| Metamath
Proof Explorer Theorem List (p. 218 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30880) |
(30881-32403) |
(32404-49778) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | frlmbas3 21701 | An element of the base set of a finite free module with a Cartesian product as index set as operation value. (Contributed by AV, 14-Feb-2019.) |
| ⊢ 𝐹 = (𝑅 freeLMod (𝑁 × 𝑀)) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑉 = (Base‘𝐹) ⇒ ⊢ (((𝑅 ∈ 𝑊 ∧ 𝑋 ∈ 𝑉) ∧ (𝑁 ∈ Fin ∧ 𝑀 ∈ Fin) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑀)) → (𝐼𝑋𝐽) ∈ 𝐵) | ||
| Theorem | mpofrlmd 21702* | Elements of the free module are mappings with two arguments defined by their operation values. (Contributed by AV, 20-Feb-2019.) (Proof shortened by AV, 3-Jul-2022.) |
| ⊢ 𝐹 = (𝑅 freeLMod (𝑁 × 𝑀)) & ⊢ 𝑉 = (Base‘𝐹) & ⊢ ((𝑖 = 𝑎 ∧ 𝑗 = 𝑏) → 𝐴 = 𝐵) & ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑀) → 𝐴 ∈ 𝑋) & ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑀) → 𝐵 ∈ 𝑌) & ⊢ (𝜑 → (𝑁 ∈ 𝑈 ∧ 𝑀 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉)) ⇒ ⊢ (𝜑 → (𝑍 = (𝑎 ∈ 𝑁, 𝑏 ∈ 𝑀 ↦ 𝐵) ↔ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑀 (𝑖𝑍𝑗) = 𝐴)) | ||
| Theorem | frlmip 21703* | The inner product of a free module. (Contributed by Thierry Arnoux, 20-Jun-2019.) |
| ⊢ 𝑌 = (𝑅 freeLMod 𝐼) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ ((𝐼 ∈ 𝑊 ∧ 𝑅 ∈ 𝑉) → (𝑓 ∈ (𝐵 ↑m 𝐼), 𝑔 ∈ (𝐵 ↑m 𝐼) ↦ (𝑅 Σg (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥) · (𝑔‘𝑥))))) = (·𝑖‘𝑌)) | ||
| Theorem | frlmipval 21704 | The inner product of a free module. (Contributed by Thierry Arnoux, 21-Jun-2019.) |
| ⊢ 𝑌 = (𝑅 freeLMod 𝐼) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 𝑉 = (Base‘𝑌) & ⊢ , = (·𝑖‘𝑌) ⇒ ⊢ (((𝐼 ∈ 𝑊 ∧ 𝑅 ∈ 𝑋) ∧ (𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑉)) → (𝐹 , 𝐺) = (𝑅 Σg (𝐹 ∘f · 𝐺))) | ||
| Theorem | frlmphllem 21705* | Lemma for frlmphl 21706. (Contributed by AV, 21-Jul-2019.) |
| ⊢ 𝑌 = (𝑅 freeLMod 𝐼) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 𝑉 = (Base‘𝑌) & ⊢ , = (·𝑖‘𝑌) & ⊢ 𝑂 = (0g‘𝑌) & ⊢ 0 = (0g‘𝑅) & ⊢ ∗ = (*𝑟‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Field) & ⊢ ((𝜑 ∧ 𝑔 ∈ 𝑉 ∧ (𝑔 , 𝑔) = 0 ) → 𝑔 = 𝑂) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ( ∗ ‘𝑥) = 𝑥) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) ⇒ ⊢ ((𝜑 ∧ 𝑔 ∈ 𝑉 ∧ ℎ ∈ 𝑉) → (𝑥 ∈ 𝐼 ↦ ((𝑔‘𝑥) · (ℎ‘𝑥))) finSupp 0 ) | ||
| Theorem | frlmphl 21706* | Conditions for a free module to be a pre-Hilbert space. (Contributed by Thierry Arnoux, 21-Jun-2019.) (Proof shortened by AV, 21-Jul-2019.) |
| ⊢ 𝑌 = (𝑅 freeLMod 𝐼) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 𝑉 = (Base‘𝑌) & ⊢ , = (·𝑖‘𝑌) & ⊢ 𝑂 = (0g‘𝑌) & ⊢ 0 = (0g‘𝑅) & ⊢ ∗ = (*𝑟‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Field) & ⊢ ((𝜑 ∧ 𝑔 ∈ 𝑉 ∧ (𝑔 , 𝑔) = 0 ) → 𝑔 = 𝑂) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ( ∗ ‘𝑥) = 𝑥) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) ⇒ ⊢ (𝜑 → 𝑌 ∈ PreHil) | ||
According to Wikipedia ("Standard basis", 16-Mar-2019, https://en.wikipedia.org/wiki/Standard_basis) "In mathematics, the standard basis (also called natural basis) for a Euclidean space is the set of unit vectors pointing in the direction of the axes of a Cartesian coordinate system.", and ("Unit vector", 16-Mar-2019, https://en.wikipedia.org/wiki/Unit_vector) "In mathematics, a unit vector in a normed vector space is a vector (often a spatial vector) of length 1.". In the following, the term "unit vector" (or more specific "basic unit vector") is used for the (special) unit vectors forming the standard basis of free modules. However, the length of the unit vectors is not considered here, so it is not required to regard normed spaces. | ||
| Syntax | cuvc 21707 | Class of basic unit vectors for an explicit free module. |
| class unitVec | ||
| Definition | df-uvc 21708* | ((𝑅 unitVec 𝐼)‘𝑗) is the unit vector in (𝑅 freeLMod 𝐼) along the 𝑗 axis. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
| ⊢ unitVec = (𝑟 ∈ V, 𝑖 ∈ V ↦ (𝑗 ∈ 𝑖 ↦ (𝑘 ∈ 𝑖 ↦ if(𝑘 = 𝑗, (1r‘𝑟), (0g‘𝑟))))) | ||
| Theorem | uvcfval 21709* | Value of the unit-vector generator for a free module. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
| ⊢ 𝑈 = (𝑅 unitVec 𝐼) & ⊢ 1 = (1r‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → 𝑈 = (𝑗 ∈ 𝐼 ↦ (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑗, 1 , 0 )))) | ||
| Theorem | uvcval 21710* | Value of a single unit vector in a free module. (Contributed by Stefan O'Rear, 3-Feb-2015.) |
| ⊢ 𝑈 = (𝑅 unitVec 𝐼) & ⊢ 1 = (1r‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ∧ 𝐽 ∈ 𝐼) → (𝑈‘𝐽) = (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝐽, 1 , 0 ))) | ||
| Theorem | uvcvval 21711 | Value of a unit vector coordinate in a free module. (Contributed by Stefan O'Rear, 3-Feb-2015.) |
| ⊢ 𝑈 = (𝑅 unitVec 𝐼) & ⊢ 1 = (1r‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ (((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ∧ 𝐽 ∈ 𝐼) ∧ 𝐾 ∈ 𝐼) → ((𝑈‘𝐽)‘𝐾) = if(𝐾 = 𝐽, 1 , 0 )) | ||
| Theorem | uvcvvcl 21712 | A coordinate of a unit vector is either 0 or 1. (Contributed by Stefan O'Rear, 3-Feb-2015.) |
| ⊢ 𝑈 = (𝑅 unitVec 𝐼) & ⊢ 1 = (1r‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ (((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ∧ 𝐽 ∈ 𝐼) ∧ 𝐾 ∈ 𝐼) → ((𝑈‘𝐽)‘𝐾) ∈ { 0 , 1 }) | ||
| Theorem | uvcvvcl2 21713 | A unit vector coordinate is a ring element. (Contributed by Stefan O'Rear, 3-Feb-2015.) |
| ⊢ 𝑈 = (𝑅 unitVec 𝐼) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝐽 ∈ 𝐼) & ⊢ (𝜑 → 𝐾 ∈ 𝐼) ⇒ ⊢ (𝜑 → ((𝑈‘𝐽)‘𝐾) ∈ 𝐵) | ||
| Theorem | uvcvv1 21714 | The unit vector is one at its designated coordinate. (Contributed by Stefan O'Rear, 3-Feb-2015.) |
| ⊢ 𝑈 = (𝑅 unitVec 𝐼) & ⊢ (𝜑 → 𝑅 ∈ 𝑉) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝐽 ∈ 𝐼) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ (𝜑 → ((𝑈‘𝐽)‘𝐽) = 1 ) | ||
| Theorem | uvcvv0 21715 | The unit vector is zero at its designated coordinate. (Contributed by Stefan O'Rear, 3-Feb-2015.) |
| ⊢ 𝑈 = (𝑅 unitVec 𝐼) & ⊢ (𝜑 → 𝑅 ∈ 𝑉) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝐽 ∈ 𝐼) & ⊢ (𝜑 → 𝐾 ∈ 𝐼) & ⊢ (𝜑 → 𝐽 ≠ 𝐾) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ (𝜑 → ((𝑈‘𝐽)‘𝐾) = 0 ) | ||
| Theorem | uvcff 21716 | Domain and codomain of the unit vector generator; ring condition required to be sure 1 and 0 are actually in the ring. (Contributed by Stefan O'Rear, 1-Feb-2015.) (Proof shortened by AV, 21-Jul-2019.) |
| ⊢ 𝑈 = (𝑅 unitVec 𝐼) & ⊢ 𝑌 = (𝑅 freeLMod 𝐼) & ⊢ 𝐵 = (Base‘𝑌) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊) → 𝑈:𝐼⟶𝐵) | ||
| Theorem | uvcf1 21717 | In a nonzero ring, each unit vector is different. (Contributed by Stefan O'Rear, 7-Feb-2015.) (Revised by Mario Carneiro, 14-Jun-2015.) |
| ⊢ 𝑈 = (𝑅 unitVec 𝐼) & ⊢ 𝑌 = (𝑅 freeLMod 𝐼) & ⊢ 𝐵 = (Base‘𝑌) ⇒ ⊢ ((𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑊) → 𝑈:𝐼–1-1→𝐵) | ||
| Theorem | uvcresum 21718 | Any element of a free module can be expressed as a finite linear combination of unit vectors. (Contributed by Stefan O'Rear, 3-Feb-2015.) (Proof shortened by Mario Carneiro, 5-Jul-2015.) |
| ⊢ 𝑈 = (𝑅 unitVec 𝐼) & ⊢ 𝑌 = (𝑅 freeLMod 𝐼) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ · = ( ·𝑠 ‘𝑌) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝑋 ∈ 𝐵) → 𝑋 = (𝑌 Σg (𝑋 ∘f · 𝑈))) | ||
| Theorem | frlmssuvc1 21719* | A scalar multiple of a unit vector included in a support-restriction subspace is included in the subspace. (Contributed by Stefan O'Rear, 5-Feb-2015.) (Revised by AV, 24-Jun-2019.) |
| ⊢ 𝐹 = (𝑅 freeLMod 𝐼) & ⊢ 𝑈 = (𝑅 unitVec 𝐼) & ⊢ 𝐵 = (Base‘𝐹) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ · = ( ·𝑠 ‘𝐹) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐶 = {𝑥 ∈ 𝐵 ∣ (𝑥 supp 0 ) ⊆ 𝐽} & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝐽 ⊆ 𝐼) & ⊢ (𝜑 → 𝐿 ∈ 𝐽) & ⊢ (𝜑 → 𝑋 ∈ 𝐾) ⇒ ⊢ (𝜑 → (𝑋 · (𝑈‘𝐿)) ∈ 𝐶) | ||
| Theorem | frlmssuvc2 21720* | A nonzero scalar multiple of a unit vector not included in a support-restriction subspace is not included in the subspace. (Contributed by Stefan O'Rear, 5-Feb-2015.) (Revised by AV, 24-Jun-2019.) |
| ⊢ 𝐹 = (𝑅 freeLMod 𝐼) & ⊢ 𝑈 = (𝑅 unitVec 𝐼) & ⊢ 𝐵 = (Base‘𝐹) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ · = ( ·𝑠 ‘𝐹) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐶 = {𝑥 ∈ 𝐵 ∣ (𝑥 supp 0 ) ⊆ 𝐽} & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝐽 ⊆ 𝐼) & ⊢ (𝜑 → 𝐿 ∈ (𝐼 ∖ 𝐽)) & ⊢ (𝜑 → 𝑋 ∈ (𝐾 ∖ { 0 })) ⇒ ⊢ (𝜑 → ¬ (𝑋 · (𝑈‘𝐿)) ∈ 𝐶) | ||
| Theorem | frlmsslsp 21721* | A subset of a free module obtained by restricting the support set is spanned by the relevant unit vectors. (Contributed by Stefan O'Rear, 6-Feb-2015.) (Revised by AV, 24-Jun-2019.) |
| ⊢ 𝑌 = (𝑅 freeLMod 𝐼) & ⊢ 𝑈 = (𝑅 unitVec 𝐼) & ⊢ 𝐾 = (LSpan‘𝑌) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐶 = {𝑥 ∈ 𝐵 ∣ (𝑥 supp 0 ) ⊆ 𝐽} ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐽 ⊆ 𝐼) → (𝐾‘(𝑈 “ 𝐽)) = 𝐶) | ||
| Theorem | frlmlbs 21722 | The unit vectors comprise a basis for a free module. (Contributed by Stefan O'Rear, 6-Feb-2015.) (Proof shortened by AV, 21-Jul-2019.) |
| ⊢ 𝐹 = (𝑅 freeLMod 𝐼) & ⊢ 𝑈 = (𝑅 unitVec 𝐼) & ⊢ 𝐽 = (LBasis‘𝐹) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) → ran 𝑈 ∈ 𝐽) | ||
| Theorem | frlmup1 21723* | Any assignment of unit vectors to target vectors can be extended (uniquely) to a homomorphism from a free module to an arbitrary other module on the same base ring. (Contributed by Stefan O'Rear, 7-Feb-2015.) (Proof shortened by AV, 21-Jul-2019.) |
| ⊢ 𝐹 = (𝑅 freeLMod 𝐼) & ⊢ 𝐵 = (Base‘𝐹) & ⊢ 𝐶 = (Base‘𝑇) & ⊢ · = ( ·𝑠 ‘𝑇) & ⊢ 𝐸 = (𝑥 ∈ 𝐵 ↦ (𝑇 Σg (𝑥 ∘f · 𝐴))) & ⊢ (𝜑 → 𝑇 ∈ LMod) & ⊢ (𝜑 → 𝐼 ∈ 𝑋) & ⊢ (𝜑 → 𝑅 = (Scalar‘𝑇)) & ⊢ (𝜑 → 𝐴:𝐼⟶𝐶) ⇒ ⊢ (𝜑 → 𝐸 ∈ (𝐹 LMHom 𝑇)) | ||
| Theorem | frlmup2 21724* | The evaluation map has the intended behavior on the unit vectors. (Contributed by Stefan O'Rear, 7-Feb-2015.) (Proof shortened by AV, 21-Jul-2019.) |
| ⊢ 𝐹 = (𝑅 freeLMod 𝐼) & ⊢ 𝐵 = (Base‘𝐹) & ⊢ 𝐶 = (Base‘𝑇) & ⊢ · = ( ·𝑠 ‘𝑇) & ⊢ 𝐸 = (𝑥 ∈ 𝐵 ↦ (𝑇 Σg (𝑥 ∘f · 𝐴))) & ⊢ (𝜑 → 𝑇 ∈ LMod) & ⊢ (𝜑 → 𝐼 ∈ 𝑋) & ⊢ (𝜑 → 𝑅 = (Scalar‘𝑇)) & ⊢ (𝜑 → 𝐴:𝐼⟶𝐶) & ⊢ (𝜑 → 𝑌 ∈ 𝐼) & ⊢ 𝑈 = (𝑅 unitVec 𝐼) ⇒ ⊢ (𝜑 → (𝐸‘(𝑈‘𝑌)) = (𝐴‘𝑌)) | ||
| Theorem | frlmup3 21725* | The range of such an evaluation map is the finite linear combinations of the target vectors and also the span of the target vectors. (Contributed by Stefan O'Rear, 6-Feb-2015.) |
| ⊢ 𝐹 = (𝑅 freeLMod 𝐼) & ⊢ 𝐵 = (Base‘𝐹) & ⊢ 𝐶 = (Base‘𝑇) & ⊢ · = ( ·𝑠 ‘𝑇) & ⊢ 𝐸 = (𝑥 ∈ 𝐵 ↦ (𝑇 Σg (𝑥 ∘f · 𝐴))) & ⊢ (𝜑 → 𝑇 ∈ LMod) & ⊢ (𝜑 → 𝐼 ∈ 𝑋) & ⊢ (𝜑 → 𝑅 = (Scalar‘𝑇)) & ⊢ (𝜑 → 𝐴:𝐼⟶𝐶) & ⊢ 𝐾 = (LSpan‘𝑇) ⇒ ⊢ (𝜑 → ran 𝐸 = (𝐾‘ran 𝐴)) | ||
| Theorem | frlmup4 21726* | Universal property of the free module by existential uniqueness. (Contributed by Stefan O'Rear, 7-Mar-2015.) |
| ⊢ 𝑅 = (Scalar‘𝑇) & ⊢ 𝐹 = (𝑅 freeLMod 𝐼) & ⊢ 𝑈 = (𝑅 unitVec 𝐼) & ⊢ 𝐶 = (Base‘𝑇) ⇒ ⊢ ((𝑇 ∈ LMod ∧ 𝐼 ∈ 𝑋 ∧ 𝐴:𝐼⟶𝐶) → ∃!𝑚 ∈ (𝐹 LMHom 𝑇)(𝑚 ∘ 𝑈) = 𝐴) | ||
| Theorem | ellspd 21727* | The elements of the span of an indexed collection of basic vectors are those vectors which can be written as finite linear combinations of basic vectors. (Contributed by Stefan O'Rear, 7-Feb-2015.) (Revised by AV, 24-Jun-2019.) (Revised by AV, 11-Apr-2024.) |
| ⊢ 𝑁 = (LSpan‘𝑀) & ⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝐾 = (Base‘𝑆) & ⊢ 𝑆 = (Scalar‘𝑀) & ⊢ 0 = (0g‘𝑆) & ⊢ · = ( ·𝑠 ‘𝑀) & ⊢ (𝜑 → 𝐹:𝐼⟶𝐵) & ⊢ (𝜑 → 𝑀 ∈ LMod) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝑋 ∈ (𝑁‘(𝐹 “ 𝐼)) ↔ ∃𝑓 ∈ (𝐾 ↑m 𝐼)(𝑓 finSupp 0 ∧ 𝑋 = (𝑀 Σg (𝑓 ∘f · 𝐹))))) | ||
| Theorem | elfilspd 21728* | Simplified version of ellspd 21727 when the spanning set is finite: all linear combinations are then acceptable. (Contributed by Stefan O'Rear, 7-Feb-2015.) (Proof shortened by AV, 21-Jul-2019.) |
| ⊢ 𝑁 = (LSpan‘𝑀) & ⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝐾 = (Base‘𝑆) & ⊢ 𝑆 = (Scalar‘𝑀) & ⊢ 0 = (0g‘𝑆) & ⊢ · = ( ·𝑠 ‘𝑀) & ⊢ (𝜑 → 𝐹:𝐼⟶𝐵) & ⊢ (𝜑 → 𝑀 ∈ LMod) & ⊢ (𝜑 → 𝐼 ∈ Fin) ⇒ ⊢ (𝜑 → (𝑋 ∈ (𝑁‘(𝐹 “ 𝐼)) ↔ ∃𝑓 ∈ (𝐾 ↑m 𝐼)𝑋 = (𝑀 Σg (𝑓 ∘f · 𝐹)))) | ||
According to the definition in [Lang] p. 129: "A subset S of a module M is said to be linearly independent (over A) if whenever we have a linear combination ∑x∈Saxx which is equal to 0, then ax = 0 for all x ∈ S", and according to the Definition in [Lang] p. 130: "a familiy {xi}i∈I of elements of M is said to be linearly independent (over A) if whenever we have a linear combination ∑i∈Iaixi = 0, then ai = 0 for all i ∈ I." These definitions correspond to Definitions df-linds 21732 and df-lindf 21731 respectively, where it is claimed that a nonzero summand can be extracted (∑i∈{I\{j}}aixi = -ajxj) and be represented as a linear combination of the remaining elements of the family. | ||
| Syntax | clindf 21729 | The class relationship of independent families in a module. |
| class LIndF | ||
| Syntax | clinds 21730 | The class generator of independent sets in a module. |
| class LIndS | ||
| Definition | df-lindf 21731* |
An independent family is a family of vectors, no nonzero multiple of
which can be expressed as a linear combination of other elements of the
family. This is almost, but not quite, the same as a function into an
independent set.
This is a defined concept because it matters in many cases whether independence is taken at a set or family level. For instance, a number is transcedental iff its nonzero powers are linearly independent. Is 1 transcedental? It has only one nonzero power. We can almost define family independence as a family of unequal elements with independent range, as islindf3 21751, but taking that as primitive would lead to unpleasant corner case behavior with the zero ring. This is equivalent to the common definition of having no nontrivial representations of zero (islindf4 21763) and only one representation for each element of the range (islindf5 21764). (Contributed by Stefan O'Rear, 24-Feb-2015.) |
| ⊢ LIndF = {〈𝑓, 𝑤〉 ∣ (𝑓:dom 𝑓⟶(Base‘𝑤) ∧ [(Scalar‘𝑤) / 𝑠]∀𝑥 ∈ dom 𝑓∀𝑘 ∈ ((Base‘𝑠) ∖ {(0g‘𝑠)}) ¬ (𝑘( ·𝑠 ‘𝑤)(𝑓‘𝑥)) ∈ ((LSpan‘𝑤)‘(𝑓 “ (dom 𝑓 ∖ {𝑥}))))} | ||
| Definition | df-linds 21732* | An independent set is a set which is independent as a family. See also islinds3 21759 and islinds4 21760. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
| ⊢ LIndS = (𝑤 ∈ V ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ ( I ↾ 𝑠) LIndF 𝑤}) | ||
| Theorem | rellindf 21733 | The independent-family predicate is a proper relation and can be used with brrelex1i 5679. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
| ⊢ Rel LIndF | ||
| Theorem | islinds 21734 | Property of an independent set of vectors in terms of an independent family. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
| ⊢ 𝐵 = (Base‘𝑊) ⇒ ⊢ (𝑊 ∈ 𝑉 → (𝑋 ∈ (LIndS‘𝑊) ↔ (𝑋 ⊆ 𝐵 ∧ ( I ↾ 𝑋) LIndF 𝑊))) | ||
| Theorem | linds1 21735 | An independent set of vectors is a set of vectors. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
| ⊢ 𝐵 = (Base‘𝑊) ⇒ ⊢ (𝑋 ∈ (LIndS‘𝑊) → 𝑋 ⊆ 𝐵) | ||
| Theorem | linds2 21736 | An independent set of vectors is independent as a family. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
| ⊢ (𝑋 ∈ (LIndS‘𝑊) → ( I ↾ 𝑋) LIndF 𝑊) | ||
| Theorem | islindf 21737* | Property of an independent family of vectors. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
| ⊢ 𝐵 = (Base‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐾 = (LSpan‘𝑊) & ⊢ 𝑆 = (Scalar‘𝑊) & ⊢ 𝑁 = (Base‘𝑆) & ⊢ 0 = (0g‘𝑆) ⇒ ⊢ ((𝑊 ∈ 𝑌 ∧ 𝐹 ∈ 𝑋) → (𝐹 LIndF 𝑊 ↔ (𝐹:dom 𝐹⟶𝐵 ∧ ∀𝑥 ∈ dom 𝐹∀𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · (𝐹‘𝑥)) ∈ (𝐾‘(𝐹 “ (dom 𝐹 ∖ {𝑥})))))) | ||
| Theorem | islinds2 21738* | Expanded property of an independent set of vectors. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
| ⊢ 𝐵 = (Base‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐾 = (LSpan‘𝑊) & ⊢ 𝑆 = (Scalar‘𝑊) & ⊢ 𝑁 = (Base‘𝑆) & ⊢ 0 = (0g‘𝑆) ⇒ ⊢ (𝑊 ∈ 𝑌 → (𝐹 ∈ (LIndS‘𝑊) ↔ (𝐹 ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝐹 ∀𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · 𝑥) ∈ (𝐾‘(𝐹 ∖ {𝑥}))))) | ||
| Theorem | islindf2 21739* | Property of an independent family of vectors with prior constrained domain and codomain. (Contributed by Stefan O'Rear, 26-Feb-2015.) |
| ⊢ 𝐵 = (Base‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐾 = (LSpan‘𝑊) & ⊢ 𝑆 = (Scalar‘𝑊) & ⊢ 𝑁 = (Base‘𝑆) & ⊢ 0 = (0g‘𝑆) ⇒ ⊢ ((𝑊 ∈ 𝑌 ∧ 𝐼 ∈ 𝑋 ∧ 𝐹:𝐼⟶𝐵) → (𝐹 LIndF 𝑊 ↔ ∀𝑥 ∈ 𝐼 ∀𝑘 ∈ (𝑁 ∖ { 0 }) ¬ (𝑘 · (𝐹‘𝑥)) ∈ (𝐾‘(𝐹 “ (𝐼 ∖ {𝑥}))))) | ||
| Theorem | lindff 21740 | Functional property of a linearly independent family. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
| ⊢ 𝐵 = (Base‘𝑊) ⇒ ⊢ ((𝐹 LIndF 𝑊 ∧ 𝑊 ∈ 𝑌) → 𝐹:dom 𝐹⟶𝐵) | ||
| Theorem | lindfind 21741 | A linearly independent family is independent: no nonzero element multiple can be expressed as a linear combination of the others. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
| ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ 𝐿 = (Scalar‘𝑊) & ⊢ 0 = (0g‘𝐿) & ⊢ 𝐾 = (Base‘𝐿) ⇒ ⊢ (((𝐹 LIndF 𝑊 ∧ 𝐸 ∈ dom 𝐹) ∧ (𝐴 ∈ 𝐾 ∧ 𝐴 ≠ 0 )) → ¬ (𝐴 · (𝐹‘𝐸)) ∈ (𝑁‘(𝐹 “ (dom 𝐹 ∖ {𝐸})))) | ||
| Theorem | lindsind 21742 | A linearly independent set is independent: no nonzero element multiple can be expressed as a linear combination of the others. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
| ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ 𝐿 = (Scalar‘𝑊) & ⊢ 0 = (0g‘𝐿) & ⊢ 𝐾 = (Base‘𝐿) ⇒ ⊢ (((𝐹 ∈ (LIndS‘𝑊) ∧ 𝐸 ∈ 𝐹) ∧ (𝐴 ∈ 𝐾 ∧ 𝐴 ≠ 0 )) → ¬ (𝐴 · 𝐸) ∈ (𝑁‘(𝐹 ∖ {𝐸}))) | ||
| Theorem | lindfind2 21743 | In a linearly independent family in a module over a nonzero ring, no element is contained in the span of any non-containing set. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
| ⊢ 𝐾 = (LSpan‘𝑊) & ⊢ 𝐿 = (Scalar‘𝑊) ⇒ ⊢ (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ 𝐹 LIndF 𝑊 ∧ 𝐸 ∈ dom 𝐹) → ¬ (𝐹‘𝐸) ∈ (𝐾‘(𝐹 “ (dom 𝐹 ∖ {𝐸})))) | ||
| Theorem | lindsind2 21744 | In a linearly independent set in a module over a nonzero ring, no element is contained in the span of any non-containing set. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
| ⊢ 𝐾 = (LSpan‘𝑊) & ⊢ 𝐿 = (Scalar‘𝑊) ⇒ ⊢ (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝐸 ∈ 𝐹) → ¬ 𝐸 ∈ (𝐾‘(𝐹 ∖ {𝐸}))) | ||
| Theorem | lindff1 21745 | A linearly independent family over a nonzero ring has no repeated elements. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
| ⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝐿 = (Scalar‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) → 𝐹:dom 𝐹–1-1→𝐵) | ||
| Theorem | lindfrn 21746 | The range of an independent family is an independent set. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
| ⊢ ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊) → ran 𝐹 ∈ (LIndS‘𝑊)) | ||
| Theorem | f1lindf 21747 | Rearranging and deleting elements from an independent family gives an independent family. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
| ⊢ ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊 ∧ 𝐺:𝐾–1-1→dom 𝐹) → (𝐹 ∘ 𝐺) LIndF 𝑊) | ||
| Theorem | lindfres 21748 | Any restriction of an independent family is independent. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
| ⊢ ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊) → (𝐹 ↾ 𝑋) LIndF 𝑊) | ||
| Theorem | lindsss 21749 | Any subset of an independent set is independent. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
| ⊢ ((𝑊 ∈ LMod ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝐺 ⊆ 𝐹) → 𝐺 ∈ (LIndS‘𝑊)) | ||
| Theorem | f1linds 21750 | A family constructed from non-repeated elements of an independent set is independent. (Contributed by Stefan O'Rear, 26-Feb-2015.) |
| ⊢ ((𝑊 ∈ LMod ∧ 𝑆 ∈ (LIndS‘𝑊) ∧ 𝐹:𝐷–1-1→𝑆) → 𝐹 LIndF 𝑊) | ||
| Theorem | islindf3 21751 | In a nonzero ring, independent families can be equivalently characterized as renamings of independent sets. (Contributed by Stefan O'Rear, 26-Feb-2015.) |
| ⊢ 𝐿 = (Scalar‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) → (𝐹 LIndF 𝑊 ↔ (𝐹:dom 𝐹–1-1→V ∧ ran 𝐹 ∈ (LIndS‘𝑊)))) | ||
| Theorem | lindfmm 21752 | Linear independence of a family is unchanged by injective linear functions. (Contributed by Stefan O'Rear, 26-Feb-2015.) (Revised by Stefan O'Rear, 6-May-2015.) |
| ⊢ 𝐵 = (Base‘𝑆) & ⊢ 𝐶 = (Base‘𝑇) ⇒ ⊢ ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶 ∧ 𝐹:𝐼⟶𝐵) → (𝐹 LIndF 𝑆 ↔ (𝐺 ∘ 𝐹) LIndF 𝑇)) | ||
| Theorem | lindsmm 21753 | Linear independence of a set is unchanged by injective linear functions. (Contributed by Stefan O'Rear, 26-Feb-2015.) |
| ⊢ 𝐵 = (Base‘𝑆) & ⊢ 𝐶 = (Base‘𝑇) ⇒ ⊢ ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶 ∧ 𝐹 ⊆ 𝐵) → (𝐹 ∈ (LIndS‘𝑆) ↔ (𝐺 “ 𝐹) ∈ (LIndS‘𝑇))) | ||
| Theorem | lindsmm2 21754 | The monomorphic image of an independent set is independent. (Contributed by Stefan O'Rear, 26-Feb-2015.) |
| ⊢ 𝐵 = (Base‘𝑆) & ⊢ 𝐶 = (Base‘𝑇) ⇒ ⊢ ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶 ∧ 𝐹 ∈ (LIndS‘𝑆)) → (𝐺 “ 𝐹) ∈ (LIndS‘𝑇)) | ||
| Theorem | lsslindf 21755 | Linear independence is unchanged by working in a subspace. (Contributed by Stefan O'Rear, 24-Feb-2015.) (Revised by Stefan O'Rear, 6-May-2015.) |
| ⊢ 𝑈 = (LSubSp‘𝑊) & ⊢ 𝑋 = (𝑊 ↾s 𝑆) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑆 ∈ 𝑈 ∧ ran 𝐹 ⊆ 𝑆) → (𝐹 LIndF 𝑋 ↔ 𝐹 LIndF 𝑊)) | ||
| Theorem | lsslinds 21756 | Linear independence is unchanged by working in a subspace. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
| ⊢ 𝑈 = (LSubSp‘𝑊) & ⊢ 𝑋 = (𝑊 ↾s 𝑆) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑆 ∈ 𝑈 ∧ 𝐹 ⊆ 𝑆) → (𝐹 ∈ (LIndS‘𝑋) ↔ 𝐹 ∈ (LIndS‘𝑊))) | ||
| Theorem | islbs4 21757 | A basis is an independent spanning set. This could have been used as alternative definition of a basis: LBasis = (𝑤 ∈ V ↦ {𝑏 ∈ 𝒫 (Base‘𝑤) ∣ (((LSpan‘𝑤) ‘𝑏) = (Base‘𝑤) ∧ 𝑏 ∈ (LIndS‘𝑤))}). (Contributed by Stefan O'Rear, 24-Feb-2015.) |
| ⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝐽 = (LBasis‘𝑊) & ⊢ 𝐾 = (LSpan‘𝑊) ⇒ ⊢ (𝑋 ∈ 𝐽 ↔ (𝑋 ∈ (LIndS‘𝑊) ∧ (𝐾‘𝑋) = 𝐵)) | ||
| Theorem | lbslinds 21758 | A basis is independent. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
| ⊢ 𝐽 = (LBasis‘𝑊) ⇒ ⊢ 𝐽 ⊆ (LIndS‘𝑊) | ||
| Theorem | islinds3 21759 | A subset is linearly independent iff it is a basis of its span. (Contributed by Stefan O'Rear, 25-Feb-2015.) |
| ⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝐾 = (LSpan‘𝑊) & ⊢ 𝑋 = (𝑊 ↾s (𝐾‘𝑌)) & ⊢ 𝐽 = (LBasis‘𝑋) ⇒ ⊢ (𝑊 ∈ LMod → (𝑌 ∈ (LIndS‘𝑊) ↔ 𝑌 ∈ 𝐽)) | ||
| Theorem | islinds4 21760* | A set is independent in a vector space iff it is a subset of some basis. This is an axiom of choice equivalent. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
| ⊢ 𝐽 = (LBasis‘𝑊) ⇒ ⊢ (𝑊 ∈ LVec → (𝑌 ∈ (LIndS‘𝑊) ↔ ∃𝑏 ∈ 𝐽 𝑌 ⊆ 𝑏)) | ||
| Theorem | lmimlbs 21761 | The isomorphic image of a basis is a basis. (Contributed by Stefan O'Rear, 26-Feb-2015.) |
| ⊢ 𝐽 = (LBasis‘𝑆) & ⊢ 𝐾 = (LBasis‘𝑇) ⇒ ⊢ ((𝐹 ∈ (𝑆 LMIso 𝑇) ∧ 𝐵 ∈ 𝐽) → (𝐹 “ 𝐵) ∈ 𝐾) | ||
| Theorem | lmiclbs 21762 | Having a basis is an isomorphism invariant. (Contributed by Stefan O'Rear, 26-Feb-2015.) |
| ⊢ 𝐽 = (LBasis‘𝑆) & ⊢ 𝐾 = (LBasis‘𝑇) ⇒ ⊢ (𝑆 ≃𝑚 𝑇 → (𝐽 ≠ ∅ → 𝐾 ≠ ∅)) | ||
| Theorem | islindf4 21763* | A family is independent iff it has no nontrivial representations of zero. (Contributed by Stefan O'Rear, 28-Feb-2015.) |
| ⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 0 = (0g‘𝑊) & ⊢ 𝑌 = (0g‘𝑅) & ⊢ 𝐿 = (Base‘(𝑅 freeLMod 𝐼)) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝐼 ∈ 𝑋 ∧ 𝐹:𝐼⟶𝐵) → (𝐹 LIndF 𝑊 ↔ ∀𝑥 ∈ 𝐿 ((𝑊 Σg (𝑥 ∘f · 𝐹)) = 0 → 𝑥 = (𝐼 × {𝑌})))) | ||
| Theorem | islindf5 21764* | A family is independent iff the linear combinations homomorphism is injective. (Contributed by Stefan O'Rear, 28-Feb-2015.) |
| ⊢ 𝐹 = (𝑅 freeLMod 𝐼) & ⊢ 𝐵 = (Base‘𝐹) & ⊢ 𝐶 = (Base‘𝑇) & ⊢ · = ( ·𝑠 ‘𝑇) & ⊢ 𝐸 = (𝑥 ∈ 𝐵 ↦ (𝑇 Σg (𝑥 ∘f · 𝐴))) & ⊢ (𝜑 → 𝑇 ∈ LMod) & ⊢ (𝜑 → 𝐼 ∈ 𝑋) & ⊢ (𝜑 → 𝑅 = (Scalar‘𝑇)) & ⊢ (𝜑 → 𝐴:𝐼⟶𝐶) ⇒ ⊢ (𝜑 → (𝐴 LIndF 𝑇 ↔ 𝐸:𝐵–1-1→𝐶)) | ||
| Theorem | indlcim 21765* | An independent, spanning family extends to an isomorphism from a free module. (Contributed by Stefan O'Rear, 26-Feb-2015.) |
| ⊢ 𝐹 = (𝑅 freeLMod 𝐼) & ⊢ 𝐵 = (Base‘𝐹) & ⊢ 𝐶 = (Base‘𝑇) & ⊢ · = ( ·𝑠 ‘𝑇) & ⊢ 𝑁 = (LSpan‘𝑇) & ⊢ 𝐸 = (𝑥 ∈ 𝐵 ↦ (𝑇 Σg (𝑥 ∘f · 𝐴))) & ⊢ (𝜑 → 𝑇 ∈ LMod) & ⊢ (𝜑 → 𝐼 ∈ 𝑋) & ⊢ (𝜑 → 𝑅 = (Scalar‘𝑇)) & ⊢ (𝜑 → 𝐴:𝐼–onto→𝐽) & ⊢ (𝜑 → 𝐴 LIndF 𝑇) & ⊢ (𝜑 → (𝑁‘𝐽) = 𝐶) ⇒ ⊢ (𝜑 → 𝐸 ∈ (𝐹 LMIso 𝑇)) | ||
| Theorem | lbslcic 21766 | A module with a basis is isomorphic to a free module with the same cardinality. (Contributed by Stefan O'Rear, 26-Feb-2015.) |
| ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐽 = (LBasis‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝐵 ∈ 𝐽 ∧ 𝐼 ≈ 𝐵) → 𝑊 ≃𝑚 (𝐹 freeLMod 𝐼)) | ||
| Theorem | lmisfree 21767* | A module has a basis iff it is isomorphic to a free module. In settings where isomorphic objects are not distinguished, it is common to define "free module" as any module with a basis; thus for instance lbsex 21090 might be described as "every vector space is free". (Contributed by Stefan O'Rear, 26-Feb-2015.) |
| ⊢ 𝐽 = (LBasis‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) ⇒ ⊢ (𝑊 ∈ LMod → (𝐽 ≠ ∅ ↔ ∃𝑘 𝑊 ≃𝑚 (𝐹 freeLMod 𝑘))) | ||
| Theorem | lvecisfrlm 21768* | Every vector space is isomorphic to a free module. (Contributed by AV, 7-Mar-2019.) |
| ⊢ 𝐹 = (Scalar‘𝑊) ⇒ ⊢ (𝑊 ∈ LVec → ∃𝑘 𝑊 ≃𝑚 (𝐹 freeLMod 𝑘)) | ||
| Theorem | lmimco 21769 | The composition of two isomorphisms of modules is an isomorphism of modules. (Contributed by AV, 10-Mar-2019.) |
| ⊢ ((𝐹 ∈ (𝑆 LMIso 𝑇) ∧ 𝐺 ∈ (𝑅 LMIso 𝑆)) → (𝐹 ∘ 𝐺) ∈ (𝑅 LMIso 𝑇)) | ||
| Theorem | lmictra 21770 | Module isomorphism is transitive. (Contributed by AV, 10-Mar-2019.) |
| ⊢ ((𝑅 ≃𝑚 𝑆 ∧ 𝑆 ≃𝑚 𝑇) → 𝑅 ≃𝑚 𝑇) | ||
| Theorem | uvcf1o 21771 | In a nonzero ring, the mapping of the index set of a free module onto the unit vectors of the free module is a 1-1 onto function. (Contributed by AV, 10-Mar-2019.) |
| ⊢ 𝑈 = (𝑅 unitVec 𝐼) ⇒ ⊢ ((𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑊) → 𝑈:𝐼–1-1-onto→ran 𝑈) | ||
| Theorem | uvcendim 21772 | In a nonzero ring, the number of unit vectors of a free module corresponds to the dimension of the free module. (Contributed by AV, 10-Mar-2019.) |
| ⊢ 𝑈 = (𝑅 unitVec 𝐼) ⇒ ⊢ ((𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑊) → 𝐼 ≈ ran 𝑈) | ||
| Theorem | frlmisfrlm 21773 | A free module is isomorphic to a free module over the same (nonzero) ring, with the same cardinality. (Contributed by AV, 10-Mar-2019.) |
| ⊢ ((𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑌 ∧ 𝐼 ≈ 𝐽) → (𝑅 freeLMod 𝐼) ≃𝑚 (𝑅 freeLMod 𝐽)) | ||
| Theorem | frlmiscvec 21774 | Every free module is isomorphic to the free module of "column vectors" of the same dimension over the same (nonzero) ring. (Contributed by AV, 10-Mar-2019.) |
| ⊢ ((𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑌) → (𝑅 freeLMod 𝐼) ≃𝑚 (𝑅 freeLMod (𝐼 × {∅}))) | ||
| Syntax | casa 21775 | Associative algebra. |
| class AssAlg | ||
| Syntax | casp 21776 | Algebraic span function. |
| class AlgSpan | ||
| Syntax | cascl 21777 | Class of algebra scalar lifting function. |
| class algSc | ||
| Definition | df-assa 21778* | Definition of an associative algebra. An associative algebra is a set equipped with a left-module structure on a ring, coupled with a multiplicative internal operation on the vectors of the module that is associative and distributive for the additive structure of the left-module (so giving the vectors a ring structure) and that is also bilinear under the scalar product. (Contributed by Mario Carneiro, 29-Dec-2014.) (Revised by SN, 2-Mar-2025.) |
| ⊢ AssAlg = {𝑤 ∈ (LMod ∩ Ring) ∣ [(Scalar‘𝑤) / 𝑓]∀𝑟 ∈ (Base‘𝑓)∀𝑥 ∈ (Base‘𝑤)∀𝑦 ∈ (Base‘𝑤)[( ·𝑠 ‘𝑤) / 𝑠][(.r‘𝑤) / 𝑡](((𝑟𝑠𝑥)𝑡𝑦) = (𝑟𝑠(𝑥𝑡𝑦)) ∧ (𝑥𝑡(𝑟𝑠𝑦)) = (𝑟𝑠(𝑥𝑡𝑦)))} | ||
| Definition | df-asp 21779* | Define the algebraic span of a set of vectors in an algebra. (Contributed by Mario Carneiro, 7-Jan-2015.) |
| ⊢ AlgSpan = (𝑤 ∈ AssAlg ↦ (𝑠 ∈ 𝒫 (Base‘𝑤) ↦ ∩ {𝑡 ∈ ((SubRing‘𝑤) ∩ (LSubSp‘𝑤)) ∣ 𝑠 ⊆ 𝑡})) | ||
| Definition | df-ascl 21780* | Every unital algebra contains a canonical homomorphic image of its ring of scalars as scalar multiples of the unity element. This names the homomorphism. (Contributed by Mario Carneiro, 8-Mar-2015.) |
| ⊢ algSc = (𝑤 ∈ V ↦ (𝑥 ∈ (Base‘(Scalar‘𝑤)) ↦ (𝑥( ·𝑠 ‘𝑤)(1r‘𝑤)))) | ||
| Theorem | isassa 21781* | The properties of an associative algebra. (Contributed by Mario Carneiro, 29-Dec-2014.) (Revised by SN, 2-Mar-2025.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐵 = (Base‘𝐹) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ × = (.r‘𝑊) ⇒ ⊢ (𝑊 ∈ AssAlg ↔ ((𝑊 ∈ LMod ∧ 𝑊 ∈ Ring) ∧ ∀𝑟 ∈ 𝐵 ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦))))) | ||
| Theorem | assalem 21782 | The properties of an associative algebra. (Contributed by Mario Carneiro, 29-Dec-2014.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐵 = (Base‘𝐹) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ × = (.r‘𝑊) ⇒ ⊢ ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (((𝐴 · 𝑋) × 𝑌) = (𝐴 · (𝑋 × 𝑌)) ∧ (𝑋 × (𝐴 · 𝑌)) = (𝐴 · (𝑋 × 𝑌)))) | ||
| Theorem | assaass 21783 | Left-associative property of an associative algebra. (Contributed by Mario Carneiro, 29-Dec-2014.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐵 = (Base‘𝐹) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ × = (.r‘𝑊) ⇒ ⊢ ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → ((𝐴 · 𝑋) × 𝑌) = (𝐴 · (𝑋 × 𝑌))) | ||
| Theorem | assaassr 21784 | Right-associative property of an associative algebra. (Contributed by Mario Carneiro, 29-Dec-2014.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐵 = (Base‘𝐹) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ × = (.r‘𝑊) ⇒ ⊢ ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (𝑋 × (𝐴 · 𝑌)) = (𝐴 · (𝑋 × 𝑌))) | ||
| Theorem | assalmod 21785 | An associative algebra is a left module. (Contributed by Mario Carneiro, 5-Dec-2014.) |
| ⊢ (𝑊 ∈ AssAlg → 𝑊 ∈ LMod) | ||
| Theorem | assaring 21786 | An associative algebra is a ring. (Contributed by Mario Carneiro, 5-Dec-2014.) |
| ⊢ (𝑊 ∈ AssAlg → 𝑊 ∈ Ring) | ||
| Theorem | assasca 21787 | The scalars of an associative algebra form a ring. (Contributed by Mario Carneiro, 7-Jan-2015.) (Revised by SN, 2-Mar-2025.) |
| ⊢ 𝐹 = (Scalar‘𝑊) ⇒ ⊢ (𝑊 ∈ AssAlg → 𝐹 ∈ Ring) | ||
| Theorem | assa2ass 21788 | Left- and right-associative property of an associative algebra. Notice that the scalars are commuted! (Contributed by AV, 14-Aug-2019.) (Proof shortened by Zhi Wang, 11-Sep-2025.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐵 = (Base‘𝐹) & ⊢ ∗ = (.r‘𝐹) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ × = (.r‘𝑊) ⇒ ⊢ ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → ((𝐴 · 𝑋) × (𝐶 · 𝑌)) = ((𝐶 ∗ 𝐴) · (𝑋 × 𝑌))) | ||
| Theorem | assa2ass2 21789 | Left- and right-associative property of an associative algebra. Notice that the scalars are not commuted! (Contributed by Zhi Wang, 11-Sep-2025.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐵 = (Base‘𝐹) & ⊢ ∗ = (.r‘𝐹) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ × = (.r‘𝑊) ⇒ ⊢ ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → ((𝐴 · 𝑋) × (𝐶 · 𝑌)) = ((𝐴 ∗ 𝐶) · (𝑋 × 𝑌))) | ||
| Theorem | isassad 21790* | Sufficient condition for being an associative algebra. (Contributed by Mario Carneiro, 5-Dec-2014.) (Revised by SN, 2-Mar-2025.) |
| ⊢ (𝜑 → 𝑉 = (Base‘𝑊)) & ⊢ (𝜑 → 𝐹 = (Scalar‘𝑊)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐹)) & ⊢ (𝜑 → · = ( ·𝑠 ‘𝑊)) & ⊢ (𝜑 → × = (.r‘𝑊)) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑊 ∈ Ring) & ⊢ ((𝜑 ∧ (𝑟 ∈ 𝐵 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → ((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦))) & ⊢ ((𝜑 ∧ (𝑟 ∈ 𝐵 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦))) ⇒ ⊢ (𝜑 → 𝑊 ∈ AssAlg) | ||
| Theorem | issubassa3 21791 | A subring that is also a subspace is a subalgebra. The key theorem is islss3 20880. (Contributed by Mario Carneiro, 7-Jan-2015.) |
| ⊢ 𝑆 = (𝑊 ↾s 𝐴) & ⊢ 𝐿 = (LSubSp‘𝑊) ⇒ ⊢ ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ (SubRing‘𝑊) ∧ 𝐴 ∈ 𝐿)) → 𝑆 ∈ AssAlg) | ||
| Theorem | issubassa 21792 | The subalgebras of an associative algebra are exactly the subrings (under the ring multiplication) that are simultaneously subspaces (under the scalar multiplication from the vector space). (Contributed by Mario Carneiro, 7-Jan-2015.) |
| ⊢ 𝑆 = (𝑊 ↾s 𝐴) & ⊢ 𝐿 = (LSubSp‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ 1 = (1r‘𝑊) ⇒ ⊢ ((𝑊 ∈ AssAlg ∧ 1 ∈ 𝐴 ∧ 𝐴 ⊆ 𝑉) → (𝑆 ∈ AssAlg ↔ (𝐴 ∈ (SubRing‘𝑊) ∧ 𝐴 ∈ 𝐿))) | ||
| Theorem | sraassab 21793 | A subring algebra is an associative algebra if and only if the subring is included in the ring's center. (Contributed by SN, 21-Mar-2025.) |
| ⊢ 𝐴 = ((subringAlg ‘𝑊)‘𝑆) & ⊢ 𝑍 = (Cntr‘(mulGrp‘𝑊)) & ⊢ (𝜑 → 𝑊 ∈ Ring) & ⊢ (𝜑 → 𝑆 ∈ (SubRing‘𝑊)) ⇒ ⊢ (𝜑 → (𝐴 ∈ AssAlg ↔ 𝑆 ⊆ 𝑍)) | ||
| Theorem | sraassa 21794 | The subring algebra over a commutative ring is an associative algebra. (Contributed by Mario Carneiro, 6-Oct-2015.) (Proof shortened by SN, 21-Mar-2025.) |
| ⊢ 𝐴 = ((subringAlg ‘𝑊)‘𝑆) ⇒ ⊢ ((𝑊 ∈ CRing ∧ 𝑆 ∈ (SubRing‘𝑊)) → 𝐴 ∈ AssAlg) | ||
| Theorem | sraassaOLD 21795 | Obsolete version of sraassa 21794 as of 21-Mar-2025. (Contributed by Mario Carneiro, 6-Oct-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝐴 = ((subringAlg ‘𝑊)‘𝑆) ⇒ ⊢ ((𝑊 ∈ CRing ∧ 𝑆 ∈ (SubRing‘𝑊)) → 𝐴 ∈ AssAlg) | ||
| Theorem | rlmassa 21796 | The ring module over a commutative ring is an associative algebra. (Contributed by Mario Carneiro, 6-Oct-2015.) |
| ⊢ (𝑅 ∈ CRing → (ringLMod‘𝑅) ∈ AssAlg) | ||
| Theorem | assapropd 21797* | If two structures have the same components (properties), one is an associative algebra iff the other one is. (Contributed by Mario Carneiro, 8-Feb-2015.) |
| ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) & ⊢ (𝜑 → 𝐹 = (Scalar‘𝐾)) & ⊢ (𝜑 → 𝐹 = (Scalar‘𝐿)) & ⊢ 𝑃 = (Base‘𝐹) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝐵)) → (𝑥( ·𝑠 ‘𝐾)𝑦) = (𝑥( ·𝑠 ‘𝐿)𝑦)) ⇒ ⊢ (𝜑 → (𝐾 ∈ AssAlg ↔ 𝐿 ∈ AssAlg)) | ||
| Theorem | aspval 21798* | Value of the algebraic closure operation inside an associative algebra. (Contributed by Mario Carneiro, 7-Jan-2015.) |
| ⊢ 𝐴 = (AlgSpan‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐿 = (LSubSp‘𝑊) ⇒ ⊢ ((𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉) → (𝐴‘𝑆) = ∩ {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑆 ⊆ 𝑡}) | ||
| Theorem | asplss 21799 | The algebraic span of a set of vectors is a vector subspace. (Contributed by Mario Carneiro, 7-Jan-2015.) |
| ⊢ 𝐴 = (AlgSpan‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐿 = (LSubSp‘𝑊) ⇒ ⊢ ((𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉) → (𝐴‘𝑆) ∈ 𝐿) | ||
| Theorem | aspid 21800 | The algebraic span of a subalgebra is itself. (spanid 31309 analog.) (Contributed by Mario Carneiro, 7-Jan-2015.) |
| ⊢ 𝐴 = (AlgSpan‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐿 = (LSubSp‘𝑊) ⇒ ⊢ ((𝑊 ∈ AssAlg ∧ 𝑆 ∈ (SubRing‘𝑊) ∧ 𝑆 ∈ 𝐿) → (𝐴‘𝑆) = 𝑆) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |