![]() |
Metamath
Proof Explorer Theorem List (p. 218 of 437) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-28347) |
![]() (28348-29872) |
![]() (29873-43657) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | nllyidm 21701 | Idempotence of the "n-locally" predicate, i.e. being "n-locally 𝐴 " is a local property. (Use loclly 21699 to show 𝑛-Locally 𝑛-Locally 𝐴 = 𝑛-Locally 𝐴.) (Contributed by Mario Carneiro, 2-Mar-2015.) |
⊢ Locally 𝑛-Locally 𝐴 = 𝑛-Locally 𝐴 | ||
Theorem | toplly 21702 | A topology is locally a topology. (Contributed by Mario Carneiro, 2-Mar-2015.) |
⊢ Locally Top = Top | ||
Theorem | topnlly 21703 | A topology is n-locally a topology. (Contributed by Mario Carneiro, 2-Mar-2015.) |
⊢ 𝑛-Locally Top = Top | ||
Theorem | hauslly 21704 | A Hausdorff space is locally Hausdorff. (Contributed by Mario Carneiro, 2-Mar-2015.) |
⊢ (𝐽 ∈ Haus → 𝐽 ∈ Locally Haus) | ||
Theorem | hausnlly 21705 | A Hausdorff space is n-locally Hausdorff iff it is locally Hausdorff (both notions are thus referred to as "locally Hausdorff"). (Contributed by Mario Carneiro, 2-Mar-2015.) |
⊢ (𝐽 ∈ 𝑛-Locally Haus ↔ 𝐽 ∈ Locally Haus) | ||
Theorem | hausllycmp 21706 | A compact Hausdorff space is locally compact. (Contributed by Mario Carneiro, 2-Mar-2015.) |
⊢ ((𝐽 ∈ Haus ∧ 𝐽 ∈ Comp) → 𝐽 ∈ 𝑛-Locally Comp) | ||
Theorem | cldllycmp 21707 | A closed subspace of a locally compact space is also locally compact. (The analogous result for open subspaces follows from the more general nllyrest 21698.) (Contributed by Mario Carneiro, 2-Mar-2015.) |
⊢ ((𝐽 ∈ 𝑛-Locally Comp ∧ 𝐴 ∈ (Clsd‘𝐽)) → (𝐽 ↾t 𝐴) ∈ 𝑛-Locally Comp) | ||
Theorem | lly1stc 21708 | First-countability is a local property (unlike second-countability). (Contributed by Mario Carneiro, 21-Mar-2015.) |
⊢ Locally 1st𝜔 = 1st𝜔 | ||
Theorem | dislly 21709* | The discrete space 𝒫 𝑋 is locally 𝐴 if and only if every singleton space has property 𝐴. (Contributed by Mario Carneiro, 20-Mar-2015.) |
⊢ (𝑋 ∈ 𝑉 → (𝒫 𝑋 ∈ Locally 𝐴 ↔ ∀𝑥 ∈ 𝑋 𝒫 {𝑥} ∈ 𝐴)) | ||
Theorem | disllycmp 21710 | A discrete space is locally compact. (Contributed by Mario Carneiro, 20-Mar-2015.) |
⊢ (𝑋 ∈ 𝑉 → 𝒫 𝑋 ∈ Locally Comp) | ||
Theorem | dis1stc 21711 | A discrete space is first-countable. (Contributed by Mario Carneiro, 21-Mar-2015.) |
⊢ (𝑋 ∈ 𝑉 → 𝒫 𝑋 ∈ 1st𝜔) | ||
Theorem | hausmapdom 21712 | If 𝑋 is a first-countable Hausdorff space, then the cardinality of the closure of a set 𝐴 is bounded by ℕ to the power 𝐴. In particular, a first-countable Hausdorff space with a dense subset 𝐴 has cardinality at most 𝐴↑ℕ, and a separable first-countable Hausdorff space has cardinality at most 𝒫 ℕ. (Compare hauspwpwdom 22200 to see a weaker result if the assumption of first-countability is omitted.) (Contributed by Mario Carneiro, 9-Apr-2015.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Haus ∧ 𝐽 ∈ 1st𝜔 ∧ 𝐴 ⊆ 𝑋) → ((cls‘𝐽)‘𝐴) ≼ (𝐴 ↑𝑚 ℕ)) | ||
Theorem | hauspwdom 21713 | Simplify the cardinal 𝐴↑ℕ of hausmapdom 21712 to 𝒫 𝐵 = 2↑𝐵 when 𝐵 is an infinite cardinal greater than 𝐴. (Contributed by Mario Carneiro, 9-Apr-2015.) (Revised by Mario Carneiro, 30-Apr-2015.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (((𝐽 ∈ Haus ∧ 𝐽 ∈ 1st𝜔 ∧ 𝐴 ⊆ 𝑋) ∧ (𝐴 ≼ 𝒫 𝐵 ∧ ℕ ≼ 𝐵)) → ((cls‘𝐽)‘𝐴) ≼ 𝒫 𝐵) | ||
Syntax | cref 21714 | Extend class definition to include the refinement relation. |
class Ref | ||
Syntax | cptfin 21715 | Extend class definition to include the class of point-finite covers. |
class PtFin | ||
Syntax | clocfin 21716 | Extend class definition to include the class of locally finite covers. |
class LocFin | ||
Definition | df-ref 21717* | Define the refinement relation. (Contributed by Jeff Hankins, 18-Jan-2010.) |
⊢ Ref = {〈𝑥, 𝑦〉 ∣ (∪ 𝑦 = ∪ 𝑥 ∧ ∀𝑧 ∈ 𝑥 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤)} | ||
Definition | df-ptfin 21718* | Define "point-finite." (Contributed by Jeff Hankins, 21-Jan-2010.) |
⊢ PtFin = {𝑥 ∣ ∀𝑦 ∈ ∪ 𝑥{𝑧 ∈ 𝑥 ∣ 𝑦 ∈ 𝑧} ∈ Fin} | ||
Definition | df-locfin 21719* | Define "locally finite." (Contributed by Jeff Hankins, 21-Jan-2010.) (Revised by Thierry Arnoux, 3-Feb-2020.) |
⊢ LocFin = (𝑥 ∈ Top ↦ {𝑦 ∣ (∪ 𝑥 = ∪ 𝑦 ∧ ∀𝑝 ∈ ∪ 𝑥∃𝑛 ∈ 𝑥 (𝑝 ∈ 𝑛 ∧ {𝑠 ∈ 𝑦 ∣ (𝑠 ∩ 𝑛) ≠ ∅} ∈ Fin))}) | ||
Theorem | refrel 21720 | Refinement is a relation. (Contributed by Jeff Hankins, 18-Jan-2010.) (Revised by Thierry Arnoux, 3-Feb-2020.) |
⊢ Rel Ref | ||
Theorem | isref 21721* | The property of being a refinement of a cover. Dr. Nyikos once commented in class that the term "refinement" is actually misleading and that people are inclined to confuse it with the notion defined in isfne 32922. On the other hand, the two concepts do seem to have a dual relationship. (Contributed by Jeff Hankins, 18-Jan-2010.) (Revised by Thierry Arnoux, 3-Feb-2020.) |
⊢ 𝑋 = ∪ 𝐴 & ⊢ 𝑌 = ∪ 𝐵 ⇒ ⊢ (𝐴 ∈ 𝐶 → (𝐴Ref𝐵 ↔ (𝑌 = 𝑋 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 ⊆ 𝑦))) | ||
Theorem | refbas 21722 | A refinement covers the same set. (Contributed by Jeff Hankins, 18-Jan-2010.) (Revised by Thierry Arnoux, 3-Feb-2020.) |
⊢ 𝑋 = ∪ 𝐴 & ⊢ 𝑌 = ∪ 𝐵 ⇒ ⊢ (𝐴Ref𝐵 → 𝑌 = 𝑋) | ||
Theorem | refssex 21723* | Every set in a refinement has a superset in the original cover. (Contributed by Jeff Hankins, 18-Jan-2010.) (Revised by Thierry Arnoux, 3-Feb-2020.) |
⊢ ((𝐴Ref𝐵 ∧ 𝑆 ∈ 𝐴) → ∃𝑥 ∈ 𝐵 𝑆 ⊆ 𝑥) | ||
Theorem | ssref 21724 | A subcover is a refinement of the original cover. (Contributed by Jeff Hankins, 18-Jan-2010.) (Revised by Thierry Arnoux, 3-Feb-2020.) |
⊢ 𝑋 = ∪ 𝐴 & ⊢ 𝑌 = ∪ 𝐵 ⇒ ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐴 ⊆ 𝐵 ∧ 𝑋 = 𝑌) → 𝐴Ref𝐵) | ||
Theorem | refref 21725 | Reflexivity of refinement. (Contributed by Jeff Hankins, 18-Jan-2010.) |
⊢ (𝐴 ∈ 𝑉 → 𝐴Ref𝐴) | ||
Theorem | reftr 21726 | Refinement is transitive. (Contributed by Jeff Hankins, 18-Jan-2010.) (Revised by Thierry Arnoux, 3-Feb-2020.) |
⊢ ((𝐴Ref𝐵 ∧ 𝐵Ref𝐶) → 𝐴Ref𝐶) | ||
Theorem | refun0 21727 | Adding the empty set preserves refinements. (Contributed by Thierry Arnoux, 31-Jan-2020.) |
⊢ ((𝐴Ref𝐵 ∧ 𝐵 ≠ ∅) → (𝐴 ∪ {∅})Ref𝐵) | ||
Theorem | isptfin 21728* | The statement "is a point-finite cover." (Contributed by Jeff Hankins, 21-Jan-2010.) |
⊢ 𝑋 = ∪ 𝐴 ⇒ ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ PtFin ↔ ∀𝑥 ∈ 𝑋 {𝑦 ∈ 𝐴 ∣ 𝑥 ∈ 𝑦} ∈ Fin)) | ||
Theorem | islocfin 21729* | The statement "is a locally finite cover." (Contributed by Jeff Hankins, 21-Jan-2010.) |
⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝑌 = ∪ 𝐴 ⇒ ⊢ (𝐴 ∈ (LocFin‘𝐽) ↔ (𝐽 ∈ Top ∧ 𝑋 = 𝑌 ∧ ∀𝑥 ∈ 𝑋 ∃𝑛 ∈ 𝐽 (𝑥 ∈ 𝑛 ∧ {𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑛) ≠ ∅} ∈ Fin))) | ||
Theorem | finptfin 21730 | A finite cover is a point-finite cover. (Contributed by Jeff Hankins, 21-Jan-2010.) |
⊢ (𝐴 ∈ Fin → 𝐴 ∈ PtFin) | ||
Theorem | ptfinfin 21731* | A point covered by a point-finite cover is only covered by finitely many elements. (Contributed by Jeff Hankins, 21-Jan-2010.) |
⊢ 𝑋 = ∪ 𝐴 ⇒ ⊢ ((𝐴 ∈ PtFin ∧ 𝑃 ∈ 𝑋) → {𝑥 ∈ 𝐴 ∣ 𝑃 ∈ 𝑥} ∈ Fin) | ||
Theorem | finlocfin 21732 | A finite cover of a topological space is a locally finite cover. (Contributed by Jeff Hankins, 21-Jan-2010.) |
⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝑌 = ∪ 𝐴 ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ 𝑋 = 𝑌) → 𝐴 ∈ (LocFin‘𝐽)) | ||
Theorem | locfintop 21733 | A locally finite cover covers a topological space. (Contributed by Jeff Hankins, 21-Jan-2010.) |
⊢ (𝐴 ∈ (LocFin‘𝐽) → 𝐽 ∈ Top) | ||
Theorem | locfinbas 21734 | A locally finite cover must cover the base set of its corresponding topological space. (Contributed by Jeff Hankins, 21-Jan-2010.) |
⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝑌 = ∪ 𝐴 ⇒ ⊢ (𝐴 ∈ (LocFin‘𝐽) → 𝑋 = 𝑌) | ||
Theorem | locfinnei 21735* | A point covered by a locally finite cover has a neighborhood which intersects only finitely many elements of the cover. (Contributed by Jeff Hankins, 21-Jan-2010.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐴 ∈ (LocFin‘𝐽) ∧ 𝑃 ∈ 𝑋) → ∃𝑛 ∈ 𝐽 (𝑃 ∈ 𝑛 ∧ {𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑛) ≠ ∅} ∈ Fin)) | ||
Theorem | lfinpfin 21736 | A locally finite cover is point-finite. (Contributed by Jeff Hankins, 21-Jan-2010.) (Proof shortened by Mario Carneiro, 11-Sep-2015.) |
⊢ (𝐴 ∈ (LocFin‘𝐽) → 𝐴 ∈ PtFin) | ||
Theorem | lfinun 21737 | Adding a finite set preserves locally finite covers. (Contributed by Thierry Arnoux, 31-Jan-2020.) |
⊢ ((𝐴 ∈ (LocFin‘𝐽) ∧ 𝐵 ∈ Fin ∧ ∪ 𝐵 ⊆ ∪ 𝐽) → (𝐴 ∪ 𝐵) ∈ (LocFin‘𝐽)) | ||
Theorem | locfincmp 21738 | For a compact space, the locally finite covers are precisely the finite covers. Sadly, this property does not properly characterize all compact spaces. (Contributed by Jeff Hankins, 22-Jan-2010.) (Proof shortened by Mario Carneiro, 11-Sep-2015.) |
⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝑌 = ∪ 𝐶 ⇒ ⊢ (𝐽 ∈ Comp → (𝐶 ∈ (LocFin‘𝐽) ↔ (𝐶 ∈ Fin ∧ 𝑋 = 𝑌))) | ||
Theorem | unisngl 21739* | Taking the union of the set of singletons recovers the initial set. (Contributed by Thierry Arnoux, 9-Jan-2020.) |
⊢ 𝐶 = {𝑢 ∣ ∃𝑥 ∈ 𝑋 𝑢 = {𝑥}} ⇒ ⊢ 𝑋 = ∪ 𝐶 | ||
Theorem | dissnref 21740* | The set of singletons is a refinement of any open covering of the discrete topology. (Contributed by Thierry Arnoux, 9-Jan-2020.) |
⊢ 𝐶 = {𝑢 ∣ ∃𝑥 ∈ 𝑋 𝑢 = {𝑥}} ⇒ ⊢ ((𝑋 ∈ 𝑉 ∧ ∪ 𝑌 = 𝑋) → 𝐶Ref𝑌) | ||
Theorem | dissnlocfin 21741* | The set of singletons is locally finite in the discrete topology. (Contributed by Thierry Arnoux, 9-Jan-2020.) |
⊢ 𝐶 = {𝑢 ∣ ∃𝑥 ∈ 𝑋 𝑢 = {𝑥}} ⇒ ⊢ (𝑋 ∈ 𝑉 → 𝐶 ∈ (LocFin‘𝒫 𝑋)) | ||
Theorem | locfindis 21742 | The locally finite covers of a discrete space are precisely the point-finite covers. (Contributed by Jeff Hankins, 22-Jan-2010.) (Proof shortened by Mario Carneiro, 11-Sep-2015.) |
⊢ 𝑌 = ∪ 𝐶 ⇒ ⊢ (𝐶 ∈ (LocFin‘𝒫 𝑋) ↔ (𝐶 ∈ PtFin ∧ 𝑋 = 𝑌)) | ||
Theorem | locfincf 21743 | A locally finite cover in a coarser topology is locally finite in a finer topology. (Contributed by Jeff Hankins, 22-Jan-2010.) (Proof shortened by Mario Carneiro, 11-Sep-2015.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) → (LocFin‘𝐽) ⊆ (LocFin‘𝐾)) | ||
Theorem | comppfsc 21744* | A space where every open cover has a point-finite subcover is compact. This is significant in part because it shows half of the proposition that if only half the generalization in the definition of metacompactness (and consequently paracompactness) is performed, one does not obtain any more spaces. (Contributed by Jeff Hankins, 21-Jan-2010.) (Proof shortened by Mario Carneiro, 11-Sep-2015.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ Top → (𝐽 ∈ Comp ↔ ∀𝑐 ∈ 𝒫 𝐽(𝑋 = ∪ 𝑐 → ∃𝑑 ∈ PtFin (𝑑 ⊆ 𝑐 ∧ 𝑋 = ∪ 𝑑)))) | ||
Syntax | ckgen 21745 | Extend class notation with the compact generator operation. |
class 𝑘Gen | ||
Definition | df-kgen 21746* | Define the "compact generator", the functor from topological spaces to compactly generated spaces. Also known as the k-ification operation. A set is k-open, i.e. 𝑥 ∈ (𝑘Gen‘𝑗), iff the preimage of 𝑥 is open in all compact Hausdorff spaces. (Contributed by Mario Carneiro, 20-Mar-2015.) |
⊢ 𝑘Gen = (𝑗 ∈ Top ↦ {𝑥 ∈ 𝒫 ∪ 𝑗 ∣ ∀𝑘 ∈ 𝒫 ∪ 𝑗((𝑗 ↾t 𝑘) ∈ Comp → (𝑥 ∩ 𝑘) ∈ (𝑗 ↾t 𝑘))}) | ||
Theorem | kgenval 21747* | Value of the compact generator. (The "k" in 𝑘Gen comes from the name "k-space" for these spaces, after the German word kompakt.) (Contributed by Mario Carneiro, 20-Mar-2015.) |
⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝑘Gen‘𝐽) = {𝑥 ∈ 𝒫 𝑋 ∣ ∀𝑘 ∈ 𝒫 𝑋((𝐽 ↾t 𝑘) ∈ Comp → (𝑥 ∩ 𝑘) ∈ (𝐽 ↾t 𝑘))}) | ||
Theorem | elkgen 21748* | Value of the compact generator. (Contributed by Mario Carneiro, 20-Mar-2015.) |
⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝐴 ∈ (𝑘Gen‘𝐽) ↔ (𝐴 ⊆ 𝑋 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽 ↾t 𝑘) ∈ Comp → (𝐴 ∩ 𝑘) ∈ (𝐽 ↾t 𝑘))))) | ||
Theorem | kgeni 21749 | Property of the open sets in the compact generator. (Contributed by Mario Carneiro, 20-Mar-2015.) |
⊢ ((𝐴 ∈ (𝑘Gen‘𝐽) ∧ (𝐽 ↾t 𝐾) ∈ Comp) → (𝐴 ∩ 𝐾) ∈ (𝐽 ↾t 𝐾)) | ||
Theorem | kgentopon 21750 | The compact generator generates a topology. (Contributed by Mario Carneiro, 22-Aug-2015.) |
⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝑘Gen‘𝐽) ∈ (TopOn‘𝑋)) | ||
Theorem | kgenuni 21751 | The base set of the compact generator is the same as the original topology. (Contributed by Mario Carneiro, 20-Mar-2015.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ Top → 𝑋 = ∪ (𝑘Gen‘𝐽)) | ||
Theorem | kgenftop 21752 | The compact generator generates a topology. (Contributed by Mario Carneiro, 20-Mar-2015.) |
⊢ (𝐽 ∈ Top → (𝑘Gen‘𝐽) ∈ Top) | ||
Theorem | kgenf 21753 | The compact generator is a function on topologies. (Contributed by Mario Carneiro, 20-Mar-2015.) |
⊢ 𝑘Gen:Top⟶Top | ||
Theorem | kgentop 21754 | A compactly generated space is a topology. (Note: henceforth we will use the idiom "𝐽 ∈ ran 𝑘Gen " to denote "𝐽 is compactly generated", since as we will show a space is compactly generated iff it is in the range of the compact generator.) (Contributed by Mario Carneiro, 20-Mar-2015.) |
⊢ (𝐽 ∈ ran 𝑘Gen → 𝐽 ∈ Top) | ||
Theorem | kgenss 21755 | The compact generator generates a finer topology than the original. (Contributed by Mario Carneiro, 20-Mar-2015.) |
⊢ (𝐽 ∈ Top → 𝐽 ⊆ (𝑘Gen‘𝐽)) | ||
Theorem | kgenhaus 21756 | The compact generator generates another Hausdorff topology given a Hausdorff topology to start from. (Contributed by Mario Carneiro, 21-Mar-2015.) |
⊢ (𝐽 ∈ Haus → (𝑘Gen‘𝐽) ∈ Haus) | ||
Theorem | kgencmp 21757 | The compact generator topology is the same as the original topology on compact subspaces. (Contributed by Mario Carneiro, 20-Mar-2015.) |
⊢ ((𝐽 ∈ Top ∧ (𝐽 ↾t 𝐾) ∈ Comp) → (𝐽 ↾t 𝐾) = ((𝑘Gen‘𝐽) ↾t 𝐾)) | ||
Theorem | kgencmp2 21758 | The compact generator topology has the same compact sets as the original topology. (Contributed by Mario Carneiro, 20-Mar-2015.) |
⊢ (𝐽 ∈ Top → ((𝐽 ↾t 𝐾) ∈ Comp ↔ ((𝑘Gen‘𝐽) ↾t 𝐾) ∈ Comp)) | ||
Theorem | kgenidm 21759 | The compact generator is idempotent on compactly generated spaces. (Contributed by Mario Carneiro, 20-Mar-2015.) |
⊢ (𝐽 ∈ ran 𝑘Gen → (𝑘Gen‘𝐽) = 𝐽) | ||
Theorem | iskgen2 21760 | A space is compactly generated iff it contains its image under the compact generator. (Contributed by Mario Carneiro, 20-Mar-2015.) |
⊢ (𝐽 ∈ ran 𝑘Gen ↔ (𝐽 ∈ Top ∧ (𝑘Gen‘𝐽) ⊆ 𝐽)) | ||
Theorem | iskgen3 21761* | Derive the usual definition of "compactly generated". A topology is compactly generated if every subset of 𝑋 that is open in every compact subset is open. (Contributed by Mario Carneiro, 20-Mar-2015.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ ran 𝑘Gen ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝒫 𝑋(∀𝑘 ∈ 𝒫 𝑋((𝐽 ↾t 𝑘) ∈ Comp → (𝑥 ∩ 𝑘) ∈ (𝐽 ↾t 𝑘)) → 𝑥 ∈ 𝐽))) | ||
Theorem | llycmpkgen2 21762* | A locally compact space is compactly generated. (This variant of llycmpkgen 21764 uses the weaker definition of locally compact, "every point has a compact neighborhood", instead of "every point has a local base of compact neighborhoods".) (Contributed by Mario Carneiro, 21-Mar-2015.) |
⊢ 𝑋 = ∪ 𝐽 & ⊢ (𝜑 → 𝐽 ∈ Top) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ∃𝑘 ∈ ((nei‘𝐽)‘{𝑥})(𝐽 ↾t 𝑘) ∈ Comp) ⇒ ⊢ (𝜑 → 𝐽 ∈ ran 𝑘Gen) | ||
Theorem | cmpkgen 21763 | A compact space is compactly generated. (Contributed by Mario Carneiro, 21-Mar-2015.) |
⊢ (𝐽 ∈ Comp → 𝐽 ∈ ran 𝑘Gen) | ||
Theorem | llycmpkgen 21764 | A locally compact space is compactly generated. (Contributed by Mario Carneiro, 21-Mar-2015.) |
⊢ (𝐽 ∈ 𝑛-Locally Comp → 𝐽 ∈ ran 𝑘Gen) | ||
Theorem | 1stckgenlem 21765 | The one-point compactification of ℕ is compact. (Contributed by Mario Carneiro, 21-Mar-2015.) |
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐹:ℕ⟶𝑋) & ⊢ (𝜑 → 𝐹(⇝𝑡‘𝐽)𝐴) ⇒ ⊢ (𝜑 → (𝐽 ↾t (ran 𝐹 ∪ {𝐴})) ∈ Comp) | ||
Theorem | 1stckgen 21766 | A first-countable space is compactly generated. (Contributed by Mario Carneiro, 21-Mar-2015.) |
⊢ (𝐽 ∈ 1st𝜔 → 𝐽 ∈ ran 𝑘Gen) | ||
Theorem | kgen2ss 21767 | The compact generator preserves the subset (fineness) relationship on topologies. (Contributed by Mario Carneiro, 21-Mar-2015.) |
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) → (𝑘Gen‘𝐽) ⊆ (𝑘Gen‘𝐾)) | ||
Theorem | kgencn 21768* | A function from a compactly generated space is continuous iff it is continuous "on compacta". (Contributed by Mario Carneiro, 21-Mar-2015.) |
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ ((𝑘Gen‘𝐽) Cn 𝐾) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽 ↾t 𝑘) ∈ Comp → (𝐹 ↾ 𝑘) ∈ ((𝐽 ↾t 𝑘) Cn 𝐾))))) | ||
Theorem | kgencn2 21769* | A function 𝐹:𝐽⟶𝐾 from a compactly generated space is continuous iff for all compact spaces 𝑧 and continuous 𝑔:𝑧⟶𝐽, the composite 𝐹 ∘ 𝑔:𝑧⟶𝐾 is continuous. (Contributed by Mario Carneiro, 21-Mar-2015.) |
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ ((𝑘Gen‘𝐽) Cn 𝐾) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑧 ∈ Comp ∀𝑔 ∈ (𝑧 Cn 𝐽)(𝐹 ∘ 𝑔) ∈ (𝑧 Cn 𝐾)))) | ||
Theorem | kgencn3 21770 | The set of continuous functions from 𝐽 to 𝐾 is unaffected by k-ification of 𝐾, if 𝐽 is already compactly generated. (Contributed by Mario Carneiro, 21-Mar-2015.) |
⊢ ((𝐽 ∈ ran 𝑘Gen ∧ 𝐾 ∈ Top) → (𝐽 Cn 𝐾) = (𝐽 Cn (𝑘Gen‘𝐾))) | ||
Theorem | kgen2cn 21771 | A continuous function is also continuous with the domain and codomain replaced by their compact generator topologies. (Contributed by Mario Carneiro, 21-Mar-2015.) |
⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹 ∈ ((𝑘Gen‘𝐽) Cn (𝑘Gen‘𝐾))) | ||
Syntax | ctx 21772 | Extend class notation with the binary topological product operation. |
class ×t | ||
Syntax | cxko 21773 | Extend class notation with a function whose value is the compact-open topology. |
class ^ko | ||
Definition | df-tx 21774* | Define the binary topological product, which is homeomorphic to the general topological product over a two element set, but is more convenient to use. (Contributed by Jeff Madsen, 2-Sep-2009.) |
⊢ ×t = (𝑟 ∈ V, 𝑠 ∈ V ↦ (topGen‘ran (𝑥 ∈ 𝑟, 𝑦 ∈ 𝑠 ↦ (𝑥 × 𝑦)))) | ||
Definition | df-xko 21775* | Define the compact-open topology, which is the natural topology on the set of continuous functions between two topological spaces. (Contributed by Mario Carneiro, 19-Mar-2015.) |
⊢ ^ko = (𝑠 ∈ Top, 𝑟 ∈ Top ↦ (topGen‘(fi‘ran (𝑘 ∈ {𝑥 ∈ 𝒫 ∪ 𝑟 ∣ (𝑟 ↾t 𝑥) ∈ Comp}, 𝑣 ∈ 𝑠 ↦ {𝑓 ∈ (𝑟 Cn 𝑠) ∣ (𝑓 “ 𝑘) ⊆ 𝑣})))) | ||
Theorem | txval 21776* | Value of the binary topological product operation. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 30-Aug-2015.) |
⊢ 𝐵 = ran (𝑥 ∈ 𝑅, 𝑦 ∈ 𝑆 ↦ (𝑥 × 𝑦)) ⇒ ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → (𝑅 ×t 𝑆) = (topGen‘𝐵)) | ||
Theorem | txuni2 21777* | The underlying set of the product of two topologies. (Contributed by Mario Carneiro, 31-Aug-2015.) |
⊢ 𝐵 = ran (𝑥 ∈ 𝑅, 𝑦 ∈ 𝑆 ↦ (𝑥 × 𝑦)) & ⊢ 𝑋 = ∪ 𝑅 & ⊢ 𝑌 = ∪ 𝑆 ⇒ ⊢ (𝑋 × 𝑌) = ∪ 𝐵 | ||
Theorem | txbasex 21778* | The basis for the product topology is a set. (Contributed by Mario Carneiro, 2-Sep-2015.) |
⊢ 𝐵 = ran (𝑥 ∈ 𝑅, 𝑦 ∈ 𝑆 ↦ (𝑥 × 𝑦)) ⇒ ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → 𝐵 ∈ V) | ||
Theorem | txbas 21779* | The set of Cartesian products of elements from two topological bases is a basis. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 31-Aug-2015.) |
⊢ 𝐵 = ran (𝑥 ∈ 𝑅, 𝑦 ∈ 𝑆 ↦ (𝑥 × 𝑦)) ⇒ ⊢ ((𝑅 ∈ TopBases ∧ 𝑆 ∈ TopBases) → 𝐵 ∈ TopBases) | ||
Theorem | eltx 21780* | A set in a product is open iff each point is surrounded by an open rectangle. (Contributed by Stefan O'Rear, 25-Jan-2015.) |
⊢ ((𝐽 ∈ 𝑉 ∧ 𝐾 ∈ 𝑊) → (𝑆 ∈ (𝐽 ×t 𝐾) ↔ ∀𝑝 ∈ 𝑆 ∃𝑥 ∈ 𝐽 ∃𝑦 ∈ 𝐾 (𝑝 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ 𝑆))) | ||
Theorem | txtop 21781 | The product of two topologies is a topology. (Contributed by Jeff Madsen, 2-Sep-2009.) |
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑅 ×t 𝑆) ∈ Top) | ||
Theorem | ptval 21782* | The value of the product topology function. (Contributed by Mario Carneiro, 3-Feb-2015.) |
⊢ 𝐵 = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))} ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹 Fn 𝐴) → (∏t‘𝐹) = (topGen‘𝐵)) | ||
Theorem | ptpjpre1 21783* | The preimage of a projection function can be expressed as an indexed cartesian product. (Contributed by Mario Carneiro, 6-Feb-2015.) |
⊢ 𝑋 = X𝑘 ∈ 𝐴 ∪ (𝐹‘𝑘) ⇒ ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (𝐼 ∈ 𝐴 ∧ 𝑈 ∈ (𝐹‘𝐼))) → (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝐼)) “ 𝑈) = X𝑘 ∈ 𝐴 if(𝑘 = 𝐼, 𝑈, ∪ (𝐹‘𝑘))) | ||
Theorem | elpt 21784* | Elementhood in the bases of a product topology. (Contributed by Mario Carneiro, 3-Feb-2015.) |
⊢ 𝐵 = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))} ⇒ ⊢ (𝑆 ∈ 𝐵 ↔ ∃ℎ((ℎ Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (ℎ‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑤 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑤)(ℎ‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑆 = X𝑦 ∈ 𝐴 (ℎ‘𝑦))) | ||
Theorem | elptr 21785* | A basic open set in the product topology. (Contributed by Mario Carneiro, 3-Feb-2015.) |
⊢ 𝐵 = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))} ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝐺‘𝑦) ∈ (𝐹‘𝑦)) ∧ (𝑊 ∈ Fin ∧ ∀𝑦 ∈ (𝐴 ∖ 𝑊)(𝐺‘𝑦) = ∪ (𝐹‘𝑦))) → X𝑦 ∈ 𝐴 (𝐺‘𝑦) ∈ 𝐵) | ||
Theorem | elptr2 21786* | A basic open set in the product topology. (Contributed by Mario Carneiro, 3-Feb-2015.) |
⊢ 𝐵 = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))} & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝑊 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑆 ∈ (𝐹‘𝑘)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∖ 𝑊)) → 𝑆 = ∪ (𝐹‘𝑘)) ⇒ ⊢ (𝜑 → X𝑘 ∈ 𝐴 𝑆 ∈ 𝐵) | ||
Theorem | ptbasid 21787* | The base set of the product topology is a basic open set. (Contributed by Mario Carneiro, 3-Feb-2015.) |
⊢ 𝐵 = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))} ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → X𝑘 ∈ 𝐴 ∪ (𝐹‘𝑘) ∈ 𝐵) | ||
Theorem | ptuni2 21788* | The base set for the product topology. (Contributed by Mario Carneiro, 3-Feb-2015.) |
⊢ 𝐵 = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))} ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → X𝑘 ∈ 𝐴 ∪ (𝐹‘𝑘) = ∪ 𝐵) | ||
Theorem | ptbasin 21789* | The basis for a product topology is closed under intersections. (Contributed by Mario Carneiro, 3-Feb-2015.) |
⊢ 𝐵 = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))} ⇒ ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋 ∩ 𝑌) ∈ 𝐵) | ||
Theorem | ptbasin2 21790* | The basis for a product topology is closed under intersections. (Contributed by Mario Carneiro, 19-Mar-2015.) |
⊢ 𝐵 = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))} ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → (fi‘𝐵) = 𝐵) | ||
Theorem | ptbas 21791* | The basis for a product topology is a basis. (Contributed by Mario Carneiro, 3-Feb-2015.) |
⊢ 𝐵 = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))} ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → 𝐵 ∈ TopBases) | ||
Theorem | ptpjpre2 21792* | The basis for a product topology is a basis. (Contributed by Mario Carneiro, 3-Feb-2015.) |
⊢ 𝐵 = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))} & ⊢ 𝑋 = X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛) ⇒ ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (𝐼 ∈ 𝐴 ∧ 𝑈 ∈ (𝐹‘𝐼))) → (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝐼)) “ 𝑈) ∈ 𝐵) | ||
Theorem | ptbasfi 21793* | The basis for the product topology can also be written as the set of finite intersections of "cylinder sets", the preimages of projections into one factor from open sets in the factor. (We have to add 𝑋 itself to the list because if 𝐴 is empty we get (fi‘∅) = ∅ while 𝐵 = {∅}.) (Contributed by Mario Carneiro, 3-Feb-2015.) |
⊢ 𝐵 = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))} & ⊢ 𝑋 = X𝑛 ∈ 𝐴 ∪ (𝐹‘𝑛) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → 𝐵 = (fi‘({𝑋} ∪ ran (𝑘 ∈ 𝐴, 𝑢 ∈ (𝐹‘𝑘) ↦ (◡(𝑤 ∈ 𝑋 ↦ (𝑤‘𝑘)) “ 𝑢))))) | ||
Theorem | pttop 21794 | The product topology is a topology. (Contributed by Mario Carneiro, 3-Feb-2015.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → (∏t‘𝐹) ∈ Top) | ||
Theorem | ptopn 21795* | A basic open set in the product topology. (Contributed by Mario Carneiro, 3-Feb-2015.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶Top) & ⊢ (𝜑 → 𝑊 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑆 ∈ (𝐹‘𝑘)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∖ 𝑊)) → 𝑆 = ∪ (𝐹‘𝑘)) ⇒ ⊢ (𝜑 → X𝑘 ∈ 𝐴 𝑆 ∈ (∏t‘𝐹)) | ||
Theorem | ptopn2 21796* | A sub-basic open set in the product topology. (Contributed by Stefan O'Rear, 22-Feb-2015.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶Top) & ⊢ (𝜑 → 𝑂 ∈ (𝐹‘𝑌)) ⇒ ⊢ (𝜑 → X𝑘 ∈ 𝐴 if(𝑘 = 𝑌, 𝑂, ∪ (𝐹‘𝑘)) ∈ (∏t‘𝐹)) | ||
Theorem | xkotf 21797* | Functionality of function 𝑇. (Contributed by Mario Carneiro, 19-Mar-2015.) |
⊢ 𝑋 = ∪ 𝑅 & ⊢ 𝐾 = {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅 ↾t 𝑥) ∈ Comp} & ⊢ 𝑇 = (𝑘 ∈ 𝐾, 𝑣 ∈ 𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}) ⇒ ⊢ 𝑇:(𝐾 × 𝑆)⟶𝒫 (𝑅 Cn 𝑆) | ||
Theorem | xkobval 21798* | Alternative expression for the subbase of the compact-open topology. (Contributed by Mario Carneiro, 23-Mar-2015.) |
⊢ 𝑋 = ∪ 𝑅 & ⊢ 𝐾 = {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅 ↾t 𝑥) ∈ Comp} & ⊢ 𝑇 = (𝑘 ∈ 𝐾, 𝑣 ∈ 𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}) ⇒ ⊢ ran 𝑇 = {𝑠 ∣ ∃𝑘 ∈ 𝒫 𝑋∃𝑣 ∈ 𝑆 ((𝑅 ↾t 𝑘) ∈ Comp ∧ 𝑠 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣})} | ||
Theorem | xkoval 21799* | Value of the compact-open topology. (Contributed by Mario Carneiro, 19-Mar-2015.) |
⊢ 𝑋 = ∪ 𝑅 & ⊢ 𝐾 = {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅 ↾t 𝑥) ∈ Comp} & ⊢ 𝑇 = (𝑘 ∈ 𝐾, 𝑣 ∈ 𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}) ⇒ ⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑆 ^ko 𝑅) = (topGen‘(fi‘ran 𝑇))) | ||
Theorem | xkotop 21800 | The compact-open topology is a topology. (Contributed by Mario Carneiro, 19-Mar-2015.) |
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑆 ^ko 𝑅) ∈ Top) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |