | ||
| Theorem | frlmsslsp 21705* | A subset of a free module obtained by restricting the support set is spanned by the relevant unit vectors. (Contributed by Stefan O'Rear, 6-Feb-2015.) (Revised by AV, 24-Jun-2019.) |
| ⊢ 𝑌 = (𝑅 freeLMod 𝐼) & ⊢ 𝑈 = (𝑅 unitVec 𝐼) & ⊢ 𝐾 = (LSpan‘𝑌) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐶 = {𝑥 ∈ 𝐵 ∣ (𝑥 supp 0 ) ⊆ 𝐽} ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → (𝐾‘(𝑈 “ 𝐽)) = 𝐶) | ||
| Theorem | frlmlbs 21706 | The unit vectors comprise a basis for a free module. (Contributed by Stefan O'Rear, 6-Feb-2015.) (Proof shortened by AV, 21-Jul-2019.) |
| ⊢ 𝐹 = (𝑅 freeLMod 𝐼) & ⊢ 𝑈 = (𝑅 unitVec 𝐼) & ⊢ 𝐽 = (LBasis‘𝐹) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) → ran 𝑈 ∈ 𝐽) | ||
| Theorem | frlmup1 21707* | Any assignment of unit vectors to target vectors can be extended (uniquely) to a homomorphism from a free module to an arbitrary other module on the same base ring. (Contributed by Stefan O'Rear, 7-Feb-2015.) (Proof shortened by AV, 21-Jul-2019.) |
| ⊢ 𝐹 = (𝑅 freeLMod 𝐼) & ⊢ 𝐵 = (Base‘𝐹) & ⊢ 𝐶 = (Base‘𝑇) & ⊢ · = ( ·𝑠 ‘𝑇) & ⊢ 𝐸 = (𝑥 ∈ 𝐵 ↦ (𝑇 Σg (𝑥 ∘f · 𝐴))) & ⊢ (𝜑 → 𝑇 ∈ LMod) & ⊢ (𝜑 → 𝐼 ∈ 𝑋) & ⊢ (𝜑 → 𝑅 = (Scalar‘𝑇)) & ⊢ (𝜑 → 𝐴:𝐼⟶𝐶) ⇒ ⊢ (𝜑 → 𝐸 ∈ (𝐹 LMHom 𝑇)) | ||
| Theorem | frlmup2 21708* | The evaluation map has the intended behavior on the unit vectors. (Contributed by Stefan O'Rear, 7-Feb-2015.) (Proof shortened by AV, 21-Jul-2019.) |
| ⊢ 𝐹 = (𝑅 freeLMod 𝐼) & ⊢ 𝐵 = (Base‘𝐹) & ⊢ 𝐶 = (Base‘𝑇) & ⊢ · = ( ·𝑠 ‘𝑇) & ⊢ 𝐸 = (𝑥 ∈ 𝐵 ↦ (𝑇 Σg (𝑥 ∘f · 𝐴))) & ⊢ (𝜑 → 𝑇 ∈ LMod) & ⊢ (𝜑 → 𝐼 ∈ 𝑋) & ⊢ (𝜑 → 𝑅 = (Scalar‘𝑇)) & ⊢ (𝜑 → 𝐴:𝐼⟶𝐶) & ⊢ (𝜑 → 𝑌 ∈ 𝐼) & ⊢ 𝑈 = (𝑅 unitVec 𝐼) ⇒ ⊢ (𝜑 → (𝐸‘(𝑈‘𝑌)) = (𝐴‘𝑌)) | ||
| Theorem | frlmup3 21709* | The range of such an evaluation map is the finite linear combinations of the target vectors and also the span of the target vectors. (Contributed by Stefan O'Rear, 6-Feb-2015.) |
| ⊢ 𝐹 = (𝑅 freeLMod 𝐼) & ⊢ 𝐵 = (Base‘𝐹) & ⊢ 𝐶 = (Base‘𝑇) & ⊢ · = ( ·𝑠 ‘𝑇) & ⊢ 𝐸 = (𝑥 ∈ 𝐵 ↦ (𝑇 Σg (𝑥 ∘f · 𝐴))) & ⊢ (𝜑 → 𝑇 ∈ LMod) & ⊢ (𝜑 → 𝐼 ∈ 𝑋) & ⊢ (𝜑 → 𝑅 = (Scalar‘𝑇)) & ⊢ (𝜑 → 𝐴:𝐼⟶𝐶) & ⊢ 𝐾 = (LSpan‘𝑇) ⇒ ⊢ (𝜑 → ran 𝐸 = (𝐾‘ran 𝐴)) | ||
| Theorem | frlmup4 21710* | Universal property of the free module by existential uniqueness. (Contributed by Stefan O'Rear, 7-Mar-2015.) |
| ⊢ 𝑅 = (Scalar‘𝑇) & ⊢ 𝐹 = (𝑅 freeLMod 𝐼) & ⊢ 𝑈 = (𝑅 unitVec 𝐼) & ⊢ 𝐶 = (Base‘𝑇) ⇒ ⊢ ((𝑇 ∈ LMod ∧ 𝐼 ∈ 𝑋 ∧ 𝐴:𝐼⟶𝐶) → ∃!𝑚 ∈ (𝐹 LMHom 𝑇)(𝑚 ∘ 𝑈) = 𝐴) | ||
| Theorem | ellspd 21711* | The elements of the span of an indexed collection of basic vectors are those vectors which can be written as finite linear combinations of basic vectors. (Contributed by Stefan O'Rear, 7-Feb-2015.) (Revised by AV, 24-Jun-2019.) (Revised by AV, 11-Apr-2024.) |
| ⊢ 𝑁 = (LSpan‘𝑀) & ⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝐾 = (Base‘𝑆) & ⊢ 𝑆 = (Scalar‘𝑀) & ⊢ 0 = (0g‘𝑆) & ⊢ · = ( ·𝑠 ‘𝑀) & ⊢ (𝜑 → 𝐹:𝐼⟶𝐵) & ⊢ (𝜑 → 𝑀 ∈ LMod) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝑋 ∈ (𝑁‘(𝐹 “ 𝐼)) ↔ ∃𝑓 ∈ (𝐾 ↑m 𝐼)(𝑓 finSupp 0 ∧ 𝑋 = (𝑀 Σg (𝑓 ∘f · 𝐹))))) | ||
| Theorem | elfilspd 21712* | Simplified version of ellspd 21711 when the spanning set is finite: all linear combinations are then acceptable. (Contributed by Stefan O'Rear, 7-Feb-2015.) (Proof shortened by AV, 21-Jul-2019.) |
| ⊢ 𝑁 = (LSpan‘𝑀) & ⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝐾 = (Base‘𝑆) & ⊢ 𝑆 = (Scalar‘𝑀) & ⊢ 0 = (0g‘𝑆) & ⊢ · = ( ·𝑠 ‘𝑀) & ⊢ (𝜑 → 𝐹:𝐼⟶𝐵) & ⊢ (𝜑 → 𝑀 ∈ LMod) & ⊢ (𝜑 → 𝐼 ∈ Fin) ⇒ ⊢ (𝜑 → (𝑋 ∈ (𝑁‘(𝐹 “ 𝐼)) ↔ ∃𝑓 ∈ (𝐾 ↑m 𝐼)𝑋 = (𝑀 Σg (𝑓 ∘f · 𝐹)))) | ||
According to the definition in [Lang] p. 129: "A subset S of a module M is said to be linearly independent (over A) if whenever we have a linear combination ∑x∈Saxx which is equal to 0, then ax = 0 for all x ∈ S", and according to the Definition in [Lang] p. 130: "a familiy {xi}i∈I of elements of M is said to be linearly independent (over A) if whenever we have a linear combination ∑i∈Iaixi = 0, then ai = 0 for all i ∈ I." These definitions correspond to Definitions df-linds 21716 and df-lindf 21715 respectively, where it is claimed that a nonzero summand can be extracted (∑i∈{I\{j}}aixi = -ajxj) and be represented as a linear combination of the remaining elements of the family. | ||
| Syntax | clindf 21713 | The class relationship of independent families in a module. |
| class LIndF | ||
| Syntax | clinds 21714 | The class generator of independent sets in a module. |
| class LIndS | ||
| Definition | df-lindf 21715* |
An independent family is a family of vectors, no nonzero multiple of
which can be expressed as a linear combination of other elements of the
family. This is almost, but not quite, the same as a function into an
independent set.
This is a defined concept because it matters in many cases whether independence is taken at a set or family level. For instance, a number is transcedental iff its nonzero powers are linearly independent. Is 1 transcedental? It has only one nonzero power. We can almost define family independence as a family of unequal elements with independent range, as islindf3 21735, but taking that as primitive would lead to unpleasant corner case behavior with the zero ring. This is equivalent to the common definition of having no nontrivial representations of zero (islindf4 21747) and only one representation for each element of the range (islindf5 21748). (Contributed by Stefan O'Rear, 24-Feb-2015.) |
| ⊢ LIndF = {〈𝑓, 𝑤〉 ∣ (𝑓:dom 𝑓⟶(Base‘𝑤) ∧ [(Scalar‘𝑤) / 𝑠]∀𝑥 ∈ dom 𝑓∀𝑘 ∈ ((Base‘𝑠) ∖ {(0g‘𝑠)}) ¬ (𝑘( ·𝑠 ‘𝑤)(𝑓‘𝑥)) ∈ ((LSpan‘𝑤)‘(𝑓 “ (dom 𝑓 ∖ {𝑥}))))} | ||
| Definition | df-linds 21716* | An independent set is a set which is independent as a family. See also islinds3 21743 and islinds4 21744. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
| ⊢ LIndS = (𝑤 ∈ V ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ ( I ↾ 𝑠) LIndF 𝑤}) | ||
| Theorem | rellindf 21717 | The independent-family predicate is a proper relation and can be used with brrelex1i 5694. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
| ⊢ Rel LIndF | ||
| Theorem | islinds 21718 | Property of an independent set of vectors in terms of an independent family. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
| ⊢ 𝐵 = (Base‘𝑊) ⇒ ⊢ (𝑊 ∈ 𝑉 → (𝑋 ∈ (LIndS‘𝑊) ↔ (𝑋 ⊆ 𝐵 ∧ ( I ↾ 𝑋) LIndF 𝑊))) | ||
| Theorem | linds1 21719 | An independent set of vectors is a set of vectors. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
| ⊢ 𝐵 = (Base‘𝑊) ⇒ ⊢ (𝑋 ∈ (LIndS‘𝑊) → 𝑋 ⊆ 𝐵) | ||
| Theorem | linds2 21720 | An independent set of vectors is independent as a family. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
| ⊢ (𝑋 ∈ (LIndS‘𝑊) → ( I ↾ 𝑋) LIndF 𝑊) | ||
| Theorem | islindf 21721* | Property of an independent family of vectors. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
| ⊢ 𝐵 = (Base‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐾 = (LSpan‘𝑊) & ⊢ 𝑆 = (Scalar‘𝑊) & ⊢ 𝑁 = (Base‘𝑆) & ⊢ 0 = (0g‘𝑆) ⇒ ⊢ ((𝑊 ∈ 𝑌 ∧ 𝐹 ∈ 𝑋) → (𝐹 LIndF 𝑊 ↔ (𝐹:dom 𝐹⟶𝐵 ∧ ∀𝑥 ∈ dom 𝐹∀𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · (𝐹‘𝑥)) ∈ (𝐾‘(𝐹 “ (dom 𝐹 ∖ {𝑥})))))) | ||
| Theorem | islinds2 21722* | Expanded property of an independent set of vectors. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
| ⊢ 𝐵 = (Base‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐾 = (LSpan‘𝑊) & ⊢ 𝑆 = (Scalar‘𝑊) & ⊢ 𝑁 = (Base‘𝑆) & ⊢ 0 = (0g‘𝑆) ⇒ ⊢ (𝑊 ∈ 𝑌 → (𝐹 ∈ (LIndS‘𝑊) ↔ (𝐹 ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝐹 ∀𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · 𝑥) ∈ (𝐾‘(𝐹 ∖ {𝑥}))))) | ||
| Theorem | islindf2 21723* | Property of an independent family of vectors with prior constrained domain and codomain. (Contributed by Stefan O'Rear, 26-Feb-2015.) |
| ⊢ 𝐵 = (Base‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐾 = (LSpan‘𝑊) & ⊢ 𝑆 = (Scalar‘𝑊) & ⊢ 𝑁 = (Base‘𝑆) & ⊢ 0 = (0g‘𝑆) ⇒ ⊢ ((𝑊 ∈ 𝑌 ∧ 𝐼 ∈ 𝑋 ∧ 𝐹:𝐼⟶𝐵) → (𝐹 LIndF 𝑊 ↔ ∀𝑥 ∈ 𝐼 ∀𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · (𝐹‘𝑥)) ∈ (𝐾‘(𝐹 “ (𝐼 ∖ {𝑥}))))) | ||
| Theorem | lindff 21724 | Functional property of a linearly independent family. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
| ⊢ 𝐵 = (Base‘𝑊) ⇒ ⊢ ((𝐹 LIndF 𝑊 ∧ 𝑊 ∈ 𝑌) → 𝐹:dom 𝐹⟶𝐵) | ||
| Theorem | lindfind 21725 | A linearly independent family is independent: no nonzero element multiple can be expressed as a linear combination of the others. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
| ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ 𝐿 = (Scalar‘𝑊) & ⊢ 0 = (0g‘𝐿) & ⊢ 𝐾 = (Base‘𝐿) ⇒ ⊢ (((𝐹 LIndF 𝑊 ∧ 𝐸 ∈ dom 𝐹) ∧ (𝐴 ∈ 𝐾 ∧ 𝐴 ≠ 0 )) → ¬ (𝐴 · (𝐹‘𝐸)) ∈ (𝑁‘(𝐹 “ (dom 𝐹 ∖ {𝐸})))) | ||
| Theorem | lindsind 21726 | A linearly independent set is independent: no nonzero element multiple can be expressed as a linear combination of the others. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
| ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ 𝐿 = (Scalar‘𝑊) & ⊢ 0 = (0g‘𝐿) & ⊢ 𝐾 = (Base‘𝐿) ⇒ ⊢ (((𝐹 ∈ (LIndS‘𝑊) ∧ 𝐸 ∈ 𝐹) ∧ (𝐴 ∈ 𝐾 ∧ 𝐴 ≠ 0 )) → ¬ (𝐴 · 𝐸) ∈ (𝑁‘(𝐹 ∖ {𝐸}))) | ||
| Theorem | lindfind2 21727 | In a linearly independent family in a module over a nonzero ring, no element is contained in the span of any non-containing set. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
| ⊢ 𝐾 = (LSpan‘𝑊) & ⊢ 𝐿 = (Scalar‘𝑊) ⇒ ⊢ (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ 𝐹 LIndF 𝑊 ∧ 𝐸 ∈ dom 𝐹) → ¬ (𝐹‘𝐸) ∈ (𝐾‘(𝐹 “ (dom 𝐹 ∖ {𝐸})))) | ||
| Theorem | lindsind2 21728 | In a linearly independent set in a module over a nonzero ring, no element is contained in the span of any non-containing set. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
| ⊢ 𝐾 = (LSpan‘𝑊) & ⊢ 𝐿 = (Scalar‘𝑊) ⇒ ⊢ (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝐸 ∈ 𝐹) → ¬ 𝐸 ∈ (𝐾‘(𝐹 ∖ {𝐸}))) | ||
| Theorem | lindff1 21729 | A linearly independent family over a nonzero ring has no repeated elements. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
| ⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝐿 = (Scalar‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) → 𝐹:dom 𝐹–1-1→𝐵) | ||
| Theorem | lindfrn 21730 | The range of an independent family is an independent set. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
| ⊢ ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊) → ran 𝐹 ∈ (LIndS‘𝑊)) | ||
| Theorem | f1lindf 21731 | Rearranging and deleting elements from an independent family gives an independent family. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
| ⊢ ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊 ∧ 𝐺:𝐾–1-1→dom 𝐹) → (𝐹 ∘ 𝐺) LIndF 𝑊) | ||
| Theorem | lindfres 21732 | Any restriction of an independent family is independent. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
| ⊢ ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊) → (𝐹 ↾ 𝑋) LIndF 𝑊) | ||
| Theorem | lindsss 21733 | Any subset of an independent set is independent. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
| ⊢ ((𝑊 ∈ LMod ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝐺 ⊆ 𝐹) → 𝐺 ∈ (LIndS‘𝑊)) | ||
| Theorem | f1linds 21734 | A family constructed from non-repeated elements of an independent set is independent. (Contributed by Stefan O'Rear, 26-Feb-2015.) |
| ⊢ ((𝑊 ∈ LMod ∧ 𝑆 ∈ (LIndS‘𝑊) ∧ 𝐹:𝐷–1-1→𝑆) → 𝐹 LIndF 𝑊) | ||
| Theorem | islindf3 21735 | In a nonzero ring, independent families can be equivalently characterized as renamings of independent sets. (Contributed by Stefan O'Rear, 26-Feb-2015.) |
| ⊢ 𝐿 = (Scalar‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) → (𝐹 LIndF 𝑊 ↔ (𝐹:dom 𝐹–1-1→V ∧ ran 𝐹 ∈ (LIndS‘𝑊)))) | ||
| Theorem | lindfmm 21736 | Linear independence of a family is unchanged by injective linear functions. (Contributed by Stefan O'Rear, 26-Feb-2015.) (Revised by Stefan O'Rear, 6-May-2015.) |
| ⊢ 𝐵 = (Base‘𝑆) & ⊢ 𝐶 = (Base‘𝑇) ⇒ ⊢ ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶 ∧ 𝐹:𝐼⟶𝐵) → (𝐹 LIndF 𝑆 ↔ (𝐺 ∘ 𝐹) LIndF 𝑇)) | ||
| Theorem | lindsmm 21737 | Linear independence of a set is unchanged by injective linear functions. (Contributed by Stefan O'Rear, 26-Feb-2015.) |
| ⊢ 𝐵 = (Base‘𝑆) & ⊢ 𝐶 = (Base‘𝑇) ⇒ ⊢ ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶 ∧ 𝐹 ⊆ 𝐵) → (𝐹 ∈ (LIndS‘𝑆) ↔ (𝐺 “ 𝐹) ∈ (LIndS‘𝑇))) | ||
| Theorem | lindsmm2 21738 | The monomorphic image of an independent set is independent. (Contributed by Stefan O'Rear, 26-Feb-2015.) |
| ⊢ 𝐵 = (Base‘𝑆) & ⊢ 𝐶 = (Base‘𝑇) ⇒ ⊢ ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶 ∧ 𝐹 ∈ (LIndS‘𝑆)) → (𝐺 “ 𝐹) ∈ (LIndS‘𝑇)) | ||
| Theorem | lsslindf 21739 | Linear independence is unchanged by working in a subspace. (Contributed by Stefan O'Rear, 24-Feb-2015.) (Revised by Stefan O'Rear, 6-May-2015.) |
| ⊢ 𝑈 = (LSubSp‘𝑊) & ⊢ 𝑋 = (𝑊 ↾s 𝑆) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑆 ∈ 𝑈 ∧ ran 𝐹 ⊆ 𝑆) → (𝐹 LIndF 𝑋 ↔ 𝐹 LIndF 𝑊)) | ||
| Theorem | lsslinds 21740 | Linear independence is unchanged by working in a subspace. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
| ⊢ 𝑈 = (LSubSp‘𝑊) & ⊢ 𝑋 = (𝑊 ↾s 𝑆) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑆 ∈ 𝑈 ∧ 𝐹 ⊆ 𝑆) → (𝐹 ∈ (LIndS‘𝑋) ↔ 𝐹 ∈ (LIndS‘𝑊))) | ||
| Theorem | islbs4 21741 | A basis is an independent spanning set. This could have been used as alternative definition of a basis: LBasis = (𝑤 ∈ V ↦ {𝑏 ∈ 𝒫 (Base‘𝑤) ∣ (((LSpan‘𝑤) ‘𝑏) = (Base‘𝑤) ∧ 𝑏 ∈ (LIndS‘𝑤))}). (Contributed by Stefan O'Rear, 24-Feb-2015.) |
| ⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝐽 = (LBasis‘𝑊) & ⊢ 𝐾 = (LSpan‘𝑊) ⇒ ⊢ (𝑋 ∈ 𝐽 ↔ (𝑋 ∈ (LIndS‘𝑊) ∧ (𝐾‘𝑋) = 𝐵)) | ||
| Theorem | lbslinds 21742 | A basis is independent. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
| ⊢ 𝐽 = (LBasis‘𝑊) ⇒ ⊢ 𝐽 ⊆ (LIndS‘𝑊) | ||
| Theorem | islinds3 21743 | A subset is linearly independent iff it is a basis of its span. (Contributed by Stefan O'Rear, 25-Feb-2015.) |
| ⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝐾 = (LSpan‘𝑊) & ⊢ 𝑋 = (𝑊 ↾s (𝐾‘𝑌)) & ⊢ 𝐽 = (LBasis‘𝑋) ⇒ ⊢ (𝑊 ∈ LMod → (𝑌 ∈ (LIndS‘𝑊) ↔ 𝑌 ∈ 𝐽)) | ||
| Theorem | islinds4 21744* | A set is independent in a vector space iff it is a subset of some basis. This is an axiom of choice equivalent. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
| ⊢ 𝐽 = (LBasis‘𝑊) ⇒ ⊢ (𝑊 ∈ LVec → (𝑌 ∈ (LIndS‘𝑊) ↔ ∃𝑏 ∈ 𝐽 𝑌 ⊆ 𝑏)) | ||
| Theorem | lmimlbs 21745 | The isomorphic image of a basis is a basis. (Contributed by Stefan O'Rear, 26-Feb-2015.) |
| ⊢ 𝐽 = (LBasis‘𝑆) & ⊢ 𝐾 = (LBasis‘𝑇) ⇒ ⊢ ((𝐹 ∈ (𝑆 LMIso 𝑇) ∧ 𝐵 ∈ 𝐽) → (𝐹 “ 𝐵) ∈ 𝐾) | ||
| Theorem | lmiclbs 21746 | Having a basis is an isomorphism invariant. (Contributed by Stefan O'Rear, 26-Feb-2015.) |
| ⊢ 𝐽 = (LBasis‘𝑆) & ⊢ 𝐾 = (LBasis‘𝑇) ⇒ ⊢ (𝑆 ≃𝑚 𝑇 → (𝐽 ≠ ∅ → 𝐾 ≠ ∅)) | ||
| Theorem | islindf4 21747* | A family is independent iff it has no nontrivial representations of zero. (Contributed by Stefan O'Rear, 28-Feb-2015.) |
| ⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 0 = (0g‘𝑊) & ⊢ 𝑌 = (0g‘𝑅) & ⊢ 𝐿 = (Base‘(𝑅 freeLMod 𝐼)) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝐼 ∈ 𝑋 ∧ 𝐹:𝐼⟶𝐵) → (𝐹 LIndF 𝑊 ↔ ∀𝑥 ∈ 𝐿 ((𝑊 Σg (𝑥 ∘f · 𝐹)) = 0 → 𝑥 = (𝐼 × {𝑌})))) | ||
| Theorem | islindf5 21748* | A family is independent iff the linear combinations homomorphism is injective. (Contributed by Stefan O'Rear, 28-Feb-2015.) |
| ⊢ 𝐹 = (𝑅 freeLMod 𝐼) & ⊢ 𝐵 = (Base‘𝐹) & ⊢ 𝐶 = (Base‘𝑇) & ⊢ · = ( ·𝑠 ‘𝑇) & ⊢ 𝐸 = (𝑥 ∈ 𝐵 ↦ (𝑇 Σg (𝑥 ∘f · 𝐴))) & ⊢ (𝜑 → 𝑇 ∈ LMod) & ⊢ (𝜑 → 𝐼 ∈ 𝑋) & ⊢ (𝜑 → 𝑅 = (Scalar‘𝑇)) & ⊢ (𝜑 → 𝐴:𝐼⟶𝐶) ⇒ ⊢ (𝜑 → (𝐴 LIndF 𝑇 ↔ 𝐸:𝐵–1-1→𝐶)) | ||
| Theorem | indlcim 21749* | An independent, spanning family extends to an isomorphism from a free module. (Contributed by Stefan O'Rear, 26-Feb-2015.) |
| ⊢ 𝐹 = (𝑅 freeLMod 𝐼) & ⊢ 𝐵 = (Base‘𝐹) & ⊢ 𝐶 = (Base‘𝑇) & ⊢ · = ( ·𝑠 ‘𝑇) & ⊢ 𝑁 = (LSpan‘𝑇) & ⊢ 𝐸 = (𝑥 ∈ 𝐵 ↦ (𝑇 Σg (𝑥 ∘f · 𝐴))) & ⊢ (𝜑 → 𝑇 ∈ LMod) & ⊢ (𝜑 → 𝐼 ∈ 𝑋) & ⊢ (𝜑 → 𝑅 = (Scalar‘𝑇)) & ⊢ (𝜑 → 𝐴:𝐼–onto→𝐽) & ⊢ (𝜑 → 𝐴 LIndF 𝑇) & ⊢ (𝜑 → (𝑁‘𝐽) = 𝐶) ⇒ ⊢ (𝜑 → 𝐸 ∈ (𝐹 LMIso 𝑇)) | ||
| Theorem | lbslcic 21750 | A module with a basis is isomorphic to a free module with the same cardinality. (Contributed by Stefan O'Rear, 26-Feb-2015.) |
| ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐽 = (LBasis‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝐵 ∈ 𝐽 ∧ 𝐼 ≈ 𝐵) → 𝑊 ≃𝑚 (𝐹 freeLMod 𝐼)) | ||
| Theorem | lmisfree 21751* | A module has a basis iff it is isomorphic to a free module. In settings where isomorphic objects are not distinguished, it is common to define "free module" as any module with a basis; thus for instance lbsex 21075 might be described as "every vector space is free". (Contributed by Stefan O'Rear, 26-Feb-2015.) |
| ⊢ 𝐽 = (LBasis‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) ⇒ ⊢ (𝑊 ∈ LMod → (𝐽 ≠ ∅ ↔ ∃𝑘 𝑊 ≃𝑚 (𝐹 freeLMod 𝑘))) | ||
| Theorem | lvecisfrlm 21752* | Every vector space is isomorphic to a free module. (Contributed by AV, 7-Mar-2019.) |
| ⊢ 𝐹 = (Scalar‘𝑊) ⇒ ⊢ (𝑊 ∈ LVec → ∃𝑘 𝑊 ≃𝑚 (𝐹 freeLMod 𝑘)) | ||
| Theorem | lmimco 21753 | The composition of two isomorphisms of modules is an isomorphism of modules. (Contributed by AV, 10-Mar-2019.) |
| ⊢ ((𝐹 ∈ (𝑆 LMIso 𝑇) ∧ 𝐺 ∈ (𝑅 LMIso 𝑆)) → (𝐹 ∘ 𝐺) ∈ (𝑅 LMIso 𝑇)) | ||
| Theorem | lmictra 21754 | Module isomorphism is transitive. (Contributed by AV, 10-Mar-2019.) |
| ⊢ ((𝑅 ≃𝑚 𝑆 ∧ 𝑆 ≃𝑚 𝑇) → 𝑅 ≃𝑚 𝑇) | ||
| Theorem | uvcf1o 21755 | In a nonzero ring, the mapping of the index set of a free module onto the unit vectors of the free module is a 1-1 onto function. (Contributed by AV, 10-Mar-2019.) |
| ⊢ 𝑈 = (𝑅 unitVec 𝐼) ⇒ ⊢ ((𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑊) → 𝑈:𝐼–1-1-onto→ran 𝑈) | ||
| Theorem | uvcendim 21756 | In a nonzero ring, the number of unit vectors of a free module corresponds to the dimension of the free module. (Contributed by AV, 10-Mar-2019.) |
| ⊢ 𝑈 = (𝑅 unitVec 𝐼) ⇒ ⊢ ((𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑊) → 𝐼 ≈ ran 𝑈) | ||
| Theorem | frlmisfrlm 21757 | A free module is isomorphic to a free module over the same (nonzero) ring, with the same cardinality. (Contributed by AV, 10-Mar-2019.) |
| ⊢ ((𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑌 ∧ 𝐼 ≈ 𝐽) → (𝑅 freeLMod 𝐼) ≃𝑚 (𝑅 freeLMod 𝐽)) | ||
| Theorem | frlmiscvec 21758 | Every free module is isomorphic to the free module of "column vectors" of the same dimension over the same (nonzero) ring. (Contributed by AV, 10-Mar-2019.) |
| ⊢ ((𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑌) → (𝑅 freeLMod 𝐼) ≃𝑚 (𝑅 freeLMod (𝐼 × {∅}))) | ||
| Syntax | casa 21759 | Associative algebra. |
| class AssAlg | ||
| Syntax | casp 21760 | Algebraic span function. |
| class AlgSpan | ||
| Syntax | cascl 21761 | Class of algebra scalar lifting function. |
| class algSc | ||
| Definition | df-assa 21762* | Definition of an associative algebra. An associative algebra is a set equipped with a left-module structure on a ring, coupled with a multiplicative internal operation on the vectors of the module that is associative and distributive for the additive structure of the left-module (so giving the vectors a ring structure) and that is also bilinear under the scalar product. (Contributed by Mario Carneiro, 29-Dec-2014.) (Revised by SN, 2-Mar-2025.) |
| ⊢ AssAlg = {𝑤 ∈ (LMod ∩ Ring) ∣ [(Scalar‘𝑤) / 𝑓]∀𝑟 ∈ (Base‘𝑓)∀𝑥 ∈ (Base‘𝑤)∀𝑦 ∈ (Base‘𝑤)[( ·𝑠 ‘𝑤) / 𝑠][(.r‘𝑤) / 𝑡](((𝑟𝑠𝑥)𝑡𝑦) = (𝑟𝑠(𝑥𝑡𝑦)) ∧ (𝑥𝑡(𝑟𝑠𝑦)) = (𝑟𝑠(𝑥𝑡𝑦)))} | ||
| Definition | df-asp 21763* | Define the algebraic span of a set of vectors in an algebra. (Contributed by Mario Carneiro, 7-Jan-2015.) |
| ⊢ AlgSpan = (𝑤 ∈ AssAlg ↦ (𝑠 ∈ 𝒫 (Base‘𝑤) ↦ ∩ {𝑡 ∈ ((SubRing‘𝑤) ∩ (LSubSp‘𝑤)) ∣ 𝑠 ⊆ 𝑡})) | ||
| Definition | df-ascl 21764* | Every unital algebra contains a canonical homomorphic image of its ring of scalars as scalar multiples of the unity element. This names the homomorphism. (Contributed by Mario Carneiro, 8-Mar-2015.) |
| ⊢ algSc = (𝑤 ∈ V ↦ (𝑥 ∈ (Base‘(Scalar‘𝑤)) ↦ (𝑥( ·𝑠 ‘𝑤)(1r‘𝑤)))) | ||
| Theorem | isassa 21765* | The properties of an associative algebra. (Contributed by Mario Carneiro, 29-Dec-2014.) (Revised by SN, 2-Mar-2025.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐵 = (Base‘𝐹) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ × = (.r‘𝑊) ⇒ ⊢ (𝑊 ∈ AssAlg ↔ ((𝑊 ∈ LMod ∧ 𝑊 ∈ Ring) ∧ ∀𝑟 ∈ 𝐵 ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦))))) | ||
| Theorem | assalem 21766 | The properties of an associative algebra. (Contributed by Mario Carneiro, 29-Dec-2014.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐵 = (Base‘𝐹) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ × = (.r‘𝑊) ⇒ ⊢ ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (((𝐴 · 𝑋) × 𝑌) = (𝐴 · (𝑋 × 𝑌)) ∧ (𝑋 × (𝐴 · 𝑌)) = (𝐴 · (𝑋 × 𝑌)))) | ||
| Theorem | assaass 21767 | Left-associative property of an associative algebra. (Contributed by Mario Carneiro, 29-Dec-2014.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐵 = (Base‘𝐹) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ × = (.r‘𝑊) ⇒ ⊢ ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → ((𝐴 · 𝑋) × 𝑌) = (𝐴 · (𝑋 × 𝑌))) | ||
| Theorem | assaassr 21768 | Right-associative property of an associative algebra. (Contributed by Mario Carneiro, 29-Dec-2014.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐵 = (Base‘𝐹) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ × = (.r‘𝑊) ⇒ ⊢ ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (𝑋 × (𝐴 · 𝑌)) = (𝐴 · (𝑋 × 𝑌))) | ||
| Theorem | assalmod 21769 | An associative algebra is a left module. (Contributed by Mario Carneiro, 5-Dec-2014.) |
| ⊢ (𝑊 ∈ AssAlg → 𝑊 ∈ LMod) | ||
| Theorem | assaring 21770 | An associative algebra is a ring. (Contributed by Mario Carneiro, 5-Dec-2014.) |
| ⊢ (𝑊 ∈ AssAlg → 𝑊 ∈ Ring) | ||
| Theorem | assasca 21771 | The scalars of an associative algebra form a ring. (Contributed by Mario Carneiro, 7-Jan-2015.) (Revised by SN, 2-Mar-2025.) |
| ⊢ 𝐹 = (Scalar‘𝑊) ⇒ ⊢ (𝑊 ∈ AssAlg → 𝐹 ∈ Ring) | ||
| Theorem | assa2ass 21772 | Left- and right-associative property of an associative algebra. Notice that the scalars are commuted! (Contributed by AV, 14-Aug-2019.) (Proof shortened by Zhi Wang, 11-Sep-2025.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐵 = (Base‘𝐹) & ⊢ ∗ = (.r‘𝐹) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ × = (.r‘𝑊) ⇒ ⊢ ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → ((𝐴 · 𝑋) × (𝐶 · 𝑌)) = ((𝐶 ∗ 𝐴) · (𝑋 × 𝑌))) | ||
| Theorem | assa2ass2 21773 | Left- and right-associative property of an associative algebra. Notice that the scalars are not commuted! (Contributed by Zhi Wang, 11-Sep-2025.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐵 = (Base‘𝐹) & ⊢ ∗ = (.r‘𝐹) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ × = (.r‘𝑊) ⇒ ⊢ ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → ((𝐴 · 𝑋) × (𝐶 · 𝑌)) = ((𝐴 ∗ 𝐶) · (𝑋 × 𝑌))) | ||
| Theorem | isassad 21774* | Sufficient condition for being an associative algebra. (Contributed by Mario Carneiro, 5-Dec-2014.) (Revised by SN, 2-Mar-2025.) |
| ⊢ (𝜑 → 𝑉 = (Base‘𝑊)) & ⊢ (𝜑 → 𝐹 = (Scalar‘𝑊)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐹)) & ⊢ (𝜑 → · = ( ·𝑠 ‘𝑊)) & ⊢ (𝜑 → × = (.r‘𝑊)) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑊 ∈ Ring) & ⊢ ((𝜑 ∧ (𝑟 ∈ 𝐵 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → ((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦))) & ⊢ ((𝜑 ∧ (𝑟 ∈ 𝐵 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦))) ⇒ ⊢ (𝜑 → 𝑊 ∈ AssAlg) | ||
| Theorem | issubassa3 21775 | A subring that is also a subspace is a subalgebra. The key theorem is islss3 20865. (Contributed by Mario Carneiro, 7-Jan-2015.) |
| ⊢ 𝑆 = (𝑊 ↾s 𝐴) & ⊢ 𝐿 = (LSubSp‘𝑊) ⇒ ⊢ ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ (SubRing‘𝑊) ∧ 𝐴 ∈ 𝐿)) → 𝑆 ∈ AssAlg) | ||
| Theorem | issubassa 21776 | The subalgebras of an associative algebra are exactly the subrings (under the ring multiplication) that are simultaneously subspaces (under the scalar multiplication from the vector space). (Contributed by Mario Carneiro, 7-Jan-2015.) |
| ⊢ 𝑆 = (𝑊 ↾s 𝐴) & ⊢ 𝐿 = (LSubSp‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ 1 = (1r‘𝑊) ⇒ ⊢ ((𝑊 ∈ AssAlg ∧ 1 ∈ 𝐴 ∧ 𝐴 ⊆ 𝑉) → (𝑆 ∈ AssAlg ↔ (𝐴 ∈ (SubRing‘𝑊) ∧ 𝐴 ∈ 𝐿))) | ||
| Theorem | sraassab 21777 | A subring algebra is an associative algebra if and only if the subring is included in the ring's center. (Contributed by SN, 21-Mar-2025.) |
| ⊢ 𝐴 = ((subringAlg ‘𝑊)‘𝑆) & ⊢ 𝑍 = (Cntr‘(mulGrp‘𝑊)) & ⊢ (𝜑 → 𝑊 ∈ Ring) & ⊢ (𝜑 → 𝑆 ∈ (SubRing‘𝑊)) ⇒ ⊢ (𝜑 → (𝐴 ∈ AssAlg ↔ 𝑆 ⊆ 𝑍)) | ||
| Theorem | sraassa 21778 | The subring algebra over a commutative ring is an associative algebra. (Contributed by Mario Carneiro, 6-Oct-2015.) (Proof shortened by SN, 21-Mar-2025.) |
| ⊢ 𝐴 = ((subringAlg ‘𝑊)‘𝑆) ⇒ ⊢ ((𝑊 ∈ CRing ∧ 𝑆 ∈ (SubRing‘𝑊)) → 𝐴 ∈ AssAlg) | ||
| Theorem | sraassaOLD 21779 | Obsolete version of sraassa 21778 as of 21-Mar-2025. (Contributed by Mario Carneiro, 6-Oct-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝐴 = ((subringAlg ‘𝑊)‘𝑆) ⇒ ⊢ ((𝑊 ∈ CRing ∧ 𝑆 ∈ (SubRing‘𝑊)) → 𝐴 ∈ AssAlg) | ||
| Theorem | rlmassa 21780 | The ring module over a commutative ring is an associative algebra. (Contributed by Mario Carneiro, 6-Oct-2015.) |
| ⊢ (𝑅 ∈ CRing → (ringLMod‘𝑅) ∈ AssAlg) | ||
| Theorem | assapropd 21781* | If two structures have the same components (properties), one is an associative algebra iff the other one is. (Contributed by Mario Carneiro, 8-Feb-2015.) |
| ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) & ⊢ (𝜑 → 𝐹 = (Scalar‘𝐾)) & ⊢ (𝜑 → 𝐹 = (Scalar‘𝐿)) & ⊢ 𝑃 = (Base‘𝐹) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝐵)) → (𝑥( ·𝑠 ‘𝐾)𝑦) = (𝑥( ·𝑠 ‘𝐿)𝑦)) ⇒ ⊢ (𝜑 → (𝐾 ∈ AssAlg ↔ 𝐿 ∈ AssAlg)) | ||
| Theorem | aspval 21782* | Value of the algebraic closure operation inside an associative algebra. (Contributed by Mario Carneiro, 7-Jan-2015.) |
| ⊢ 𝐴 = (AlgSpan‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐿 = (LSubSp‘𝑊) ⇒ ⊢ ((𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉) → (𝐴‘𝑆) = ∩ {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑆 ⊆ 𝑡}) | ||
| Theorem | asplss 21783 | The algebraic span of a set of vectors is a vector subspace. (Contributed by Mario Carneiro, 7-Jan-2015.) |
| ⊢ 𝐴 = (AlgSpan‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐿 = (LSubSp‘𝑊) ⇒ ⊢ ((𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉) → (𝐴‘𝑆) ∈ 𝐿) | ||
| Theorem | aspid 21784 | The algebraic span of a subalgebra is itself. (spanid 31276 analog.) (Contributed by Mario Carneiro, 7-Jan-2015.) |
| ⊢ 𝐴 = (AlgSpan‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐿 = (LSubSp‘𝑊) ⇒ ⊢ ((𝑊 ∈ AssAlg ∧ 𝑆 ∈ (SubRing‘𝑊) ∧ 𝑆 ∈ 𝐿) → (𝐴‘𝑆) = 𝑆) | ||
| Theorem | aspsubrg 21785 | The algebraic span of a set of vectors is a subring of the algebra. (Contributed by Mario Carneiro, 7-Jan-2015.) |
| ⊢ 𝐴 = (AlgSpan‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) ⇒ ⊢ ((𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉) → (𝐴‘𝑆) ∈ (SubRing‘𝑊)) | ||
| Theorem | aspss 21786 | Span preserves subset ordering. (spanss 31277 analog.) (Contributed by Mario Carneiro, 7-Jan-2015.) |
| ⊢ 𝐴 = (AlgSpan‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) ⇒ ⊢ ((𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉 ∧ 𝑇 ⊆ 𝑆) → (𝐴‘𝑇) ⊆ (𝐴‘𝑆)) | ||
| Theorem | aspssid 21787 | A set of vectors is a subset of its span. (spanss2 31274 analog.) (Contributed by Mario Carneiro, 7-Jan-2015.) |
| ⊢ 𝐴 = (AlgSpan‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) ⇒ ⊢ ((𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉) → 𝑆 ⊆ (𝐴‘𝑆)) | ||
| Theorem | asclfval 21788* | Function value of the algebra scalar lifting function. (Contributed by Mario Carneiro, 8-Mar-2015.) |
| ⊢ 𝐴 = (algSc‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 1 = (1r‘𝑊) ⇒ ⊢ 𝐴 = (𝑥 ∈ 𝐾 ↦ (𝑥 · 1 )) | ||
| Theorem | asclval 21789 | Value of a mapped algebra scalar. (Contributed by Mario Carneiro, 8-Mar-2015.) |
| ⊢ 𝐴 = (algSc‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 1 = (1r‘𝑊) ⇒ ⊢ (𝑋 ∈ 𝐾 → (𝐴‘𝑋) = (𝑋 · 1 )) | ||
| Theorem | asclfn 21790 | Unconditional functionality of the algebra scalar lifting function. (Contributed by Mario Carneiro, 9-Mar-2015.) |
| ⊢ 𝐴 = (algSc‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) ⇒ ⊢ 𝐴 Fn 𝐾 | ||
| Theorem | asclf 21791 | The algebra scalar lifting function is a function into the base set. (Contributed by Mario Carneiro, 4-Jul-2015.) |
| ⊢ 𝐴 = (algSc‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ Ring) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ 𝐵 = (Base‘𝑊) ⇒ ⊢ (𝜑 → 𝐴:𝐾⟶𝐵) | ||
| Theorem | asclghm 21792 | The algebra scalar lifting function is a group homomorphism. (Contributed by Mario Carneiro, 4-Jul-2015.) |
| ⊢ 𝐴 = (algSc‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ Ring) & ⊢ (𝜑 → 𝑊 ∈ LMod) ⇒ ⊢ (𝜑 → 𝐴 ∈ (𝐹 GrpHom 𝑊)) | ||
| Theorem | ascl0 21793 | The scalar 0 embedded into a left module corresponds to the 0 of the left module if the left module is also a ring. (Contributed by AV, 31-Jul-2019.) |
| ⊢ 𝐴 = (algSc‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑊 ∈ Ring) ⇒ ⊢ (𝜑 → (𝐴‘(0g‘𝐹)) = (0g‘𝑊)) | ||
| Theorem | ascl1 21794 | The scalar 1 embedded into a left module corresponds to the 1 of the left module if the left module is also a ring. (Contributed by AV, 31-Jul-2019.) |
| ⊢ 𝐴 = (algSc‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑊 ∈ Ring) ⇒ ⊢ (𝜑 → (𝐴‘(1r‘𝐹)) = (1r‘𝑊)) | ||
| Theorem | asclmul1 21795 | Left multiplication by a lifted scalar is the same as the scalar operation. (Contributed by Mario Carneiro, 9-Mar-2015.) |
| ⊢ 𝐴 = (algSc‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ × = (.r‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) ⇒ ⊢ ((𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) → ((𝐴‘𝑅) × 𝑋) = (𝑅 · 𝑋)) | ||
| Theorem | asclmul2 21796 | Right multiplication by a lifted scalar is the same as the scalar operation. (Contributed by Mario Carneiro, 9-Mar-2015.) |
| ⊢ 𝐴 = (algSc‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ × = (.r‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) ⇒ ⊢ ((𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) → (𝑋 × (𝐴‘𝑅)) = (𝑅 · 𝑋)) | ||
| Theorem | ascldimul 21797 | The algebra scalar lifting function distributes over multiplication. (Contributed by Mario Carneiro, 8-Mar-2015.) (Proof shortened by SN, 5-Nov-2023.) |
| ⊢ 𝐴 = (algSc‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ × = (.r‘𝑊) & ⊢ · = (.r‘𝐹) ⇒ ⊢ ((𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑆 ∈ 𝐾) → (𝐴‘(𝑅 · 𝑆)) = ((𝐴‘𝑅) × (𝐴‘𝑆))) | ||
| Theorem | asclinvg 21798 | The group inverse (negation) of a lifted scalar is the lifted negation of the scalar. (Contributed by AV, 2-Sep-2019.) |
| ⊢ 𝐴 = (algSc‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑊) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐼 = (invg‘𝑅) & ⊢ 𝐽 = (invg‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑊 ∈ Ring ∧ 𝐶 ∈ 𝐵) → (𝐽‘(𝐴‘𝐶)) = (𝐴‘(𝐼‘𝐶))) | ||
| Theorem | asclrhm 21799 | The algebra scalar lifting function is a ring homomorphism. (Contributed by Mario Carneiro, 8-Mar-2015.) |
| ⊢ 𝐴 = (algSc‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) ⇒ ⊢ (𝑊 ∈ AssAlg → 𝐴 ∈ (𝐹 RingHom 𝑊)) | ||
| Theorem | rnascl 21800 | The set of lifted scalars is also interpretable as the span of the identity. (Contributed by Mario Carneiro, 9-Mar-2015.) |
| ⊢ 𝐴 = (algSc‘𝑊) & ⊢ 1 = (1r‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) ⇒ ⊢ (𝑊 ∈ AssAlg → ran 𝐴 = (𝑁‘{ 1 })) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |