| Metamath
Proof Explorer Theorem List (p. 218 of 497) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30845) |
(30846-32368) |
(32369-49617) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | dsmmsubg 21701 | The finite hull of a product of groups is additionally closed under negation and thus is a subgroup of the product. (Contributed by Stefan O'Rear, 11-Jan-2015.) |
| ⊢ 𝑃 = (𝑆Xs𝑅) & ⊢ 𝐻 = (Base‘(𝑆 ⊕m 𝑅)) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝑅:𝐼⟶Grp) ⇒ ⊢ (𝜑 → 𝐻 ∈ (SubGrp‘𝑃)) | ||
| Theorem | dsmmlss 21702* | The finite hull of a product of modules is additionally closed under scalar multiplication and thus is a linear subspace of the product. (Contributed by Stefan O'Rear, 11-Jan-2015.) |
| ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑆 ∈ Ring) & ⊢ (𝜑 → 𝑅:𝐼⟶LMod) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (Scalar‘(𝑅‘𝑥)) = 𝑆) & ⊢ 𝑃 = (𝑆Xs𝑅) & ⊢ 𝑈 = (LSubSp‘𝑃) & ⊢ 𝐻 = (Base‘(𝑆 ⊕m 𝑅)) ⇒ ⊢ (𝜑 → 𝐻 ∈ 𝑈) | ||
| Theorem | dsmmlmod 21703* | The direct sum of a family of modules is a module. See also the remark in [Lang] p. 128. (Contributed by Stefan O'Rear, 11-Jan-2015.) |
| ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑆 ∈ Ring) & ⊢ (𝜑 → 𝑅:𝐼⟶LMod) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (Scalar‘(𝑅‘𝑥)) = 𝑆) & ⊢ 𝐶 = (𝑆 ⊕m 𝑅) ⇒ ⊢ (𝜑 → 𝐶 ∈ LMod) | ||
According to Wikipedia ("Free module", 03-Mar-2019, https://en.wikipedia.org/wiki/Free_module) "In mathematics, a free module is a module that has a basis - that is, a generating set consisting of linearly independent elements. Every vector space is a free module, but, if the ring of the coefficients is not a division ring (not a field in the commutative case), then there exist nonfree modules." The same definition is used in [Lang] p. 135: "By a free module we shall mean a module which admits a basis, or the zero module." In the following, a free module is defined as the direct sum of copies of a ring regarded as a left module over itself, see df-frlm 21705. Since a module has a basis if and only if it is isomorphic to a free module as defined by df-frlm 21705 (see lmisfree 21800), the two definitions are essentially equivalent. The free modules as defined by df-frlm 21705 are also taken as a motivation to introduce free modules by [Lang] p. 135. | ||
| Syntax | cfrlm 21704 | Class of free module generator. |
| class freeLMod | ||
| Definition | df-frlm 21705* | Define the function associating with a ring and a set the direct sum indexed by that set of copies of that ring regarded as a left module over itself. Recall from df-dsmm 21690 that an element of a direct sum has finitely many nonzero coordinates. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
| ⊢ freeLMod = (𝑟 ∈ V, 𝑖 ∈ V ↦ (𝑟 ⊕m (𝑖 × {(ringLMod‘𝑟)}))) | ||
| Theorem | frlmval 21706 | Value of the "free module" function. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
| ⊢ 𝐹 = (𝑅 freeLMod 𝐼) ⇒ ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → 𝐹 = (𝑅 ⊕m (𝐼 × {(ringLMod‘𝑅)}))) | ||
| Theorem | frlmlmod 21707 | The free module is a module. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
| ⊢ 𝐹 = (𝑅 freeLMod 𝐼) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) → 𝐹 ∈ LMod) | ||
| Theorem | frlmpws 21708 | The free module as a restriction of the power module. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
| ⊢ 𝐹 = (𝑅 freeLMod 𝐼) & ⊢ 𝐵 = (Base‘𝐹) ⇒ ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → 𝐹 = (((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵)) | ||
| Theorem | frlmlss 21709 | The base set of the free module is a subspace of the power module. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
| ⊢ 𝐹 = (𝑅 freeLMod 𝐼) & ⊢ 𝐵 = (Base‘𝐹) & ⊢ 𝑈 = (LSubSp‘((ringLMod‘𝑅) ↑s 𝐼)) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) → 𝐵 ∈ 𝑈) | ||
| Theorem | frlmpwsfi 21710 | The finite free module is a power of the ring module. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
| ⊢ 𝐹 = (𝑅 freeLMod 𝐼) ⇒ ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ Fin) → 𝐹 = ((ringLMod‘𝑅) ↑s 𝐼)) | ||
| Theorem | frlmsca 21711 | The ring of scalars of a free module. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
| ⊢ 𝐹 = (𝑅 freeLMod 𝐼) ⇒ ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → 𝑅 = (Scalar‘𝐹)) | ||
| Theorem | frlm0 21712 | Zero in a free module (ring constraint is stronger than necessary, but allows use of frlmlss 21709). (Contributed by Stefan O'Rear, 4-Feb-2015.) |
| ⊢ 𝐹 = (𝑅 freeLMod 𝐼) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) → (𝐼 × { 0 }) = (0g‘𝐹)) | ||
| Theorem | frlmbas 21713* | Base set of the free module. (Contributed by Stefan O'Rear, 1-Feb-2015.) (Revised by AV, 23-Jun-2019.) |
| ⊢ 𝐹 = (𝑅 freeLMod 𝐼) & ⊢ 𝑁 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐵 = {𝑘 ∈ (𝑁 ↑m 𝐼) ∣ 𝑘 finSupp 0 } ⇒ ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → 𝐵 = (Base‘𝐹)) | ||
| Theorem | frlmelbas 21714 | Membership in the base set of the free module. (Contributed by Stefan O'Rear, 1-Feb-2015.) (Revised by AV, 23-Jun-2019.) |
| ⊢ 𝐹 = (𝑅 freeLMod 𝐼) & ⊢ 𝑁 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐵 = (Base‘𝐹) ⇒ ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → (𝑋 ∈ 𝐵 ↔ (𝑋 ∈ (𝑁 ↑m 𝐼) ∧ 𝑋 finSupp 0 ))) | ||
| Theorem | frlmrcl 21715 | If a free module is inhabited, this is sufficient to conclude that the ring expression defines a set. (Contributed by Stefan O'Rear, 3-Feb-2015.) |
| ⊢ 𝐹 = (𝑅 freeLMod 𝐼) & ⊢ 𝐵 = (Base‘𝐹) ⇒ ⊢ (𝑋 ∈ 𝐵 → 𝑅 ∈ V) | ||
| Theorem | frlmbasfsupp 21716 | Elements of the free module are finitely supported. (Contributed by Stefan O'Rear, 3-Feb-2015.) (Revised by Thierry Arnoux, 21-Jun-2019.) (Proof shortened by AV, 20-Jul-2019.) |
| ⊢ 𝐹 = (𝑅 freeLMod 𝐼) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐵 = (Base‘𝐹) ⇒ ⊢ ((𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) → 𝑋 finSupp 0 ) | ||
| Theorem | frlmbasmap 21717 | Elements of the free module are set functions. (Contributed by Stefan O'Rear, 3-Feb-2015.) (Proof shortened by AV, 21-Jul-2019.) |
| ⊢ 𝐹 = (𝑅 freeLMod 𝐼) & ⊢ 𝑁 = (Base‘𝑅) & ⊢ 𝐵 = (Base‘𝐹) ⇒ ⊢ ((𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ (𝑁 ↑m 𝐼)) | ||
| Theorem | frlmbasf 21718 | Elements of the free module are functions. (Contributed by Stefan O'Rear, 3-Feb-2015.) |
| ⊢ 𝐹 = (𝑅 freeLMod 𝐼) & ⊢ 𝑁 = (Base‘𝑅) & ⊢ 𝐵 = (Base‘𝐹) ⇒ ⊢ ((𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) → 𝑋:𝐼⟶𝑁) | ||
| Theorem | frlmlvec 21719 | The free module over a division ring is a left vector space. (Contributed by Steven Nguyen, 29-Apr-2023.) |
| ⊢ 𝐹 = (𝑅 freeLMod 𝐼) ⇒ ⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑊) → 𝐹 ∈ LVec) | ||
| Theorem | frlmfibas 21720 | The base set of the finite free module as a set exponential. (Contributed by AV, 6-Dec-2018.) |
| ⊢ 𝐹 = (𝑅 freeLMod 𝐼) & ⊢ 𝑁 = (Base‘𝑅) ⇒ ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ Fin) → (𝑁 ↑m 𝐼) = (Base‘𝐹)) | ||
| Theorem | elfrlmbasn0 21721 | If the dimension of a free module over a ring is not 0, every element of its base set is not empty. (Contributed by AV, 10-Feb-2019.) |
| ⊢ 𝐹 = (𝑅 freeLMod 𝐼) & ⊢ 𝑁 = (Base‘𝑅) & ⊢ 𝐵 = (Base‘𝐹) ⇒ ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐼 ≠ ∅) → (𝑋 ∈ 𝐵 → 𝑋 ≠ ∅)) | ||
| Theorem | frlmplusgval 21722 | Addition in a free module. (Contributed by Stefan O'Rear, 1-Feb-2015.) (Revised by Stefan O'Rear, 6-May-2015.) |
| ⊢ 𝑌 = (𝑅 freeLMod 𝐼) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ (𝜑 → 𝑅 ∈ 𝑉) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) & ⊢ (𝜑 → 𝐺 ∈ 𝐵) & ⊢ + = (+g‘𝑅) & ⊢ ✚ = (+g‘𝑌) ⇒ ⊢ (𝜑 → (𝐹 ✚ 𝐺) = (𝐹 ∘f + 𝐺)) | ||
| Theorem | frlmsubgval 21723 | Subtraction in a free module. (Contributed by Thierry Arnoux, 30-Jun-2019.) |
| ⊢ 𝑌 = (𝑅 freeLMod 𝐼) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) & ⊢ (𝜑 → 𝐺 ∈ 𝐵) & ⊢ − = (-g‘𝑅) & ⊢ 𝑀 = (-g‘𝑌) ⇒ ⊢ (𝜑 → (𝐹𝑀𝐺) = (𝐹 ∘f − 𝐺)) | ||
| Theorem | frlmvscafval 21724 | Scalar multiplication in a free module. (Contributed by Stefan O'Rear, 1-Feb-2015.) (Revised by Stefan O'Rear, 6-May-2015.) |
| ⊢ 𝑌 = (𝑅 freeLMod 𝐼) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝐴 ∈ 𝐾) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ ∙ = ( ·𝑠 ‘𝑌) & ⊢ · = (.r‘𝑅) ⇒ ⊢ (𝜑 → (𝐴 ∙ 𝑋) = ((𝐼 × {𝐴}) ∘f · 𝑋)) | ||
| Theorem | frlmvplusgvalc 21725 | Coordinates of a sum with respect to a basis in a free module. (Contributed by AV, 16-Jan-2023.) |
| ⊢ 𝐹 = (𝑅 freeLMod 𝐼) & ⊢ 𝐵 = (Base‘𝐹) & ⊢ (𝜑 → 𝑅 ∈ 𝑉) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝐽 ∈ 𝐼) & ⊢ + = (+g‘𝑅) & ⊢ ✚ = (+g‘𝐹) ⇒ ⊢ (𝜑 → ((𝑋 ✚ 𝑌)‘𝐽) = ((𝑋‘𝐽) + (𝑌‘𝐽))) | ||
| Theorem | frlmvscaval 21726 | Coordinates of a scalar multiple with respect to a basis in a free module. (Contributed by Stefan O'Rear, 3-Feb-2015.) |
| ⊢ 𝑌 = (𝑅 freeLMod 𝐼) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝐴 ∈ 𝐾) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝐽 ∈ 𝐼) & ⊢ ∙ = ( ·𝑠 ‘𝑌) & ⊢ · = (.r‘𝑅) ⇒ ⊢ (𝜑 → ((𝐴 ∙ 𝑋)‘𝐽) = (𝐴 · (𝑋‘𝐽))) | ||
| Theorem | frlmplusgvalb 21727* | Addition in a free module at the coordinates. (Contributed by AV, 16-Jan-2023.) |
| ⊢ 𝐹 = (𝑅 freeLMod 𝐼) & ⊢ 𝐵 = (Base‘𝐹) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ + = (+g‘𝑅) & ⊢ ✚ = (+g‘𝐹) ⇒ ⊢ (𝜑 → (𝑍 = (𝑋 ✚ 𝑌) ↔ ∀𝑖 ∈ 𝐼 (𝑍‘𝑖) = ((𝑋‘𝑖) + (𝑌‘𝑖)))) | ||
| Theorem | frlmvscavalb 21728* | Scalar multiplication in a free module at the coordinates. (Contributed by AV, 16-Jan-2023.) |
| ⊢ 𝐹 = (𝑅 freeLMod 𝐼) & ⊢ 𝐵 = (Base‘𝐹) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ (𝜑 → 𝐴 ∈ 𝐾) & ⊢ ∙ = ( ·𝑠 ‘𝐹) & ⊢ · = (.r‘𝑅) ⇒ ⊢ (𝜑 → (𝑍 = (𝐴 ∙ 𝑋) ↔ ∀𝑖 ∈ 𝐼 (𝑍‘𝑖) = (𝐴 · (𝑋‘𝑖)))) | ||
| Theorem | frlmvplusgscavalb 21729* | Addition combined with scalar multiplication in a free module at the coordinates. (Contributed by AV, 16-Jan-2023.) |
| ⊢ 𝐹 = (𝑅 freeLMod 𝐼) & ⊢ 𝐵 = (Base‘𝐹) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ (𝜑 → 𝐴 ∈ 𝐾) & ⊢ ∙ = ( ·𝑠 ‘𝐹) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ + = (+g‘𝑅) & ⊢ ✚ = (+g‘𝐹) & ⊢ (𝜑 → 𝐶 ∈ 𝐾) ⇒ ⊢ (𝜑 → (𝑍 = ((𝐴 ∙ 𝑋) ✚ (𝐶 ∙ 𝑌)) ↔ ∀𝑖 ∈ 𝐼 (𝑍‘𝑖) = ((𝐴 · (𝑋‘𝑖)) + (𝐶 · (𝑌‘𝑖))))) | ||
| Theorem | frlmgsum 21730* | Finite commutative sums in a free module are taken componentwise. (Contributed by Stefan O'Rear, 1-Feb-2015.) (Revised by Mario Carneiro, 5-Jul-2015.) (Revised by AV, 23-Jun-2019.) |
| ⊢ 𝑌 = (𝑅 freeLMod 𝐼) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ 0 = (0g‘𝑌) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝐽 ∈ 𝑊) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐽) → (𝑥 ∈ 𝐼 ↦ 𝑈) ∈ 𝐵) & ⊢ (𝜑 → (𝑦 ∈ 𝐽 ↦ (𝑥 ∈ 𝐼 ↦ 𝑈)) finSupp 0 ) ⇒ ⊢ (𝜑 → (𝑌 Σg (𝑦 ∈ 𝐽 ↦ (𝑥 ∈ 𝐼 ↦ 𝑈))) = (𝑥 ∈ 𝐼 ↦ (𝑅 Σg (𝑦 ∈ 𝐽 ↦ 𝑈)))) | ||
| Theorem | frlmsplit2 21731* | Restriction is homomorphic on free modules. (Contributed by Stefan O'Rear, 3-Feb-2015.) (Proof shortened by AV, 21-Jul-2019.) |
| ⊢ 𝑌 = (𝑅 freeLMod 𝑈) & ⊢ 𝑍 = (𝑅 freeLMod 𝑉) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ 𝐶 = (Base‘𝑍) & ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ (𝑥 ↾ 𝑉)) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) → 𝐹 ∈ (𝑌 LMHom 𝑍)) | ||
| Theorem | frlmsslss 21732* | A subset of a free module obtained by restricting the support set is a submodule. 𝐽 is the set of forbidden unit vectors. (Contributed by Stefan O'Rear, 4-Feb-2015.) |
| ⊢ 𝑌 = (𝑅 freeLMod 𝐼) & ⊢ 𝑈 = (LSubSp‘𝑌) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐶 = {𝑥 ∈ 𝐵 ∣ (𝑥 ↾ 𝐽) = (𝐽 × { 0 })} ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → 𝐶 ∈ 𝑈) | ||
| Theorem | frlmsslss2 21733* | A subset of a free module obtained by restricting the support set is a submodule. 𝐽 is the set of permitted unit vectors. (Contributed by Stefan O'Rear, 5-Feb-2015.) (Revised by AV, 23-Jun-2019.) |
| ⊢ 𝑌 = (𝑅 freeLMod 𝐼) & ⊢ 𝑈 = (LSubSp‘𝑌) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐶 = {𝑥 ∈ 𝐵 ∣ (𝑥 supp 0 ) ⊆ 𝐽} ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → 𝐶 ∈ 𝑈) | ||
| Theorem | frlmbas3 21734 | An element of the base set of a finite free module with a Cartesian product as index set as operation value. (Contributed by AV, 14-Feb-2019.) |
| ⊢ 𝐹 = (𝑅 freeLMod (𝑁 × 𝑀)) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑉 = (Base‘𝐹) ⇒ ⊢ (((𝑅 ∈ 𝑊 ∧ 𝑋 ∈ 𝑉) ∧ (𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑀)) → (𝐼𝑋𝐽) ∈ 𝐵) | ||
| Theorem | mpofrlmd 21735* | Elements of the free module are mappings with two arguments defined by their operation values. (Contributed by AV, 20-Feb-2019.) (Proof shortened by AV, 3-Jul-2022.) |
| ⊢ 𝐹 = (𝑅 freeLMod (𝑁 × 𝑀)) & ⊢ 𝑉 = (Base‘𝐹) & ⊢ ((𝑖 = 𝑎 ∧ 𝑗 = 𝑏) → 𝐴 = 𝐵) & ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑀) → 𝐴 ∈ 𝑋) & ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑀) → 𝐵 ∈ 𝑌) & ⊢ (𝜑 → (𝑁 ∈ 𝑈 ∧ 𝑀 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉)) ⇒ ⊢ (𝜑 → (𝑍 = (𝑎 ∈ 𝑁, 𝑏 ∈ 𝑀 ↦ 𝐵) ↔ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑀 (𝑖𝑍𝑗) = 𝐴)) | ||
| Theorem | frlmip 21736* | The inner product of a free module. (Contributed by Thierry Arnoux, 20-Jun-2019.) |
| ⊢ 𝑌 = (𝑅 freeLMod 𝐼) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ ((𝐼 ∈ 𝑊 ∧ 𝑅 ∈ 𝑉) → (𝑓 ∈ (𝐵 ↑m 𝐼), 𝑔 ∈ (𝐵 ↑m 𝐼) ↦ (𝑅 Σg (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥) · (𝑔‘𝑥))))) = (·𝑖‘𝑌)) | ||
| Theorem | frlmipval 21737 | The inner product of a free module. (Contributed by Thierry Arnoux, 21-Jun-2019.) |
| ⊢ 𝑌 = (𝑅 freeLMod 𝐼) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 𝑉 = (Base‘𝑌) & ⊢ , = (·𝑖‘𝑌) ⇒ ⊢ (((𝐼 ∈ 𝑊 ∧ 𝑅 ∈ 𝑋) ∧ (𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑉)) → (𝐹 , 𝐺) = (𝑅 Σg (𝐹 ∘f · 𝐺))) | ||
| Theorem | frlmphllem 21738* | Lemma for frlmphl 21739. (Contributed by AV, 21-Jul-2019.) |
| ⊢ 𝑌 = (𝑅 freeLMod 𝐼) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 𝑉 = (Base‘𝑌) & ⊢ , = (·𝑖‘𝑌) & ⊢ 𝑂 = (0g‘𝑌) & ⊢ 0 = (0g‘𝑅) & ⊢ ∗ = (*𝑟‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Field) & ⊢ ((𝜑 ∧ 𝑔 ∈ 𝑉 ∧ (𝑔 , 𝑔) = 0 ) → 𝑔 = 𝑂) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ( ∗ ‘𝑥) = 𝑥) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) ⇒ ⊢ ((𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉) → (𝑥 ∈ 𝐼 ↦ ((𝑔‘𝑥) · (ℎ‘𝑥))) finSupp 0 ) | ||
| Theorem | frlmphl 21739* | Conditions for a free module to be a pre-Hilbert space. (Contributed by Thierry Arnoux, 21-Jun-2019.) (Proof shortened by AV, 21-Jul-2019.) |
| ⊢ 𝑌 = (𝑅 freeLMod 𝐼) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 𝑉 = (Base‘𝑌) & ⊢ , = (·𝑖‘𝑌) & ⊢ 𝑂 = (0g‘𝑌) & ⊢ 0 = (0g‘𝑅) & ⊢ ∗ = (*𝑟‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Field) & ⊢ ((𝜑 ∧ 𝑔 ∈ 𝑉 ∧ (𝑔 , 𝑔) = 0 ) → 𝑔 = 𝑂) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ( ∗ ‘𝑥) = 𝑥) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) ⇒ ⊢ (𝜑 → 𝑌 ∈ PreHil) | ||
According to Wikipedia ("Standard basis", 16-Mar-2019, https://en.wikipedia.org/wiki/Standard_basis) "In mathematics, the standard basis (also called natural basis) for a Euclidean space is the set of unit vectors pointing in the direction of the axes of a Cartesian coordinate system.", and ("Unit vector", 16-Mar-2019, https://en.wikipedia.org/wiki/Unit_vector) "In mathematics, a unit vector in a normed vector space is a vector (often a spatial vector) of length 1.". In the following, the term "unit vector" (or more specific "basic unit vector") is used for the (special) unit vectors forming the standard basis of free modules. However, the length of the unit vectors is not considered here, so it is not required to regard normed spaces. | ||
| Syntax | cuvc 21740 | Class of basic unit vectors for an explicit free module. |
| class unitVec | ||
| Definition | df-uvc 21741* | ((𝑅 unitVec 𝐼)‘𝑗) is the unit vector in (𝑅 freeLMod 𝐼) along the 𝑗 axis. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
| ⊢ unitVec = (𝑟 ∈ V, 𝑖 ∈ V ↦ (𝑗 ∈ 𝑖 ↦ (𝑘 ∈ 𝑖 ↦ if(𝑘 = 𝑗, (1r‘𝑟), (0g‘𝑟))))) | ||
| Theorem | uvcfval 21742* | Value of the unit-vector generator for a free module. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
| ⊢ 𝑈 = (𝑅 unitVec 𝐼) & ⊢ 1 = (1r‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → 𝑈 = (𝑗 ∈ 𝐼 ↦ (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑗, 1 , 0 )))) | ||
| Theorem | uvcval 21743* | Value of a single unit vector in a free module. (Contributed by Stefan O'Rear, 3-Feb-2015.) |
| ⊢ 𝑈 = (𝑅 unitVec 𝐼) & ⊢ 1 = (1r‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ∧ 𝐽 ∈ 𝐼) → (𝑈‘𝐽) = (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝐽, 1 , 0 ))) | ||
| Theorem | uvcvval 21744 | Value of a unit vector coordinate in a free module. (Contributed by Stefan O'Rear, 3-Feb-2015.) |
| ⊢ 𝑈 = (𝑅 unitVec 𝐼) & ⊢ 1 = (1r‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ (((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ∧ 𝐽 ∈ 𝐼) ∧ 𝐾 ∈ 𝐼) → ((𝑈‘𝐽)‘𝐾) = if(𝐾 = 𝐽, 1 , 0 )) | ||
| Theorem | uvcvvcl 21745 | A coordinate of a unit vector is either 0 or 1. (Contributed by Stefan O'Rear, 3-Feb-2015.) |
| ⊢ 𝑈 = (𝑅 unitVec 𝐼) & ⊢ 1 = (1r‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ (((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ∧ 𝐽 ∈ 𝐼) ∧ 𝐾 ∈ 𝐼) → ((𝑈‘𝐽)‘𝐾) ∈ { 0 , 1 }) | ||
| Theorem | uvcvvcl2 21746 | A unit vector coordinate is a ring element. (Contributed by Stefan O'Rear, 3-Feb-2015.) |
| ⊢ 𝑈 = (𝑅 unitVec 𝐼) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝐽 ∈ 𝐼) & ⊢ (𝜑 → 𝐾 ∈ 𝐼) ⇒ ⊢ (𝜑 → ((𝑈‘𝐽)‘𝐾) ∈ 𝐵) | ||
| Theorem | uvcvv1 21747 | The unit vector is one at its designated coordinate. (Contributed by Stefan O'Rear, 3-Feb-2015.) |
| ⊢ 𝑈 = (𝑅 unitVec 𝐼) & ⊢ (𝜑 → 𝑅 ∈ 𝑉) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝐽 ∈ 𝐼) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ (𝜑 → ((𝑈‘𝐽)‘𝐽) = 1 ) | ||
| Theorem | uvcvv0 21748 | The unit vector is zero at its designated coordinate. (Contributed by Stefan O'Rear, 3-Feb-2015.) |
| ⊢ 𝑈 = (𝑅 unitVec 𝐼) & ⊢ (𝜑 → 𝑅 ∈ 𝑉) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝐽 ∈ 𝐼) & ⊢ (𝜑 → 𝐾 ∈ 𝐼) & ⊢ (𝜑 → 𝐽 ≠ 𝐾) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ (𝜑 → ((𝑈‘𝐽)‘𝐾) = 0 ) | ||
| Theorem | uvcff 21749 | Domain and codomain of the unit vector generator; ring condition required to be sure 1 and 0 are actually in the ring. (Contributed by Stefan O'Rear, 1-Feb-2015.) (Proof shortened by AV, 21-Jul-2019.) |
| ⊢ 𝑈 = (𝑅 unitVec 𝐼) & ⊢ 𝑌 = (𝑅 freeLMod 𝐼) & ⊢ 𝐵 = (Base‘𝑌) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) → 𝑈:𝐼⟶𝐵) | ||
| Theorem | uvcf1 21750 | In a nonzero ring, each unit vector is different. (Contributed by Stefan O'Rear, 7-Feb-2015.) (Revised by Mario Carneiro, 14-Jun-2015.) |
| ⊢ 𝑈 = (𝑅 unitVec 𝐼) & ⊢ 𝑌 = (𝑅 freeLMod 𝐼) & ⊢ 𝐵 = (Base‘𝑌) ⇒ ⊢ ((𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑊) → 𝑈:𝐼–1-1→𝐵) | ||
| Theorem | uvcresum 21751 | Any element of a free module can be expressed as a finite linear combination of unit vectors. (Contributed by Stefan O'Rear, 3-Feb-2015.) (Proof shortened by Mario Carneiro, 5-Jul-2015.) |
| ⊢ 𝑈 = (𝑅 unitVec 𝐼) & ⊢ 𝑌 = (𝑅 freeLMod 𝐼) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ · = ( ·𝑠 ‘𝑌) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) → 𝑋 = (𝑌 Σg (𝑋 ∘f · 𝑈))) | ||
| Theorem | frlmssuvc1 21752* | A scalar multiple of a unit vector included in a support-restriction subspace is included in the subspace. (Contributed by Stefan O'Rear, 5-Feb-2015.) (Revised by AV, 24-Jun-2019.) |
| ⊢ 𝐹 = (𝑅 freeLMod 𝐼) & ⊢ 𝑈 = (𝑅 unitVec 𝐼) & ⊢ 𝐵 = (Base‘𝐹) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ · = ( ·𝑠 ‘𝐹) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐶 = {𝑥 ∈ 𝐵 ∣ (𝑥 supp 0 ) ⊆ 𝐽} & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝐽 ⊆ 𝐼) & ⊢ (𝜑 → 𝐿 ∈ 𝐽) & ⊢ (𝜑 → 𝑋 ∈ 𝐾) ⇒ ⊢ (𝜑 → (𝑋 · (𝑈‘𝐿)) ∈ 𝐶) | ||
| Theorem | frlmssuvc2 21753* | A nonzero scalar multiple of a unit vector not included in a support-restriction subspace is not included in the subspace. (Contributed by Stefan O'Rear, 5-Feb-2015.) (Revised by AV, 24-Jun-2019.) |
| ⊢ 𝐹 = (𝑅 freeLMod 𝐼) & ⊢ 𝑈 = (𝑅 unitVec 𝐼) & ⊢ 𝐵 = (Base‘𝐹) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ · = ( ·𝑠 ‘𝐹) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐶 = {𝑥 ∈ 𝐵 ∣ (𝑥 supp 0 ) ⊆ 𝐽} & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝐽 ⊆ 𝐼) & ⊢ (𝜑 → 𝐿 ∈ (𝐼 ∖ 𝐽)) & ⊢ (𝜑 → 𝑋 ∈ (𝐾 ∖ { 0 })) ⇒ ⊢ (𝜑 → ¬ (𝑋 · (𝑈‘𝐿)) ∈ 𝐶) | ||
| Theorem | frlmsslsp 21754* | A subset of a free module obtained by restricting the support set is spanned by the relevant unit vectors. (Contributed by Stefan O'Rear, 6-Feb-2015.) (Revised by AV, 24-Jun-2019.) |
| ⊢ 𝑌 = (𝑅 freeLMod 𝐼) & ⊢ 𝑈 = (𝑅 unitVec 𝐼) & ⊢ 𝐾 = (LSpan‘𝑌) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐶 = {𝑥 ∈ 𝐵 ∣ (𝑥 supp 0 ) ⊆ 𝐽} ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → (𝐾‘(𝑈 “ 𝐽)) = 𝐶) | ||
| Theorem | frlmlbs 21755 | The unit vectors comprise a basis for a free module. (Contributed by Stefan O'Rear, 6-Feb-2015.) (Proof shortened by AV, 21-Jul-2019.) |
| ⊢ 𝐹 = (𝑅 freeLMod 𝐼) & ⊢ 𝑈 = (𝑅 unitVec 𝐼) & ⊢ 𝐽 = (LBasis‘𝐹) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) → ran 𝑈 ∈ 𝐽) | ||
| Theorem | frlmup1 21756* | Any assignment of unit vectors to target vectors can be extended (uniquely) to a homomorphism from a free module to an arbitrary other module on the same base ring. (Contributed by Stefan O'Rear, 7-Feb-2015.) (Proof shortened by AV, 21-Jul-2019.) |
| ⊢ 𝐹 = (𝑅 freeLMod 𝐼) & ⊢ 𝐵 = (Base‘𝐹) & ⊢ 𝐶 = (Base‘𝑇) & ⊢ · = ( ·𝑠 ‘𝑇) & ⊢ 𝐸 = (𝑥 ∈ 𝐵 ↦ (𝑇 Σg (𝑥 ∘f · 𝐴))) & ⊢ (𝜑 → 𝑇 ∈ LMod) & ⊢ (𝜑 → 𝐼 ∈ 𝑋) & ⊢ (𝜑 → 𝑅 = (Scalar‘𝑇)) & ⊢ (𝜑 → 𝐴:𝐼⟶𝐶) ⇒ ⊢ (𝜑 → 𝐸 ∈ (𝐹 LMHom 𝑇)) | ||
| Theorem | frlmup2 21757* | The evaluation map has the intended behavior on the unit vectors. (Contributed by Stefan O'Rear, 7-Feb-2015.) (Proof shortened by AV, 21-Jul-2019.) |
| ⊢ 𝐹 = (𝑅 freeLMod 𝐼) & ⊢ 𝐵 = (Base‘𝐹) & ⊢ 𝐶 = (Base‘𝑇) & ⊢ · = ( ·𝑠 ‘𝑇) & ⊢ 𝐸 = (𝑥 ∈ 𝐵 ↦ (𝑇 Σg (𝑥 ∘f · 𝐴))) & ⊢ (𝜑 → 𝑇 ∈ LMod) & ⊢ (𝜑 → 𝐼 ∈ 𝑋) & ⊢ (𝜑 → 𝑅 = (Scalar‘𝑇)) & ⊢ (𝜑 → 𝐴:𝐼⟶𝐶) & ⊢ (𝜑 → 𝑌 ∈ 𝐼) & ⊢ 𝑈 = (𝑅 unitVec 𝐼) ⇒ ⊢ (𝜑 → (𝐸‘(𝑈‘𝑌)) = (𝐴‘𝑌)) | ||
| Theorem | frlmup3 21758* | The range of such an evaluation map is the finite linear combinations of the target vectors and also the span of the target vectors. (Contributed by Stefan O'Rear, 6-Feb-2015.) |
| ⊢ 𝐹 = (𝑅 freeLMod 𝐼) & ⊢ 𝐵 = (Base‘𝐹) & ⊢ 𝐶 = (Base‘𝑇) & ⊢ · = ( ·𝑠 ‘𝑇) & ⊢ 𝐸 = (𝑥 ∈ 𝐵 ↦ (𝑇 Σg (𝑥 ∘f · 𝐴))) & ⊢ (𝜑 → 𝑇 ∈ LMod) & ⊢ (𝜑 → 𝐼 ∈ 𝑋) & ⊢ (𝜑 → 𝑅 = (Scalar‘𝑇)) & ⊢ (𝜑 → 𝐴:𝐼⟶𝐶) & ⊢ 𝐾 = (LSpan‘𝑇) ⇒ ⊢ (𝜑 → ran 𝐸 = (𝐾‘ran 𝐴)) | ||
| Theorem | frlmup4 21759* | Universal property of the free module by existential uniqueness. (Contributed by Stefan O'Rear, 7-Mar-2015.) |
| ⊢ 𝑅 = (Scalar‘𝑇) & ⊢ 𝐹 = (𝑅 freeLMod 𝐼) & ⊢ 𝑈 = (𝑅 unitVec 𝐼) & ⊢ 𝐶 = (Base‘𝑇) ⇒ ⊢ ((𝑇 ∈ LMod ∧ 𝐼 ∈ 𝑋 ∧ 𝐴:𝐼⟶𝐶) → ∃!𝑚 ∈ (𝐹 LMHom 𝑇)(𝑚 ∘ 𝑈) = 𝐴) | ||
| Theorem | ellspd 21760* | The elements of the span of an indexed collection of basic vectors are those vectors which can be written as finite linear combinations of basic vectors. (Contributed by Stefan O'Rear, 7-Feb-2015.) (Revised by AV, 24-Jun-2019.) (Revised by AV, 11-Apr-2024.) |
| ⊢ 𝑁 = (LSpan‘𝑀) & ⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝐾 = (Base‘𝑆) & ⊢ 𝑆 = (Scalar‘𝑀) & ⊢ 0 = (0g‘𝑆) & ⊢ · = ( ·𝑠 ‘𝑀) & ⊢ (𝜑 → 𝐹:𝐼⟶𝐵) & ⊢ (𝜑 → 𝑀 ∈ LMod) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝑋 ∈ (𝑁‘(𝐹 “ 𝐼)) ↔ ∃𝑓 ∈ (𝐾 ↑m 𝐼)(𝑓 finSupp 0 ∧ 𝑋 = (𝑀 Σg (𝑓 ∘f · 𝐹))))) | ||
| Theorem | elfilspd 21761* | Simplified version of ellspd 21760 when the spanning set is finite: all linear combinations are then acceptable. (Contributed by Stefan O'Rear, 7-Feb-2015.) (Proof shortened by AV, 21-Jul-2019.) |
| ⊢ 𝑁 = (LSpan‘𝑀) & ⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝐾 = (Base‘𝑆) & ⊢ 𝑆 = (Scalar‘𝑀) & ⊢ 0 = (0g‘𝑆) & ⊢ · = ( ·𝑠 ‘𝑀) & ⊢ (𝜑 → 𝐹:𝐼⟶𝐵) & ⊢ (𝜑 → 𝑀 ∈ LMod) & ⊢ (𝜑 → 𝐼 ∈ Fin) ⇒ ⊢ (𝜑 → (𝑋 ∈ (𝑁‘(𝐹 “ 𝐼)) ↔ ∃𝑓 ∈ (𝐾 ↑m 𝐼)𝑋 = (𝑀 Σg (𝑓 ∘f · 𝐹)))) | ||
According to the definition in [Lang] p. 129: "A subset S of a module M is said to be linearly independent (over A) if whenever we have a linear combination ∑x∈Saxx which is equal to 0, then ax = 0 for all x ∈ S", and according to the Definition in [Lang] p. 130: "a familiy {xi}i∈I of elements of M is said to be linearly independent (over A) if whenever we have a linear combination ∑i∈Iaixi = 0, then ai = 0 for all i ∈ I." These definitions correspond to Definitions df-linds 21765 and df-lindf 21764 respectively, where it is claimed that a nonzero summand can be extracted (∑i∈{I\{j}}aixi = -ajxj) and be represented as a linear combination of the remaining elements of the family. | ||
| Syntax | clindf 21762 | The class relationship of independent families in a module. |
| class LIndF | ||
| Syntax | clinds 21763 | The class generator of independent sets in a module. |
| class LIndS | ||
| Definition | df-lindf 21764* |
An independent family is a family of vectors, no nonzero multiple of
which can be expressed as a linear combination of other elements of the
family. This is almost, but not quite, the same as a function into an
independent set.
This is a defined concept because it matters in many cases whether independence is taken at a set or family level. For instance, a number is transcedental iff its nonzero powers are linearly independent. Is 1 transcedental? It has only one nonzero power. We can almost define family independence as a family of unequal elements with independent range, as islindf3 21784, but taking that as primitive would lead to unpleasant corner case behavior with the zero ring. This is equivalent to the common definition of having no nontrivial representations of zero (islindf4 21796) and only one representation for each element of the range (islindf5 21797). (Contributed by Stefan O'Rear, 24-Feb-2015.) |
| ⊢ LIndF = {〈𝑓, 𝑤〉 ∣ (𝑓:dom 𝑓⟶(Base‘𝑤) ∧ [(Scalar‘𝑤) / 𝑠]∀𝑥 ∈ dom 𝑓∀𝑘 ∈ ((Base‘𝑠) ∖ {(0g‘𝑠)}) ¬ (𝑘( ·𝑠 ‘𝑤)(𝑓‘𝑥)) ∈ ((LSpan‘𝑤)‘(𝑓 “ (dom 𝑓 ∖ {𝑥}))))} | ||
| Definition | df-linds 21765* | An independent set is a set which is independent as a family. See also islinds3 21792 and islinds4 21793. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
| ⊢ LIndS = (𝑤 ∈ V ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ ( I ↾ 𝑠) LIndF 𝑤}) | ||
| Theorem | rellindf 21766 | The independent-family predicate is a proper relation and can be used with brrelex1i 5710. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
| ⊢ Rel LIndF | ||
| Theorem | islinds 21767 | Property of an independent set of vectors in terms of an independent family. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
| ⊢ 𝐵 = (Base‘𝑊) ⇒ ⊢ (𝑊 ∈ 𝑉 → (𝑋 ∈ (LIndS‘𝑊) ↔ (𝑋 ⊆ 𝐵 ∧ ( I ↾ 𝑋) LIndF 𝑊))) | ||
| Theorem | linds1 21768 | An independent set of vectors is a set of vectors. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
| ⊢ 𝐵 = (Base‘𝑊) ⇒ ⊢ (𝑋 ∈ (LIndS‘𝑊) → 𝑋 ⊆ 𝐵) | ||
| Theorem | linds2 21769 | An independent set of vectors is independent as a family. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
| ⊢ (𝑋 ∈ (LIndS‘𝑊) → ( I ↾ 𝑋) LIndF 𝑊) | ||
| Theorem | islindf 21770* | Property of an independent family of vectors. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
| ⊢ 𝐵 = (Base‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐾 = (LSpan‘𝑊) & ⊢ 𝑆 = (Scalar‘𝑊) & ⊢ 𝑁 = (Base‘𝑆) & ⊢ 0 = (0g‘𝑆) ⇒ ⊢ ((𝑊 ∈ 𝑌 ∧ 𝐹 ∈ 𝑋) → (𝐹 LIndF 𝑊 ↔ (𝐹:dom 𝐹⟶𝐵 ∧ ∀𝑥 ∈ dom 𝐹∀𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · (𝐹‘𝑥)) ∈ (𝐾‘(𝐹 “ (dom 𝐹 ∖ {𝑥})))))) | ||
| Theorem | islinds2 21771* | Expanded property of an independent set of vectors. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
| ⊢ 𝐵 = (Base‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐾 = (LSpan‘𝑊) & ⊢ 𝑆 = (Scalar‘𝑊) & ⊢ 𝑁 = (Base‘𝑆) & ⊢ 0 = (0g‘𝑆) ⇒ ⊢ (𝑊 ∈ 𝑌 → (𝐹 ∈ (LIndS‘𝑊) ↔ (𝐹 ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝐹 ∀𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · 𝑥) ∈ (𝐾‘(𝐹 ∖ {𝑥}))))) | ||
| Theorem | islindf2 21772* | Property of an independent family of vectors with prior constrained domain and codomain. (Contributed by Stefan O'Rear, 26-Feb-2015.) |
| ⊢ 𝐵 = (Base‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐾 = (LSpan‘𝑊) & ⊢ 𝑆 = (Scalar‘𝑊) & ⊢ 𝑁 = (Base‘𝑆) & ⊢ 0 = (0g‘𝑆) ⇒ ⊢ ((𝑊 ∈ 𝑌 ∧ 𝐼 ∈ 𝑋 ∧ 𝐹:𝐼⟶𝐵) → (𝐹 LIndF 𝑊 ↔ ∀𝑥 ∈ 𝐼 ∀𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · (𝐹‘𝑥)) ∈ (𝐾‘(𝐹 “ (𝐼 ∖ {𝑥}))))) | ||
| Theorem | lindff 21773 | Functional property of a linearly independent family. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
| ⊢ 𝐵 = (Base‘𝑊) ⇒ ⊢ ((𝐹 LIndF 𝑊 ∧ 𝑊 ∈ 𝑌) → 𝐹:dom 𝐹⟶𝐵) | ||
| Theorem | lindfind 21774 | A linearly independent family is independent: no nonzero element multiple can be expressed as a linear combination of the others. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
| ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ 𝐿 = (Scalar‘𝑊) & ⊢ 0 = (0g‘𝐿) & ⊢ 𝐾 = (Base‘𝐿) ⇒ ⊢ (((𝐹 LIndF 𝑊 ∧ 𝐸 ∈ dom 𝐹) ∧ (𝐴 ∈ 𝐾 ∧ 𝐴 ≠ 0 )) → ¬ (𝐴 · (𝐹‘𝐸)) ∈ (𝑁‘(𝐹 “ (dom 𝐹 ∖ {𝐸})))) | ||
| Theorem | lindsind 21775 | A linearly independent set is independent: no nonzero element multiple can be expressed as a linear combination of the others. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
| ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ 𝐿 = (Scalar‘𝑊) & ⊢ 0 = (0g‘𝐿) & ⊢ 𝐾 = (Base‘𝐿) ⇒ ⊢ (((𝐹 ∈ (LIndS‘𝑊) ∧ 𝐸 ∈ 𝐹) ∧ (𝐴 ∈ 𝐾 ∧ 𝐴 ≠ 0 )) → ¬ (𝐴 · 𝐸) ∈ (𝑁‘(𝐹 ∖ {𝐸}))) | ||
| Theorem | lindfind2 21776 | In a linearly independent family in a module over a nonzero ring, no element is contained in the span of any non-containing set. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
| ⊢ 𝐾 = (LSpan‘𝑊) & ⊢ 𝐿 = (Scalar‘𝑊) ⇒ ⊢ (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ 𝐹 LIndF 𝑊 ∧ 𝐸 ∈ dom 𝐹) → ¬ (𝐹‘𝐸) ∈ (𝐾‘(𝐹 “ (dom 𝐹 ∖ {𝐸})))) | ||
| Theorem | lindsind2 21777 | In a linearly independent set in a module over a nonzero ring, no element is contained in the span of any non-containing set. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
| ⊢ 𝐾 = (LSpan‘𝑊) & ⊢ 𝐿 = (Scalar‘𝑊) ⇒ ⊢ (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝐸 ∈ 𝐹) → ¬ 𝐸 ∈ (𝐾‘(𝐹 ∖ {𝐸}))) | ||
| Theorem | lindff1 21778 | A linearly independent family over a nonzero ring has no repeated elements. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
| ⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝐿 = (Scalar‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) → 𝐹:dom 𝐹–1-1→𝐵) | ||
| Theorem | lindfrn 21779 | The range of an independent family is an independent set. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
| ⊢ ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊) → ran 𝐹 ∈ (LIndS‘𝑊)) | ||
| Theorem | f1lindf 21780 | Rearranging and deleting elements from an independent family gives an independent family. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
| ⊢ ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊 ∧ 𝐺:𝐾–1-1→dom 𝐹) → (𝐹 ∘ 𝐺) LIndF 𝑊) | ||
| Theorem | lindfres 21781 | Any restriction of an independent family is independent. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
| ⊢ ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊) → (𝐹 ↾ 𝑋) LIndF 𝑊) | ||
| Theorem | lindsss 21782 | Any subset of an independent set is independent. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
| ⊢ ((𝑊 ∈ LMod ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝐺 ⊆ 𝐹) → 𝐺 ∈ (LIndS‘𝑊)) | ||
| Theorem | f1linds 21783 | A family constructed from non-repeated elements of an independent set is independent. (Contributed by Stefan O'Rear, 26-Feb-2015.) |
| ⊢ ((𝑊 ∈ LMod ∧ 𝑆 ∈ (LIndS‘𝑊) ∧ 𝐹:𝐷–1-1→𝑆) → 𝐹 LIndF 𝑊) | ||
| Theorem | islindf3 21784 | In a nonzero ring, independent families can be equivalently characterized as renamings of independent sets. (Contributed by Stefan O'Rear, 26-Feb-2015.) |
| ⊢ 𝐿 = (Scalar‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) → (𝐹 LIndF 𝑊 ↔ (𝐹:dom 𝐹–1-1→V ∧ ran 𝐹 ∈ (LIndS‘𝑊)))) | ||
| Theorem | lindfmm 21785 | Linear independence of a family is unchanged by injective linear functions. (Contributed by Stefan O'Rear, 26-Feb-2015.) (Revised by Stefan O'Rear, 6-May-2015.) |
| ⊢ 𝐵 = (Base‘𝑆) & ⊢ 𝐶 = (Base‘𝑇) ⇒ ⊢ ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶 ∧ 𝐹:𝐼⟶𝐵) → (𝐹 LIndF 𝑆 ↔ (𝐺 ∘ 𝐹) LIndF 𝑇)) | ||
| Theorem | lindsmm 21786 | Linear independence of a set is unchanged by injective linear functions. (Contributed by Stefan O'Rear, 26-Feb-2015.) |
| ⊢ 𝐵 = (Base‘𝑆) & ⊢ 𝐶 = (Base‘𝑇) ⇒ ⊢ ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶 ∧ 𝐹 ⊆ 𝐵) → (𝐹 ∈ (LIndS‘𝑆) ↔ (𝐺 “ 𝐹) ∈ (LIndS‘𝑇))) | ||
| Theorem | lindsmm2 21787 | The monomorphic image of an independent set is independent. (Contributed by Stefan O'Rear, 26-Feb-2015.) |
| ⊢ 𝐵 = (Base‘𝑆) & ⊢ 𝐶 = (Base‘𝑇) ⇒ ⊢ ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶 ∧ 𝐹 ∈ (LIndS‘𝑆)) → (𝐺 “ 𝐹) ∈ (LIndS‘𝑇)) | ||
| Theorem | lsslindf 21788 | Linear independence is unchanged by working in a subspace. (Contributed by Stefan O'Rear, 24-Feb-2015.) (Revised by Stefan O'Rear, 6-May-2015.) |
| ⊢ 𝑈 = (LSubSp‘𝑊) & ⊢ 𝑋 = (𝑊 ↾s 𝑆) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑆 ∈ 𝑈 ∧ ran 𝐹 ⊆ 𝑆) → (𝐹 LIndF 𝑋 ↔ 𝐹 LIndF 𝑊)) | ||
| Theorem | lsslinds 21789 | Linear independence is unchanged by working in a subspace. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
| ⊢ 𝑈 = (LSubSp‘𝑊) & ⊢ 𝑋 = (𝑊 ↾s 𝑆) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑆 ∈ 𝑈 ∧ 𝐹 ⊆ 𝑆) → (𝐹 ∈ (LIndS‘𝑋) ↔ 𝐹 ∈ (LIndS‘𝑊))) | ||
| Theorem | islbs4 21790 | A basis is an independent spanning set. This could have been used as alternative definition of a basis: LBasis = (𝑤 ∈ V ↦ {𝑏 ∈ 𝒫 (Base‘𝑤) ∣ (((LSpan‘𝑤) ‘𝑏) = (Base‘𝑤) ∧ 𝑏 ∈ (LIndS‘𝑤))}). (Contributed by Stefan O'Rear, 24-Feb-2015.) |
| ⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝐽 = (LBasis‘𝑊) & ⊢ 𝐾 = (LSpan‘𝑊) ⇒ ⊢ (𝑋 ∈ 𝐽 ↔ (𝑋 ∈ (LIndS‘𝑊) ∧ (𝐾‘𝑋) = 𝐵)) | ||
| Theorem | lbslinds 21791 | A basis is independent. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
| ⊢ 𝐽 = (LBasis‘𝑊) ⇒ ⊢ 𝐽 ⊆ (LIndS‘𝑊) | ||
| Theorem | islinds3 21792 | A subset is linearly independent iff it is a basis of its span. (Contributed by Stefan O'Rear, 25-Feb-2015.) |
| ⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝐾 = (LSpan‘𝑊) & ⊢ 𝑋 = (𝑊 ↾s (𝐾‘𝑌)) & ⊢ 𝐽 = (LBasis‘𝑋) ⇒ ⊢ (𝑊 ∈ LMod → (𝑌 ∈ (LIndS‘𝑊) ↔ 𝑌 ∈ 𝐽)) | ||
| Theorem | islinds4 21793* | A set is independent in a vector space iff it is a subset of some basis. This is an axiom of choice equivalent. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
| ⊢ 𝐽 = (LBasis‘𝑊) ⇒ ⊢ (𝑊 ∈ LVec → (𝑌 ∈ (LIndS‘𝑊) ↔ ∃𝑏 ∈ 𝐽 𝑌 ⊆ 𝑏)) | ||
| Theorem | lmimlbs 21794 | The isomorphic image of a basis is a basis. (Contributed by Stefan O'Rear, 26-Feb-2015.) |
| ⊢ 𝐽 = (LBasis‘𝑆) & ⊢ 𝐾 = (LBasis‘𝑇) ⇒ ⊢ ((𝐹 ∈ (𝑆 LMIso 𝑇) ∧ 𝐵 ∈ 𝐽) → (𝐹 “ 𝐵) ∈ 𝐾) | ||
| Theorem | lmiclbs 21795 | Having a basis is an isomorphism invariant. (Contributed by Stefan O'Rear, 26-Feb-2015.) |
| ⊢ 𝐽 = (LBasis‘𝑆) & ⊢ 𝐾 = (LBasis‘𝑇) ⇒ ⊢ (𝑆 ≃𝑚 𝑇 → (𝐽 ≠ ∅ → 𝐾 ≠ ∅)) | ||
| Theorem | islindf4 21796* | A family is independent iff it has no nontrivial representations of zero. (Contributed by Stefan O'Rear, 28-Feb-2015.) |
| ⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 0 = (0g‘𝑊) & ⊢ 𝑌 = (0g‘𝑅) & ⊢ 𝐿 = (Base‘(𝑅 freeLMod 𝐼)) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝐼 ∈ 𝑋 ∧ 𝐹:𝐼⟶𝐵) → (𝐹 LIndF 𝑊 ↔ ∀𝑥 ∈ 𝐿 ((𝑊 Σg (𝑥 ∘f · 𝐹)) = 0 → 𝑥 = (𝐼 × {𝑌})))) | ||
| Theorem | islindf5 21797* | A family is independent iff the linear combinations homomorphism is injective. (Contributed by Stefan O'Rear, 28-Feb-2015.) |
| ⊢ 𝐹 = (𝑅 freeLMod 𝐼) & ⊢ 𝐵 = (Base‘𝐹) & ⊢ 𝐶 = (Base‘𝑇) & ⊢ · = ( ·𝑠 ‘𝑇) & ⊢ 𝐸 = (𝑥 ∈ 𝐵 ↦ (𝑇 Σg (𝑥 ∘f · 𝐴))) & ⊢ (𝜑 → 𝑇 ∈ LMod) & ⊢ (𝜑 → 𝐼 ∈ 𝑋) & ⊢ (𝜑 → 𝑅 = (Scalar‘𝑇)) & ⊢ (𝜑 → 𝐴:𝐼⟶𝐶) ⇒ ⊢ (𝜑 → (𝐴 LIndF 𝑇 ↔ 𝐸:𝐵–1-1→𝐶)) | ||
| Theorem | indlcim 21798* | An independent, spanning family extends to an isomorphism from a free module. (Contributed by Stefan O'Rear, 26-Feb-2015.) |
| ⊢ 𝐹 = (𝑅 freeLMod 𝐼) & ⊢ 𝐵 = (Base‘𝐹) & ⊢ 𝐶 = (Base‘𝑇) & ⊢ · = ( ·𝑠 ‘𝑇) & ⊢ 𝑁 = (LSpan‘𝑇) & ⊢ 𝐸 = (𝑥 ∈ 𝐵 ↦ (𝑇 Σg (𝑥 ∘f · 𝐴))) & ⊢ (𝜑 → 𝑇 ∈ LMod) & ⊢ (𝜑 → 𝐼 ∈ 𝑋) & ⊢ (𝜑 → 𝑅 = (Scalar‘𝑇)) & ⊢ (𝜑 → 𝐴:𝐼–onto→𝐽) & ⊢ (𝜑 → 𝐴 LIndF 𝑇) & ⊢ (𝜑 → (𝑁‘𝐽) = 𝐶) ⇒ ⊢ (𝜑 → 𝐸 ∈ (𝐹 LMIso 𝑇)) | ||
| Theorem | lbslcic 21799 | A module with a basis is isomorphic to a free module with the same cardinality. (Contributed by Stefan O'Rear, 26-Feb-2015.) |
| ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐽 = (LBasis‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝐵 ∈ 𝐽 ∧ 𝐼 ≈ 𝐵) → 𝑊 ≃𝑚 (𝐹 freeLMod 𝐼)) | ||
| Theorem | lmisfree 21800* | A module has a basis iff it is isomorphic to a free module. In settings where isomorphic objects are not distinguished, it is common to define "free module" as any module with a basis; thus for instance lbsex 21124 might be described as "every vector space is free". (Contributed by Stefan O'Rear, 26-Feb-2015.) |
| ⊢ 𝐽 = (LBasis‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) ⇒ ⊢ (𝑊 ∈ LMod → (𝐽 ≠ ∅ ↔ ∃𝑘 𝑊 ≃𝑚 (𝐹 freeLMod 𝑘))) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |