HomeHome Metamath Proof Explorer
Theorem List (p. 218 of 464)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-29181)
  Hilbert Space Explorer  Hilbert Space Explorer
(29182-30704)
  Users' Mathboxes  Users' Mathboxes
(30705-46395)
 

Theorem List for Metamath Proof Explorer - 21701-21800   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremmadurid 21701 Multiplying a matrix with its adjunct results in the identity matrix multiplied with the determinant of the matrix. See Proposition 4.16 in [Lang] p. 518. (Contributed by Stefan O'Rear, 16-Jul-2018.)
𝐴 = (𝑁 Mat 𝑅)    &   𝐵 = (Base‘𝐴)    &   𝐽 = (𝑁 maAdju 𝑅)    &   𝐷 = (𝑁 maDet 𝑅)    &    1 = (1r𝐴)    &    · = (.r𝐴)    &    = ( ·𝑠𝐴)       ((𝑀𝐵𝑅 ∈ CRing) → (𝑀 · (𝐽𝑀)) = ((𝐷𝑀) 1 ))
 
Theoremmadulid 21702 Multiplying the adjunct of a matrix with the matrix results in the identity matrix multiplied with the determinant of the matrix. See Proposition 4.16 in [Lang] p. 518. (Contributed by Stefan O'Rear, 17-Jul-2018.)
𝐴 = (𝑁 Mat 𝑅)    &   𝐵 = (Base‘𝐴)    &   𝐽 = (𝑁 maAdju 𝑅)    &   𝐷 = (𝑁 maDet 𝑅)    &    1 = (1r𝐴)    &    · = (.r𝐴)    &    = ( ·𝑠𝐴)       ((𝑀𝐵𝑅 ∈ CRing) → ((𝐽𝑀) · 𝑀) = ((𝐷𝑀) 1 ))
 
Theoremminmar1fval 21703* First substitution for the definition of a matrix for a minor. (Contributed by AV, 31-Dec-2018.)
𝐴 = (𝑁 Mat 𝑅)    &   𝐵 = (Base‘𝐴)    &   𝑄 = (𝑁 minMatR1 𝑅)    &    1 = (1r𝑅)    &    0 = (0g𝑅)       𝑄 = (𝑚𝐵 ↦ (𝑘𝑁, 𝑙𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 1 , 0 ), (𝑖𝑚𝑗)))))
 
Theoremminmar1val0 21704* Second substitution for the definition of a matrix for a minor. (Contributed by AV, 31-Dec-2018.)
𝐴 = (𝑁 Mat 𝑅)    &   𝐵 = (Base‘𝐴)    &   𝑄 = (𝑁 minMatR1 𝑅)    &    1 = (1r𝑅)    &    0 = (0g𝑅)       (𝑀𝐵 → (𝑄𝑀) = (𝑘𝑁, 𝑙𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 1 , 0 ), (𝑖𝑀𝑗)))))
 
Theoremminmar1val 21705* Third substitution for the definition of a matrix for a minor. (Contributed by AV, 31-Dec-2018.)
𝐴 = (𝑁 Mat 𝑅)    &   𝐵 = (Base‘𝐴)    &   𝑄 = (𝑁 minMatR1 𝑅)    &    1 = (1r𝑅)    &    0 = (0g𝑅)       ((𝑀𝐵𝐾𝑁𝐿𝑁) → (𝐾(𝑄𝑀)𝐿) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗))))
 
Theoremminmar1eval 21706 An entry of a matrix for a minor. (Contributed by AV, 31-Dec-2018.)
𝐴 = (𝑁 Mat 𝑅)    &   𝐵 = (Base‘𝐴)    &   𝑄 = (𝑁 minMatR1 𝑅)    &    1 = (1r𝑅)    &    0 = (0g𝑅)       ((𝑀𝐵 ∧ (𝐾𝑁𝐿𝑁) ∧ (𝐼𝑁𝐽𝑁)) → (𝐼(𝐾(𝑄𝑀)𝐿)𝐽) = if(𝐼 = 𝐾, if(𝐽 = 𝐿, 1 , 0 ), (𝐼𝑀𝐽)))
 
Theoremminmar1marrep 21707 The minor matrix is a special case of a matrix with a replaced row. (Contributed by AV, 12-Feb-2019.) (Revised by AV, 4-Jul-2022.)
𝐴 = (𝑁 Mat 𝑅)    &   𝐵 = (Base‘𝐴)    &    1 = (1r𝑅)       ((𝑅 ∈ Ring ∧ 𝑀𝐵) → ((𝑁 minMatR1 𝑅)‘𝑀) = (𝑀(𝑁 matRRep 𝑅) 1 ))
 
Theoremminmar1cl 21708 Closure of the row replacement function for square matrices: The matrix for a minor is a matrix. (Contributed by AV, 13-Feb-2019.)
𝐴 = (𝑁 Mat 𝑅)    &   𝐵 = (Base‘𝐴)       (((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝐾𝑁𝐿𝑁)) → (𝐾((𝑁 minMatR1 𝑅)‘𝑀)𝐿) ∈ 𝐵)
 
Theoremmaducoevalmin1 21709 The coefficients of an adjunct (matrix of cofactors) expressed as determinants of the minor matrices (alternative definition) of the original matrix. (Contributed by AV, 31-Dec-2018.)
𝐴 = (𝑁 Mat 𝑅)    &   𝐵 = (Base‘𝐴)    &   𝐷 = (𝑁 maDet 𝑅)    &   𝐽 = (𝑁 maAdju 𝑅)       ((𝑀𝐵𝐼𝑁𝐻𝑁) → (𝐼(𝐽𝑀)𝐻) = (𝐷‘(𝐻((𝑁 minMatR1 𝑅)‘𝑀)𝐼)))
 
11.5.4  Laplace expansion of determinants (special case)

According to Wikipedia ("Laplace expansion", 08-Mar-2019, https://en.wikipedia.org/wiki/Laplace_expansion) "In linear algebra, the Laplace expansion, named after Pierre-Simon Laplace, also called cofactor expansion, is an expression for the determinant det(B) of an n x n -matrix B that is a weighted sum of the determinants of n sub-matrices of B, each of size (n-1) x (n-1)". The expansion is usually performed for a row of matrix B (alternately for a column of matrix B). The mentioned "sub-matrices" are the matrices resultung from deleting the i-th row and the j-th column of matrix B. The mentioned "weights" (factors/coefficients) are the elements at position i and j in matrix B. If the expansion is performed for a row, the coefficients are the elements of the selected row.

In the following, only the case where the row for the expansion contains only the zero element of the underlying ring except at the diagonal position. By this, the sum for the Laplace expansion is reduced to one summand, consisting of the element at the diagonal position multiplied with the determinant of the corresponding submatrix, see smadiadetg 21730 or smadiadetr 21732.

 
Theoremsymgmatr01lem 21710* Lemma for symgmatr01 21711. (Contributed by AV, 3-Jan-2019.)
𝑃 = (Base‘(SymGrp‘𝑁))       ((𝐾𝑁𝐿𝑁) → (𝑄 ∈ (𝑃 ∖ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿}) → ∃𝑘𝑁 if(𝑘 = 𝐾, if((𝑄𝑘) = 𝐿, 𝐴, 𝐵), (𝑘𝑀(𝑄𝑘))) = 𝐵))
 
Theoremsymgmatr01 21711* Applying a permutation that does not fix a certain element of a set to a second element to an index of a matrix a row with 0's and a 1. (Contributed by AV, 3-Jan-2019.)
𝑃 = (Base‘(SymGrp‘𝑁))    &    0 = (0g𝑅)    &    1 = (1r𝑅)       ((𝐾𝑁𝐿𝑁) → (𝑄 ∈ (𝑃 ∖ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿}) → ∃𝑘𝑁 (𝑘(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))(𝑄𝑘)) = 0 ))
 
Theoremgsummatr01lem1 21712* Lemma A for gsummatr01 21716. (Contributed by AV, 8-Jan-2019.)
𝑃 = (Base‘(SymGrp‘𝑁))    &   𝑅 = {𝑟𝑃 ∣ (𝑟𝐾) = 𝐿}       ((𝑄𝑅𝑋𝑁) → (𝑄𝑋) ∈ 𝑁)
 
Theoremgsummatr01lem2 21713* Lemma B for gsummatr01 21716. (Contributed by AV, 8-Jan-2019.)
𝑃 = (Base‘(SymGrp‘𝑁))    &   𝑅 = {𝑟𝑃 ∣ (𝑟𝐾) = 𝐿}       ((𝑄𝑅𝑋𝑁) → (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ (Base‘𝐺) → (𝑋𝐴(𝑄𝑋)) ∈ (Base‘𝐺)))
 
Theoremgsummatr01lem3 21714* Lemma 1 for gsummatr01 21716. (Contributed by AV, 8-Jan-2019.)
𝑃 = (Base‘(SymGrp‘𝑁))    &   𝑅 = {𝑟𝑃 ∣ (𝑟𝐾) = 𝐿}    &    0 = (0g𝐺)    &   𝑆 = (Base‘𝐺)       (((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) → (𝐺 Σg (𝑛 ∈ ((𝑁 ∖ {𝐾}) ∪ {𝐾}) ↦ (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄𝑛)))) = ((𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄𝑛))))(+g𝐺)(𝐾(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄𝐾))))
 
Theoremgsummatr01lem4 21715* Lemma 2 for gsummatr01 21716. (Contributed by AV, 8-Jan-2019.)
𝑃 = (Base‘(SymGrp‘𝑁))    &   𝑅 = {𝑟𝑃 ∣ (𝑟𝐾) = 𝐿}    &    0 = (0g𝐺)    &   𝑆 = (Base‘𝐺)       ((((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄𝑛)) = (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐿}) ↦ (𝑖𝐴𝑗))(𝑄𝑛)))
 
Theoremgsummatr01 21716* Lemma 1 for smadiadetlem4 21726. (Contributed by AV, 8-Jan-2019.)
𝑃 = (Base‘(SymGrp‘𝑁))    &   𝑅 = {𝑟𝑃 ∣ (𝑟𝐾) = 𝐿}    &    0 = (0g𝐺)    &   𝑆 = (Base‘𝐺)       (((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ 𝑆𝐵𝑆) ∧ (𝐾𝑁𝐿𝑁𝑄𝑅)) → (𝐺 Σg (𝑛𝑁 ↦ (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 0 , 𝐵), (𝑖𝐴𝑗)))(𝑄𝑛)))) = (𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐿}) ↦ (𝑖𝐴𝑗))(𝑄𝑛)))))
 
Theoremmarep01ma 21717* Replacing a row of a square matrix by a row with 0's and a 1 results in a square matrix of the same dimension. (Contributed by AV, 30-Dec-2018.)
𝐴 = (𝑁 Mat 𝑅)    &   𝐵 = (Base‘𝐴)    &   𝑅 ∈ CRing    &    0 = (0g𝑅)    &    1 = (1r𝑅)       (𝑀𝐵 → (𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝐻, if(𝑙 = 𝐼, 1 , 0 ), (𝑘𝑀𝑙))) ∈ 𝐵)
 
Theoremsmadiadetlem0 21718* Lemma 0 for smadiadet 21727: The products of the Leibniz' formula vanish for all permutations fixing the index of the row containing the 0's and the 1 to the column with the 1. (Contributed by AV, 3-Jan-2019.)
𝐴 = (𝑁 Mat 𝑅)    &   𝐵 = (Base‘𝐴)    &   𝑅 ∈ CRing    &    0 = (0g𝑅)    &    1 = (1r𝑅)    &   𝑃 = (Base‘(SymGrp‘𝑁))    &   𝐺 = (mulGrp‘𝑅)       ((𝑀𝐵𝐾𝑁𝐿𝑁) → (𝑄 ∈ (𝑃 ∖ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿}) → (𝐺 Σg (𝑛𝑁 ↦ (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))(𝑄𝑛)))) = 0 ))
 
Theoremsmadiadetlem1 21719* Lemma 1 for smadiadet 21727: A summand of the determinant of a matrix belongs to the underlying ring. (Contributed by AV, 1-Jan-2019.)
𝐴 = (𝑁 Mat 𝑅)    &   𝐵 = (Base‘𝐴)    &   𝑅 ∈ CRing    &    0 = (0g𝑅)    &    1 = (1r𝑅)    &   𝑃 = (Base‘(SymGrp‘𝑁))    &   𝐺 = (mulGrp‘𝑅)    &   𝑌 = (ℤRHom‘𝑅)    &   𝑆 = (pmSgn‘𝑁)    &    · = (.r𝑅)       (((𝑀𝐵𝐾𝑁) ∧ 𝑝𝑃) → (((𝑌𝑆)‘𝑝)(.r𝑅)(𝐺 Σg (𝑛𝑁 ↦ (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, 1 , 0 ), (𝑖𝑀𝑗)))(𝑝𝑛))))) ∈ (Base‘𝑅))
 
Theoremsmadiadetlem1a 21720* Lemma 1a for smadiadet 21727: The summands of the Leibniz' formula vanish for all permutations fixing the index of the row containing the 0's and the 1 to the column with the 1. (Contributed by AV, 3-Jan-2019.)
𝐴 = (𝑁 Mat 𝑅)    &   𝐵 = (Base‘𝐴)    &   𝑅 ∈ CRing    &    0 = (0g𝑅)    &    1 = (1r𝑅)    &   𝑃 = (Base‘(SymGrp‘𝑁))    &   𝐺 = (mulGrp‘𝑅)    &   𝑌 = (ℤRHom‘𝑅)    &   𝑆 = (pmSgn‘𝑁)    &    · = (.r𝑅)       ((𝑀𝐵𝐾𝑁𝐿𝑁) → (𝑅 Σg (𝑝 ∈ (𝑃 ∖ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐿}) ↦ (((𝑌𝑆)‘𝑝) · (𝐺 Σg (𝑛𝑁 ↦ (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐿, 1 , 0 ), (𝑖𝑀𝑗)))(𝑝𝑛))))))) = 0 )
 
Theoremsmadiadetlem2 21721* Lemma 2 for smadiadet 21727: The summands of the Leibniz' formula vanish for all permutations fixing the index of the row containing the 0's and the 1 to itself. (Contributed by AV, 31-Dec-2018.)
𝐴 = (𝑁 Mat 𝑅)    &   𝐵 = (Base‘𝐴)    &   𝑅 ∈ CRing    &    0 = (0g𝑅)    &    1 = (1r𝑅)    &   𝑃 = (Base‘(SymGrp‘𝑁))    &   𝐺 = (mulGrp‘𝑅)    &   𝑌 = (ℤRHom‘𝑅)    &   𝑆 = (pmSgn‘𝑁)    &    · = (.r𝑅)       ((𝑀𝐵𝐾𝑁) → (𝑅 Σg (𝑝 ∈ (𝑃 ∖ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ↦ (((𝑌𝑆)‘𝑝) · (𝐺 Σg (𝑛𝑁 ↦ (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, 1 , 0 ), (𝑖𝑀𝑗)))(𝑝𝑛))))))) = 0 )
 
Theoremsmadiadetlem3lem0 21722* Lemma 0 for smadiadetlem3 21725. (Contributed by AV, 12-Jan-2019.)
𝐴 = (𝑁 Mat 𝑅)    &   𝐵 = (Base‘𝐴)    &   𝑅 ∈ CRing    &    0 = (0g𝑅)    &    1 = (1r𝑅)    &   𝑃 = (Base‘(SymGrp‘𝑁))    &   𝐺 = (mulGrp‘𝑅)    &   𝑌 = (ℤRHom‘𝑅)    &   𝑆 = (pmSgn‘𝑁)    &    · = (.r𝑅)    &   𝑊 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾})))    &   𝑍 = (pmSgn‘(𝑁 ∖ {𝐾}))       (((𝑀𝐵𝐾𝑁) ∧ 𝑄𝑊) → (((𝑌𝑍)‘𝑄)(.r𝑅)(𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑄𝑛))))) ∈ (Base‘𝑅))
 
Theoremsmadiadetlem3lem1 21723* Lemma 1 for smadiadetlem3 21725. (Contributed by AV, 12-Jan-2019.)
𝐴 = (𝑁 Mat 𝑅)    &   𝐵 = (Base‘𝐴)    &   𝑅 ∈ CRing    &    0 = (0g𝑅)    &    1 = (1r𝑅)    &   𝑃 = (Base‘(SymGrp‘𝑁))    &   𝐺 = (mulGrp‘𝑅)    &   𝑌 = (ℤRHom‘𝑅)    &   𝑆 = (pmSgn‘𝑁)    &    · = (.r𝑅)    &   𝑊 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾})))    &   𝑍 = (pmSgn‘(𝑁 ∖ {𝐾}))       ((𝑀𝐵𝐾𝑁) → (𝑝𝑊 ↦ (((𝑌𝑍)‘𝑝)(.r𝑅)(𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝𝑛)))))):𝑊⟶(Base‘𝑅))
 
Theoremsmadiadetlem3lem2 21724* Lemma 2 for smadiadetlem3 21725. (Contributed by AV, 12-Jan-2019.)
𝐴 = (𝑁 Mat 𝑅)    &   𝐵 = (Base‘𝐴)    &   𝑅 ∈ CRing    &    0 = (0g𝑅)    &    1 = (1r𝑅)    &   𝑃 = (Base‘(SymGrp‘𝑁))    &   𝐺 = (mulGrp‘𝑅)    &   𝑌 = (ℤRHom‘𝑅)    &   𝑆 = (pmSgn‘𝑁)    &    · = (.r𝑅)    &   𝑊 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾})))    &   𝑍 = (pmSgn‘(𝑁 ∖ {𝐾}))       ((𝑀𝐵𝐾𝑁) → ran (𝑝𝑊 ↦ (((𝑌𝑍)‘𝑝)(.r𝑅)(𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝𝑛)))))) ⊆ ((Cntz‘𝑅)‘ran (𝑝𝑊 ↦ (((𝑌𝑍)‘𝑝)(.r𝑅)(𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝𝑛))))))))
 
Theoremsmadiadetlem3 21725* Lemma 3 for smadiadet 21727. (Contributed by AV, 31-Jan-2019.)
𝐴 = (𝑁 Mat 𝑅)    &   𝐵 = (Base‘𝐴)    &   𝑅 ∈ CRing    &    0 = (0g𝑅)    &    1 = (1r𝑅)    &   𝑃 = (Base‘(SymGrp‘𝑁))    &   𝐺 = (mulGrp‘𝑅)    &   𝑌 = (ℤRHom‘𝑅)    &   𝑆 = (pmSgn‘𝑁)    &    · = (.r𝑅)    &   𝑊 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾})))    &   𝑍 = (pmSgn‘(𝑁 ∖ {𝐾}))       ((𝑀𝐵𝐾𝑁) → (𝑅 Σg (𝑝 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾} ↦ (((𝑌𝑆)‘𝑝)(.r𝑅)(𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝𝑛))))))) = (𝑅 Σg (𝑝𝑊 ↦ (((𝑌𝑍)‘𝑝)(.r𝑅)(𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝𝑛))))))))
 
Theoremsmadiadetlem4 21726* Lemma 4 for smadiadet 21727. (Contributed by AV, 31-Jan-2019.)
𝐴 = (𝑁 Mat 𝑅)    &   𝐵 = (Base‘𝐴)    &   𝑅 ∈ CRing    &    0 = (0g𝑅)    &    1 = (1r𝑅)    &   𝑃 = (Base‘(SymGrp‘𝑁))    &   𝐺 = (mulGrp‘𝑅)    &   𝑌 = (ℤRHom‘𝑅)    &   𝑆 = (pmSgn‘𝑁)    &    · = (.r𝑅)    &   𝑊 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾})))    &   𝑍 = (pmSgn‘(𝑁 ∖ {𝐾}))       ((𝑀𝐵𝐾𝑁) → (𝑅 Σg (𝑝 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾} ↦ (((𝑌𝑆)‘𝑝)(.r𝑅)(𝐺 Σg (𝑛𝑁 ↦ (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, 1 , 0 ), (𝑖𝑀𝑗)))(𝑝𝑛))))))) = (𝑅 Σg (𝑝𝑊 ↦ (((𝑌𝑍)‘𝑝)(.r𝑅)(𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝𝑛))))))))
 
Theoremsmadiadet 21727 The determinant of a submatrix of a square matrix obtained by removing a row and a column at the same index equals the determinant of the original matrix with the row replaced with 0's and a 1 at the diagonal position. (Contributed by AV, 31-Jan-2019.) (Proof shortened by AV, 24-Jul-2019.)
𝐴 = (𝑁 Mat 𝑅)    &   𝐵 = (Base‘𝐴)    &   𝑅 ∈ CRing    &   𝐷 = (𝑁 maDet 𝑅)    &   𝐸 = ((𝑁 ∖ {𝐾}) maDet 𝑅)       ((𝑀𝐵𝐾𝑁) → (𝐸‘(𝐾((𝑁 subMat 𝑅)‘𝑀)𝐾)) = (𝐷‘(𝐾((𝑁 minMatR1 𝑅)‘𝑀)𝐾)))
 
Theoremsmadiadetglem1 21728 Lemma 1 for smadiadetg 21730. (Contributed by AV, 13-Feb-2019.)
𝐴 = (𝑁 Mat 𝑅)    &   𝐵 = (Base‘𝐴)    &   𝑅 ∈ CRing    &   𝐷 = (𝑁 maDet 𝑅)    &   𝐸 = ((𝑁 ∖ {𝐾}) maDet 𝑅)       ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → ((𝐾(𝑀(𝑁 matRRep 𝑅)𝑆)𝐾) ↾ ((𝑁 ∖ {𝐾}) × 𝑁)) = ((𝐾((𝑁 minMatR1 𝑅)‘𝑀)𝐾) ↾ ((𝑁 ∖ {𝐾}) × 𝑁)))
 
Theoremsmadiadetglem2 21729 Lemma 2 for smadiadetg 21730. (Contributed by AV, 14-Feb-2019.)
𝐴 = (𝑁 Mat 𝑅)    &   𝐵 = (Base‘𝐴)    &   𝑅 ∈ CRing    &   𝐷 = (𝑁 maDet 𝑅)    &   𝐸 = ((𝑁 ∖ {𝐾}) maDet 𝑅)    &    · = (.r𝑅)       ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → ((𝐾(𝑀(𝑁 matRRep 𝑅)𝑆)𝐾) ↾ ({𝐾} × 𝑁)) = ((({𝐾} × 𝑁) × {𝑆}) ∘f · ((𝐾((𝑁 minMatR1 𝑅)‘𝑀)𝐾) ↾ ({𝐾} × 𝑁))))
 
Theoremsmadiadetg 21730 The determinant of a square matrix with one row replaced with 0's and an arbitrary element of the underlying ring at the diagonal position equals the ring element multiplied with the determinant of a submatrix of the square matrix obtained by removing the row and the column at the same index. (Contributed by AV, 14-Feb-2019.)
𝐴 = (𝑁 Mat 𝑅)    &   𝐵 = (Base‘𝐴)    &   𝑅 ∈ CRing    &   𝐷 = (𝑁 maDet 𝑅)    &   𝐸 = ((𝑁 ∖ {𝐾}) maDet 𝑅)    &    · = (.r𝑅)       ((𝑀𝐵𝐾𝑁𝑆 ∈ (Base‘𝑅)) → (𝐷‘(𝐾(𝑀(𝑁 matRRep 𝑅)𝑆)𝐾)) = (𝑆 · (𝐸‘(𝐾((𝑁 subMat 𝑅)‘𝑀)𝐾))))
 
Theoremsmadiadetg0 21731 Lemma for smadiadetr 21732: version of smadiadetg 21730 with all hypotheses defining class variables removed, i.e. all class variables defined in the hypotheses replaced in the theorem by their definition. (Contributed by AV, 15-Feb-2019.)
𝑅 ∈ CRing       ((𝑀 ∈ (Base‘(𝑁 Mat 𝑅)) ∧ 𝐾𝑁𝑆 ∈ (Base‘𝑅)) → ((𝑁 maDet 𝑅)‘(𝐾(𝑀(𝑁 matRRep 𝑅)𝑆)𝐾)) = (𝑆(.r𝑅)(((𝑁 ∖ {𝐾}) maDet 𝑅)‘(𝐾((𝑁 subMat 𝑅)‘𝑀)𝐾))))
 
Theoremsmadiadetr 21732 The determinant of a square matrix with one row replaced with 0's and an arbitrary element of the underlying ring at the diagonal position equals the ring element multiplied with the determinant of a submatrix of the square matrix obtained by removing the row and the column at the same index. Closed form of smadiadetg 21730. Special case of the "Laplace expansion", see definition in [Lang] p. 515. (Contributed by AV, 15-Feb-2019.)
(((𝑅 ∈ CRing ∧ 𝑀 ∈ (Base‘(𝑁 Mat 𝑅))) ∧ (𝐾𝑁𝑆 ∈ (Base‘𝑅))) → ((𝑁 maDet 𝑅)‘(𝐾(𝑀(𝑁 matRRep 𝑅)𝑆)𝐾)) = (𝑆(.r𝑅)(((𝑁 ∖ {𝐾}) maDet 𝑅)‘(𝐾((𝑁 subMat 𝑅)‘𝑀)𝐾))))
 
11.5.5  Inverse matrix
 
Theoreminvrvald 21733 If a matrix multiplied with a given matrix (from the left as well as from the right) results in the identity matrix, this matrix is the inverse (matrix) of the given matrix. (Contributed by Stefan O'Rear, 17-Jul-2018.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)    &    1 = (1r𝑅)    &   𝑈 = (Unit‘𝑅)    &   𝐼 = (invr𝑅)    &   (𝜑𝑅 ∈ Ring)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   (𝜑 → (𝑋 · 𝑌) = 1 )    &   (𝜑 → (𝑌 · 𝑋) = 1 )       (𝜑 → (𝑋𝑈 ∧ (𝐼𝑋) = 𝑌))
 
Theoremmatinv 21734 The inverse of a matrix is the adjunct of the matrix multiplied with the inverse of the determinant of the matrix if the determinant is a unit in the underlying ring. Proposition 4.16 in [Lang] p. 518. (Contributed by Stefan O'Rear, 17-Jul-2018.)
𝐴 = (𝑁 Mat 𝑅)    &   𝐽 = (𝑁 maAdju 𝑅)    &   𝐷 = (𝑁 maDet 𝑅)    &   𝐵 = (Base‘𝐴)    &   𝑈 = (Unit‘𝐴)    &   𝑉 = (Unit‘𝑅)    &   𝐻 = (invr𝑅)    &   𝐼 = (invr𝐴)    &    = ( ·𝑠𝐴)       ((𝑅 ∈ CRing ∧ 𝑀𝐵 ∧ (𝐷𝑀) ∈ 𝑉) → (𝑀𝑈 ∧ (𝐼𝑀) = ((𝐻‘(𝐷𝑀)) (𝐽𝑀))))
 
Theoremmatunit 21735 A matrix is a unit in the ring of matrices iff its determinant is a unit in the underlying ring. (Contributed by Stefan O'Rear, 17-Jul-2018.)
𝐴 = (𝑁 Mat 𝑅)    &   𝐷 = (𝑁 maDet 𝑅)    &   𝐵 = (Base‘𝐴)    &   𝑈 = (Unit‘𝐴)    &   𝑉 = (Unit‘𝑅)       ((𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝑀𝑈 ↔ (𝐷𝑀) ∈ 𝑉))
 
11.5.6  Cramer's rule

In the following, Cramer's rule cramer 21748 is proven. According to Wikipedia "Cramer's rule", 21-Feb-2019, https://en.wikipedia.org/wiki/Cramer%27s_rule 21748: "[Cramer's rule] ... expresses the [unique] solution [of a system of linear equations] in terms of the determinants of the (square) coefficient matrix and of matrices obtained from it by replacing one column by the column vector of right-hand sides of the equations."

The outline of the proof for systems of linear equations with coefficients from a commutative ring, according to the proof in Wikipedia (https://en.wikipedia.org/wiki/Cramer's_rule#A_short_proof), 21748 is as follows:

The system of linear equations 𝐴 × 𝑋 = 𝐵 to be solved shall be given by the N x N coefficient matrix 𝐴 and the N-dimensional vector 𝐵. Let (𝐴𝑖) be the matrix obtained by replacing the i-th column of the coefficient matrix 𝐴 by the right-hand side vector 𝐵. Additionally, let (𝑋𝑖) be the matrix obtained by replacing the i-th column of the identity matrix by the solution vector 𝑋, with 𝑋 = (𝑥𝑖). Finally, it is assumed that det 𝐴 is a unit in the underlying ring.

With these definitions, it follows that 𝐴 × (𝑋𝑖) = (𝐴𝑖) (cramerimplem2 21741), using matrix multiplication (mamuval 21445) and multiplication of a vector with a matrix (mulmarep1gsum2 21631). By using the multiplicativity of the determinant (mdetmul 21680) it follows that det (𝐴𝑖) = det (𝐴 × (𝑋𝑖)) = det 𝐴 · det (𝑋𝑖) (cramerimplem3 21742).

Furthermore, it follows that det (𝑋𝑖) = (𝑥𝑖) (cramerimplem1 21740). To show this, a special case of the Laplace expansion is used (smadiadetg 21730).

From these equations and the cancellation law for division in a ring (dvrcan3 19849) it follows that (𝑥𝑖) = det (𝑋𝑖) = det (𝐴𝑖) / det 𝐴.

This is the right to left implication (cramerimp 21743, cramerlem1 21744, cramerlem2 21745) of Cramer's rule (cramer 21748). The left to right implication is shown by cramerlem3 21746, using the fact that a solution of the system of linear equations exists (slesolex 21739).

Notice that for the special case of 0-dimensional matrices/vectors only the left to right implication is valid (see cramer0 21747), because assuming the right-hand side of the implication ((𝑋 · 𝑍) = 𝑌), 𝑍 could be anything (see mavmul0g 21610).

 
Theoremslesolvec 21736 Every solution of a system of linear equations represented by a matrix and a vector is a vector. (Contributed by AV, 10-Feb-2019.) (Revised by AV, 27-Feb-2019.)
𝐴 = (𝑁 Mat 𝑅)    &   𝐵 = (Base‘𝐴)    &   𝑉 = ((Base‘𝑅) ↑m 𝑁)    &    · = (𝑅 maVecMul ⟨𝑁, 𝑁⟩)       (((𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐵𝑌𝑉)) → ((𝑋 · 𝑍) = 𝑌𝑍𝑉))
 
Theoremslesolinv 21737 The solution of a system of linear equations represented by a matrix with a unit as determinant is the multiplication of the inverse of the matrix with the right-hand side vector. (Contributed by AV, 10-Feb-2019.) (Revised by AV, 28-Feb-2019.)
𝐴 = (𝑁 Mat 𝑅)    &   𝐵 = (Base‘𝐴)    &   𝑉 = ((Base‘𝑅) ↑m 𝑁)    &    · = (𝑅 maVecMul ⟨𝑁, 𝑁⟩)    &   𝐷 = (𝑁 maDet 𝑅)    &   𝐼 = (invr𝐴)       (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐵𝑌𝑉) ∧ ((𝐷𝑋) ∈ (Unit‘𝑅) ∧ (𝑋 · 𝑍) = 𝑌)) → 𝑍 = ((𝐼𝑋) · 𝑌))
 
Theoremslesolinvbi 21738 The solution of a system of linear equations represented by a matrix with a unit as determinant is the multiplication of the inverse of the matrix with the right-hand side vector. (Contributed by AV, 11-Feb-2019.) (Revised by AV, 28-Feb-2019.)
𝐴 = (𝑁 Mat 𝑅)    &   𝐵 = (Base‘𝐴)    &   𝑉 = ((Base‘𝑅) ↑m 𝑁)    &    · = (𝑅 maVecMul ⟨𝑁, 𝑁⟩)    &   𝐷 = (𝑁 maDet 𝑅)    &   𝐼 = (invr𝐴)       (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝐷𝑋) ∈ (Unit‘𝑅)) → ((𝑋 · 𝑍) = 𝑌𝑍 = ((𝐼𝑋) · 𝑌)))
 
Theoremslesolex 21739* Every system of linear equations represented by a matrix with a unit as determinant has a solution. (Contributed by AV, 11-Feb-2019.) (Revised by AV, 28-Feb-2019.)
𝐴 = (𝑁 Mat 𝑅)    &   𝐵 = (Base‘𝐴)    &   𝑉 = ((Base‘𝑅) ↑m 𝑁)    &    · = (𝑅 maVecMul ⟨𝑁, 𝑁⟩)    &   𝐷 = (𝑁 maDet 𝑅)       (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝐷𝑋) ∈ (Unit‘𝑅)) → ∃𝑧𝑉 (𝑋 · 𝑧) = 𝑌)
 
Theoremcramerimplem1 21740 Lemma 1 for cramerimp 21743: The determinant of the identity matrix with the ith column replaced by a (column) vector equals the ith component of the vector. (Contributed by AV, 15-Feb-2019.) (Revised by AV, 5-Jul-2022.)
𝐴 = (𝑁 Mat 𝑅)    &   𝑉 = ((Base‘𝑅) ↑m 𝑁)    &   𝐸 = (((1r𝐴)(𝑁 matRepV 𝑅)𝑍)‘𝐼)    &   𝐷 = (𝑁 maDet 𝑅)       (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ 𝑍𝑉) → (𝐷𝐸) = (𝑍𝐼))
 
Theoremcramerimplem2 21741 Lemma 2 for cramerimp 21743: The matrix of a system of linear equations multiplied with the identity matrix with the ith column replaced by the solution vector of the system of linear equations equals the matrix of the system of linear equations with the ith column replaced by the right-hand side vector of the system of linear equations. (Contributed by AV, 19-Feb-2019.) (Revised by AV, 1-Mar-2019.)
𝐴 = (𝑁 Mat 𝑅)    &   𝐵 = (Base‘𝐴)    &   𝑉 = ((Base‘𝑅) ↑m 𝑁)    &   𝐸 = (((1r𝐴)(𝑁 matRepV 𝑅)𝑍)‘𝐼)    &   𝐻 = ((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝐼)    &    · = (𝑅 maVecMul ⟨𝑁, 𝑁⟩)    &    × = (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)       (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) → (𝑋 × 𝐸) = 𝐻)
 
Theoremcramerimplem3 21742 Lemma 3 for cramerimp 21743: The determinant of the matrix of a system of linear equations multiplied with the determinant of the identity matrix with the ith column replaced by the solution vector of the system of linear equations equals the determinant of the matrix of the system of linear equations with the ith column replaced by the right-hand side vector of the system of linear equations. (Contributed by AV, 19-Feb-2019.) (Revised by AV, 1-Mar-2019.)
𝐴 = (𝑁 Mat 𝑅)    &   𝐵 = (Base‘𝐴)    &   𝑉 = ((Base‘𝑅) ↑m 𝑁)    &   𝐸 = (((1r𝐴)(𝑁 matRepV 𝑅)𝑍)‘𝐼)    &   𝐻 = ((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝐼)    &    · = (𝑅 maVecMul ⟨𝑁, 𝑁⟩)    &   𝐷 = (𝑁 maDet 𝑅)    &    = (.r𝑅)       (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) → ((𝐷𝑋) (𝐷𝐸)) = (𝐷𝐻))
 
Theoremcramerimp 21743 One direction of Cramer's rule (according to Wikipedia "Cramer's rule", 21-Feb-2019, https://en.wikipedia.org/wiki/Cramer%27s_rule: "[Cramer's rule] ... expresses the solution [of a system of linear equations] in terms of the determinants of the (square) coefficient matrix and of matrices obtained from it by replacing one column by the column vector of right-hand sides of the equations."): The ith component of the solution vector of a system of linear equations equals the determinant of the matrix of the system of linear equations with the ith column replaced by the righthand side vector of the system of linear equations divided by the determinant of the matrix of the system of linear equations. (Contributed by AV, 19-Feb-2019.) (Revised by AV, 1-Mar-2019.)
𝐴 = (𝑁 Mat 𝑅)    &   𝐵 = (Base‘𝐴)    &   𝑉 = ((Base‘𝑅) ↑m 𝑁)    &   𝐸 = (((1r𝐴)(𝑁 matRepV 𝑅)𝑍)‘𝐼)    &   𝐻 = ((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝐼)    &    · = (𝑅 maVecMul ⟨𝑁, 𝑁⟩)    &   𝐷 = (𝑁 maDet 𝑅)    &    / = (/r𝑅)       (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ ((𝑋 · 𝑍) = 𝑌 ∧ (𝐷𝑋) ∈ (Unit‘𝑅))) → (𝑍𝐼) = ((𝐷𝐻) / (𝐷𝑋)))
 
Theoremcramerlem1 21744* Lemma 1 for cramer 21748. (Contributed by AV, 21-Feb-2019.) (Revised by AV, 1-Mar-2019.)
𝐴 = (𝑁 Mat 𝑅)    &   𝐵 = (Base‘𝐴)    &   𝑉 = ((Base‘𝑅) ↑m 𝑁)    &   𝐷 = (𝑁 maDet 𝑅)    &    · = (𝑅 maVecMul ⟨𝑁, 𝑁⟩)    &    / = (/r𝑅)       ((𝑅 ∈ CRing ∧ (𝑋𝐵𝑌𝑉) ∧ ((𝐷𝑋) ∈ (Unit‘𝑅) ∧ 𝑍𝑉 ∧ (𝑋 · 𝑍) = 𝑌)) → 𝑍 = (𝑖𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷𝑋))))
 
Theoremcramerlem2 21745* Lemma 2 for cramer 21748. (Contributed by AV, 21-Feb-2019.) (Revised by AV, 1-Mar-2019.)
𝐴 = (𝑁 Mat 𝑅)    &   𝐵 = (Base‘𝐴)    &   𝑉 = ((Base‘𝑅) ↑m 𝑁)    &   𝐷 = (𝑁 maDet 𝑅)    &    · = (𝑅 maVecMul ⟨𝑁, 𝑁⟩)    &    / = (/r𝑅)       ((𝑅 ∈ CRing ∧ (𝑋𝐵𝑌𝑉) ∧ (𝐷𝑋) ∈ (Unit‘𝑅)) → ∀𝑧𝑉 ((𝑋 · 𝑧) = 𝑌𝑧 = (𝑖𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷𝑋)))))
 
Theoremcramerlem3 21746* Lemma 3 for cramer 21748. (Contributed by AV, 21-Feb-2019.) (Revised by AV, 1-Mar-2019.)
𝐴 = (𝑁 Mat 𝑅)    &   𝐵 = (Base‘𝐴)    &   𝑉 = ((Base‘𝑅) ↑m 𝑁)    &   𝐷 = (𝑁 maDet 𝑅)    &    · = (𝑅 maVecMul ⟨𝑁, 𝑁⟩)    &    / = (/r𝑅)       (((𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝐷𝑋) ∈ (Unit‘𝑅)) → (𝑍 = (𝑖𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷𝑋))) → (𝑋 · 𝑍) = 𝑌))
 
Theoremcramer0 21747* Special case of Cramer's rule for 0-dimensional matrices/vectors. (Contributed by AV, 28-Feb-2019.)
𝐴 = (𝑁 Mat 𝑅)    &   𝐵 = (Base‘𝐴)    &   𝑉 = ((Base‘𝑅) ↑m 𝑁)    &   𝐷 = (𝑁 maDet 𝑅)    &    · = (𝑅 maVecMul ⟨𝑁, 𝑁⟩)    &    / = (/r𝑅)       (((𝑁 = ∅ ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝐷𝑋) ∈ (Unit‘𝑅)) → (𝑍 = (𝑖𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷𝑋))) → (𝑋 · 𝑍) = 𝑌))
 
Theoremcramer 21748* Cramer's rule. According to Wikipedia "Cramer's rule", 21-Feb-2019, https://en.wikipedia.org/wiki/Cramer%27s_rule: "[Cramer's rule] ... expresses the [unique] solution [of a system of linear equations] in terms of the determinants of the (square) coefficient matrix and of matrices obtained from it by replacing one column by the column vector of right-hand sides of the equations." If it is assumed that a (unique) solution exists, it can be obtained by Cramer's rule (see also cramerimp 21743). On the other hand, if a vector can be constructed by Cramer's rule, it is a solution of the system of linear equations, so at least one solution exists. The uniqueness is ensured by considering only systems of linear equations whose matrix has a unit (of the underlying ring) as determinant, see matunit 21735 or slesolinv 21737. For fields as underlying rings, this requirement is equivalent to the determinant not being 0. Theorem 4.4 in [Lang] p. 513. This is Metamath 100 proof #97. (Contributed by Alexander van der Vekens, 21-Feb-2019.) (Revised by Alexander van der Vekens, 1-Mar-2019.)
𝐴 = (𝑁 Mat 𝑅)    &   𝐵 = (Base‘𝐴)    &   𝑉 = ((Base‘𝑅) ↑m 𝑁)    &   𝐷 = (𝑁 maDet 𝑅)    &    · = (𝑅 maVecMul ⟨𝑁, 𝑁⟩)    &    / = (/r𝑅)       (((𝑅 ∈ CRing ∧ 𝑁 ≠ ∅) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝐷𝑋) ∈ (Unit‘𝑅)) → (𝑍 = (𝑖𝑁 ↦ ((𝐷‘((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝑖)) / (𝐷𝑋))) ↔ (𝑋 · 𝑍) = 𝑌))
 
11.6  Polynomial matrices

A polynomial matrix or matrix of polynomials is a matrix whose elements are univariate (or multivariate) polynomials. See Wikipedia "Polynomial matrix" https://en.wikipedia.org/wiki/Polynomial_matrix (18-Nov-2019). In this section, only square matrices whose elements are univariate polynomials are considered. Usually, the ring of such matrices, the ring of n x n matrices over the polynomial ring over a ring 𝑅, is denoted by M(n, R[t]). The elements of this ring are called "polynomial matrices (over the ring 𝑅)" in the following. In Metamath notation, this ring is defined by (𝑁 Mat (Poly1𝑅)), usually represented by the class variable 𝐶 (or 𝑌, if 𝐶 is already occupied): 𝐶 = (𝑁 Mat 𝑃) with 𝑃 = (Poly1𝑅).

 
11.6.1  Basic properties
 
Theorempmatring 21749 The set of polynomial matrices over a ring is a ring. (Contributed by AV, 6-Nov-2019.)
𝑃 = (Poly1𝑅)    &   𝐶 = (𝑁 Mat 𝑃)       ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐶 ∈ Ring)
 
Theorempmatlmod 21750 The set of polynomial matrices over a ring is a left module. (Contributed by AV, 6-Nov-2019.)
𝑃 = (Poly1𝑅)    &   𝐶 = (𝑁 Mat 𝑃)       ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐶 ∈ LMod)
 
Theorempmatassa 21751 The set of polynomial matrices over a commutative ring is an associative algebra. (Contributed by AV, 16-Jun-2024.)
𝑃 = (Poly1𝑅)    &   𝐶 = (𝑁 Mat 𝑃)       ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝐶 ∈ AssAlg)
 
Theorempmat0op 21752* The zero polynomial matrix over a ring represented as operation. (Contributed by AV, 16-Nov-2019.)
𝑃 = (Poly1𝑅)    &   𝐶 = (𝑁 Mat 𝑃)    &    0 = (0g𝑃)       ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (0g𝐶) = (𝑖𝑁, 𝑗𝑁0 ))
 
Theorempmat1op 21753* The identity polynomial matrix over a ring represented as operation. (Contributed by AV, 16-Nov-2019.)
𝑃 = (Poly1𝑅)    &   𝐶 = (𝑁 Mat 𝑃)    &    0 = (0g𝑃)    &    1 = (1r𝑃)       ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (1r𝐶) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, 1 , 0 )))
 
Theorempmat1ovd 21754 Entries of the identity polynomial matrix over a ring, deduction form. (Contributed by AV, 16-Nov-2019.)
𝑃 = (Poly1𝑅)    &   𝐶 = (𝑁 Mat 𝑃)    &    0 = (0g𝑃)    &    1 = (1r𝑃)    &   (𝜑𝑁 ∈ Fin)    &   (𝜑𝑅 ∈ Ring)    &   (𝜑𝐼𝑁)    &   (𝜑𝐽𝑁)    &   𝑈 = (1r𝐶)       (𝜑 → (𝐼𝑈𝐽) = if(𝐼 = 𝐽, 1 , 0 ))
 
Theorempmat0opsc 21755* The zero polynomial matrix over a ring represented as operation with "lifted scalars" (i.e. elements of the ring underlying the polynomial ring embedded into the polynomial ring by the scalar injection/algebraic scalars function algSc). (Contributed by AV, 16-Nov-2019.)
𝑃 = (Poly1𝑅)    &   𝐶 = (𝑁 Mat 𝑃)    &   𝐴 = (algSc‘𝑃)    &    0 = (0g𝑅)       ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (0g𝐶) = (𝑖𝑁, 𝑗𝑁 ↦ (𝐴0 )))
 
Theorempmat1opsc 21756* The identity polynomial matrix over a ring represented as operation with "lifted scalars". (Contributed by AV, 16-Nov-2019.)
𝑃 = (Poly1𝑅)    &   𝐶 = (𝑁 Mat 𝑃)    &   𝐴 = (algSc‘𝑃)    &    0 = (0g𝑅)    &    1 = (1r𝑅)       ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (1r𝐶) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, (𝐴1 ), (𝐴0 ))))
 
Theorempmat1ovscd 21757 Entries of the identity polynomial matrix over a ring represented with "lifted scalars", deduction form. (Contributed by AV, 16-Nov-2019.)
𝑃 = (Poly1𝑅)    &   𝐶 = (𝑁 Mat 𝑃)    &   𝐴 = (algSc‘𝑃)    &    0 = (0g𝑅)    &    1 = (1r𝑅)    &   (𝜑𝑁 ∈ Fin)    &   (𝜑𝑅 ∈ Ring)    &   (𝜑𝐼𝑁)    &   (𝜑𝐽𝑁)    &   𝑈 = (1r𝐶)       (𝜑 → (𝐼𝑈𝐽) = if(𝐼 = 𝐽, (𝐴1 ), (𝐴0 )))
 
Theorempmatcoe1fsupp 21758* For a polynomial matrix there is an upper bound for the coefficients of all the polynomials being not 0. (Contributed by AV, 3-Oct-2019.) (Proof shortened by AV, 28-Nov-2019.)
𝑃 = (Poly1𝑅)    &   𝐶 = (𝑁 Mat 𝑃)    &   𝐵 = (Base‘𝐶)    &    0 = (0g𝑅)       ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ∀𝑖𝑁𝑗𝑁 ((coe1‘(𝑖𝑀𝑗))‘𝑥) = 0 ))
 
Theorem1pmatscmul 21759 The scalar product of the identity polynomial matrix with a polynomial is a polynomial matrix. (Contributed by AV, 2-Nov-2019.) (Revised by AV, 4-Dec-2019.)
𝑃 = (Poly1𝑅)    &   𝐶 = (𝑁 Mat 𝑃)    &   𝐵 = (Base‘𝐶)    &   𝐸 = (Base‘𝑃)    &    = ( ·𝑠𝐶)    &    1 = (1r𝐶)       ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑄𝐸) → (𝑄 1 ) ∈ 𝐵)
 
11.6.2  Constant polynomial matrices

A constant polynomial matrix is a polynomial matrix whose elements are constant polynomials, i.e., polynomials with no indeterminates. Constant polynomials are obtained by "lifting" a "scalar" (i.e. an element of the underlying ring) into the polynomial ring/algebra by a "scalar injection", i.e., applying the "algebra scalar injection function" algSc (see df-ascl 20972) to a scalar 𝐴𝑅: ((algSc‘𝑃)‘𝐴). Analogously, constant polynomial matrices (over the ring 𝑅) are obtained by "lifting" matrices over the ring 𝑅 by the function matToPolyMat (see df-mat2pmat 21764), called "matrix transformation" in the following.

In this section it is shown that the set 𝑆 = (𝑁 ConstPolyMat 𝑅) of constant polynomial 𝑁 x 𝑁 matrices over the ring 𝑅 is a subring of the ring of polynomial 𝑁 x 𝑁 matrices over the ring 𝑅 (cpmatsrgpmat 21778) and that 𝑇 = (𝑁 matToPolyMat 𝑅) is a ring isomorphism from the ring of matrices over a ring 𝑅 onto the ring of constant polynomial matrices over the ring 𝑅 (see m2cpmrngiso 21815). Thus, the ring of matrices over a commutative ring is isomorphic to the ring of scalar matrices over the same ring, see matcpmric 21816. Finally, 𝐼 = (𝑁 cPolyMatToMat 𝑅), the transformation of a constant polynomial matrix into a matrix, is the inverse function of the matrix transformation 𝑇 = (𝑁 matToPolyMat 𝑅), see m2cpminv 21817.

 
Syntaxccpmat 21760 Extend class notation with the set of all constant polynomial matrices.
class ConstPolyMat
 
Syntaxcmat2pmat 21761 Extend class notation with the transformation of a matrix into a matrix of polynomials.
class matToPolyMat
 
Syntaxccpmat2mat 21762 Extend class notation with the transformation of a constant polynomial matrix into a matrix.
class cPolyMatToMat
 
Definitiondf-cpmat 21763* The set of all constant polynomial matrices, which are all matrices whose entries are constant polynomials (or "scalar polynomials", see ply1sclf 21366). (Contributed by AV, 15-Nov-2019.)
ConstPolyMat = (𝑛 ∈ Fin, 𝑟 ∈ V ↦ {𝑚 ∈ (Base‘(𝑛 Mat (Poly1𝑟))) ∣ ∀𝑖𝑛𝑗𝑛𝑘 ∈ ℕ ((coe1‘(𝑖𝑚𝑗))‘𝑘) = (0g𝑟)})
 
Definitiondf-mat2pmat 21764* Transformation of a matrix (over a ring) into a matrix over the corresponding polynomial ring. (Contributed by AV, 31-Jul-2019.)
matToPolyMat = (𝑛 ∈ Fin, 𝑟 ∈ V ↦ (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ↦ (𝑥𝑛, 𝑦𝑛 ↦ ((algSc‘(Poly1𝑟))‘(𝑥𝑚𝑦)))))
 
Definitiondf-cpmat2mat 21765* Transformation of a constant polynomial matrix (over a ring) into a matrix over the corresponding ring. Since this function is the inverse function of matToPolyMat, see m2cpminv 21817, it is also called "inverse matrix transformation" in the following. (Contributed by AV, 14-Dec-2019.)
cPolyMatToMat = (𝑛 ∈ Fin, 𝑟 ∈ V ↦ (𝑚 ∈ (𝑛 ConstPolyMat 𝑟) ↦ (𝑥𝑛, 𝑦𝑛 ↦ ((coe1‘(𝑥𝑚𝑦))‘0))))
 
Theoremcpmat 21766* Value of the constructor of the set of all constant polynomial matrices, i.e. the set of all 𝑁 x 𝑁 matrices of polynomials over a ring 𝑅. (Contributed by AV, 15-Nov-2019.)
𝑆 = (𝑁 ConstPolyMat 𝑅)    &   𝑃 = (Poly1𝑅)    &   𝐶 = (𝑁 Mat 𝑃)    &   𝐵 = (Base‘𝐶)       ((𝑁 ∈ Fin ∧ 𝑅𝑉) → 𝑆 = {𝑚𝐵 ∣ ∀𝑖𝑁𝑗𝑁𝑘 ∈ ℕ ((coe1‘(𝑖𝑚𝑗))‘𝑘) = (0g𝑅)})
 
Theoremcpmatpmat 21767 A constant polynomial matrix is a polynomial matrix. (Contributed by AV, 16-Nov-2019.)
𝑆 = (𝑁 ConstPolyMat 𝑅)    &   𝑃 = (Poly1𝑅)    &   𝐶 = (𝑁 Mat 𝑃)    &   𝐵 = (Base‘𝐶)       ((𝑁 ∈ Fin ∧ 𝑅𝑉𝑀𝑆) → 𝑀𝐵)
 
Theoremcpmatel 21768* Property of a constant polynomial matrix. (Contributed by AV, 15-Nov-2019.)
𝑆 = (𝑁 ConstPolyMat 𝑅)    &   𝑃 = (Poly1𝑅)    &   𝐶 = (𝑁 Mat 𝑃)    &   𝐵 = (Base‘𝐶)       ((𝑁 ∈ Fin ∧ 𝑅𝑉𝑀𝐵) → (𝑀𝑆 ↔ ∀𝑖𝑁𝑗𝑁𝑘 ∈ ℕ ((coe1‘(𝑖𝑀𝑗))‘𝑘) = (0g𝑅)))
 
Theoremcpmatelimp 21769* Implication of a set being a constant polynomial matrix. (Contributed by AV, 18-Nov-2019.)
𝑆 = (𝑁 ConstPolyMat 𝑅)    &   𝑃 = (Poly1𝑅)    &   𝐶 = (𝑁 Mat 𝑃)    &   𝐵 = (Base‘𝐶)       ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑀𝑆 → (𝑀𝐵 ∧ ∀𝑖𝑁𝑗𝑁𝑘 ∈ ℕ ((coe1‘(𝑖𝑀𝑗))‘𝑘) = (0g𝑅))))
 
Theoremcpmatel2 21770* Another property of a constant polynomial matrix. (Contributed by AV, 16-Nov-2019.) (Proof shortened by AV, 27-Nov-2019.)
𝑆 = (𝑁 ConstPolyMat 𝑅)    &   𝑃 = (Poly1𝑅)    &   𝐶 = (𝑁 Mat 𝑃)    &   𝐵 = (Base‘𝐶)    &   𝐾 = (Base‘𝑅)    &   𝐴 = (algSc‘𝑃)       ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑀𝑆 ↔ ∀𝑖𝑁𝑗𝑁𝑘𝐾 (𝑖𝑀𝑗) = (𝐴𝑘)))
 
Theoremcpmatelimp2 21771* Another implication of a set being a constant polynomial matrix. (Contributed by AV, 17-Nov-2019.)
𝑆 = (𝑁 ConstPolyMat 𝑅)    &   𝑃 = (Poly1𝑅)    &   𝐶 = (𝑁 Mat 𝑃)    &   𝐵 = (Base‘𝐶)    &   𝐾 = (Base‘𝑅)    &   𝐴 = (algSc‘𝑃)       ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑀𝑆 → (𝑀𝐵 ∧ ∀𝑖𝑁𝑗𝑁𝑘𝐾 (𝑖𝑀𝑗) = (𝐴𝑘))))
 
Theorem1elcpmat 21772 The identity of the ring of all polynomial matrices over the ring 𝑅 is a constant polynomial matrix. (Contributed by AV, 16-Nov-2019.)
𝑆 = (𝑁 ConstPolyMat 𝑅)    &   𝑃 = (Poly1𝑅)    &   𝐶 = (𝑁 Mat 𝑃)       ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (1r𝐶) ∈ 𝑆)
 
Theoremcpmatacl 21773* The set of all constant polynomial matrices over a ring 𝑅 is closed under addition. (Contributed by AV, 17-Nov-2019.) (Proof shortened by AV, 28-Nov-2019.)
𝑆 = (𝑁 ConstPolyMat 𝑅)    &   𝑃 = (Poly1𝑅)    &   𝐶 = (𝑁 Mat 𝑃)       ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝐶)𝑦) ∈ 𝑆)
 
Theoremcpmatinvcl 21774* The set of all constant polynomial matrices over a ring 𝑅 is closed under inversion. (Contributed by AV, 17-Nov-2019.) (Proof shortened by AV, 28-Nov-2019.)
𝑆 = (𝑁 ConstPolyMat 𝑅)    &   𝑃 = (Poly1𝑅)    &   𝐶 = (𝑁 Mat 𝑃)       ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ∀𝑥𝑆 ((invg𝐶)‘𝑥) ∈ 𝑆)
 
Theoremcpmatmcllem 21775* Lemma for cpmatmcl 21776. (Contributed by AV, 18-Nov-2019.)
𝑆 = (𝑁 ConstPolyMat 𝑅)    &   𝑃 = (Poly1𝑅)    &   𝐶 = (𝑁 Mat 𝑃)       (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝑆𝑦𝑆)) → ∀𝑖𝑁𝑗𝑁𝑐 ∈ ℕ ((coe1‘(𝑃 Σg (𝑘𝑁 ↦ ((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g𝑅))
 
Theoremcpmatmcl 21776* The set of all constant polynomial matrices over a ring 𝑅 is closed under multiplication. (Contributed by AV, 18-Nov-2019.)
𝑆 = (𝑁 ConstPolyMat 𝑅)    &   𝑃 = (Poly1𝑅)    &   𝐶 = (𝑁 Mat 𝑃)       ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ∀𝑥𝑆𝑦𝑆 (𝑥(.r𝐶)𝑦) ∈ 𝑆)
 
Theoremcpmatsubgpmat 21777 The set of all constant polynomial matrices over a ring 𝑅 is an additive subgroup of the ring of all polynomial matrices over the ring 𝑅. (Contributed by AV, 15-Nov-2019.)
𝑆 = (𝑁 ConstPolyMat 𝑅)    &   𝑃 = (Poly1𝑅)    &   𝐶 = (𝑁 Mat 𝑃)       ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑆 ∈ (SubGrp‘𝐶))
 
Theoremcpmatsrgpmat 21778 The set of all constant polynomial matrices over a ring 𝑅 is a subring of the ring of all polynomial matrices over the ring 𝑅. (Contributed by AV, 18-Nov-2019.)
𝑆 = (𝑁 ConstPolyMat 𝑅)    &   𝑃 = (Poly1𝑅)    &   𝐶 = (𝑁 Mat 𝑃)       ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑆 ∈ (SubRing‘𝐶))
 
Theorem0elcpmat 21779 The zero of the ring of all polynomial matrices over the ring 𝑅 is a constant polynomial matrix. (Contributed by AV, 27-Nov-2019.)
𝑆 = (𝑁 ConstPolyMat 𝑅)    &   𝑃 = (Poly1𝑅)    &   𝐶 = (𝑁 Mat 𝑃)       ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (0g𝐶) ∈ 𝑆)
 
Theoremmat2pmatfval 21780* Value of the matrix transformation. (Contributed by AV, 31-Jul-2019.)
𝑇 = (𝑁 matToPolyMat 𝑅)    &   𝐴 = (𝑁 Mat 𝑅)    &   𝐵 = (Base‘𝐴)    &   𝑃 = (Poly1𝑅)    &   𝑆 = (algSc‘𝑃)       ((𝑁 ∈ Fin ∧ 𝑅𝑉) → 𝑇 = (𝑚𝐵 ↦ (𝑥𝑁, 𝑦𝑁 ↦ (𝑆‘(𝑥𝑚𝑦)))))
 
Theoremmat2pmatval 21781* The result of a matrix transformation. (Contributed by AV, 31-Jul-2019.)
𝑇 = (𝑁 matToPolyMat 𝑅)    &   𝐴 = (𝑁 Mat 𝑅)    &   𝐵 = (Base‘𝐴)    &   𝑃 = (Poly1𝑅)    &   𝑆 = (algSc‘𝑃)       ((𝑁 ∈ Fin ∧ 𝑅𝑉𝑀𝐵) → (𝑇𝑀) = (𝑥𝑁, 𝑦𝑁 ↦ (𝑆‘(𝑥𝑀𝑦))))
 
Theoremmat2pmatvalel 21782 A (matrix) element of the result of a matrix transformation. (Contributed by AV, 31-Jul-2019.)
𝑇 = (𝑁 matToPolyMat 𝑅)    &   𝐴 = (𝑁 Mat 𝑅)    &   𝐵 = (Base‘𝐴)    &   𝑃 = (Poly1𝑅)    &   𝑆 = (algSc‘𝑃)       (((𝑁 ∈ Fin ∧ 𝑅𝑉𝑀𝐵) ∧ (𝑋𝑁𝑌𝑁)) → (𝑋(𝑇𝑀)𝑌) = (𝑆‘(𝑋𝑀𝑌)))
 
Theoremmat2pmatbas 21783 The result of a matrix transformation is a polynomial matrix. (Contributed by AV, 1-Aug-2019.)
𝑇 = (𝑁 matToPolyMat 𝑅)    &   𝐴 = (𝑁 Mat 𝑅)    &   𝐵 = (Base‘𝐴)    &   𝑃 = (Poly1𝑅)    &   𝐶 = (𝑁 Mat 𝑃)       ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑇𝑀) ∈ (Base‘𝐶))
 
Theoremmat2pmatbas0 21784 The result of a matrix transformation is a polynomial matrix. (Contributed by AV, 27-Oct-2019.)
𝑇 = (𝑁 matToPolyMat 𝑅)    &   𝐴 = (𝑁 Mat 𝑅)    &   𝐵 = (Base‘𝐴)    &   𝑃 = (Poly1𝑅)    &   𝐶 = (𝑁 Mat 𝑃)    &   𝐻 = (Base‘𝐶)       ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑇𝑀) ∈ 𝐻)
 
Theoremmat2pmatf 21785 The matrix transformation is a function from the matrices to the polynomial matrices. (Contributed by AV, 27-Oct-2019.)
𝑇 = (𝑁 matToPolyMat 𝑅)    &   𝐴 = (𝑁 Mat 𝑅)    &   𝐵 = (Base‘𝐴)    &   𝑃 = (Poly1𝑅)    &   𝐶 = (𝑁 Mat 𝑃)    &   𝐻 = (Base‘𝐶)       ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑇:𝐵𝐻)
 
Theoremmat2pmatf1 21786 The matrix transformation is a 1-1 function from the matrices to the polynomial matrices. (Contributed by AV, 28-Oct-2019.) (Proof shortened by AV, 27-Nov-2019.)
𝑇 = (𝑁 matToPolyMat 𝑅)    &   𝐴 = (𝑁 Mat 𝑅)    &   𝐵 = (Base‘𝐴)    &   𝑃 = (Poly1𝑅)    &   𝐶 = (𝑁 Mat 𝑃)    &   𝐻 = (Base‘𝐶)       ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑇:𝐵1-1𝐻)
 
Theoremmat2pmatghm 21787 The transformation of matrices into polynomial matrices is an additive group homomorphism. (Contributed by AV, 28-Oct-2019.) (Proof shortened by AV, 28-Nov-2019.)
𝑇 = (𝑁 matToPolyMat 𝑅)    &   𝐴 = (𝑁 Mat 𝑅)    &   𝐵 = (Base‘𝐴)    &   𝑃 = (Poly1𝑅)    &   𝐶 = (𝑁 Mat 𝑃)    &   𝐻 = (Base‘𝐶)       ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑇 ∈ (𝐴 GrpHom 𝐶))
 
Theoremmat2pmatmul 21788* The transformation of matrices into polynomial matrices preserves the multiplication. (Contributed by AV, 29-Oct-2019.) (Proof shortened by AV, 28-Nov-2019.)
𝑇 = (𝑁 matToPolyMat 𝑅)    &   𝐴 = (𝑁 Mat 𝑅)    &   𝐵 = (Base‘𝐴)    &   𝑃 = (Poly1𝑅)    &   𝐶 = (𝑁 Mat 𝑃)    &   𝐻 = (Base‘𝐶)       ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → ∀𝑥𝐵𝑦𝐵 (𝑇‘(𝑥(.r𝐴)𝑦)) = ((𝑇𝑥)(.r𝐶)(𝑇𝑦)))
 
Theoremmat2pmat1 21789 The transformation of the identity matrix results in the identity polynomial matrix. (Contributed by AV, 29-Oct-2019.)
𝑇 = (𝑁 matToPolyMat 𝑅)    &   𝐴 = (𝑁 Mat 𝑅)    &   𝐵 = (Base‘𝐴)    &   𝑃 = (Poly1𝑅)    &   𝐶 = (𝑁 Mat 𝑃)    &   𝐻 = (Base‘𝐶)       ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑇‘(1r𝐴)) = (1r𝐶))
 
Theoremmat2pmatmhm 21790 The transformation of matrices into polynomial matrices is a homomorphism of multiplicative monoids. (Contributed by AV, 29-Oct-2019.)
𝑇 = (𝑁 matToPolyMat 𝑅)    &   𝐴 = (𝑁 Mat 𝑅)    &   𝐵 = (Base‘𝐴)    &   𝑃 = (Poly1𝑅)    &   𝐶 = (𝑁 Mat 𝑃)    &   𝐻 = (Base‘𝐶)       ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑇 ∈ ((mulGrp‘𝐴) MndHom (mulGrp‘𝐶)))
 
Theoremmat2pmatrhm 21791 The transformation of matrices into polynomial matrices is a ring homomorphism. (Contributed by AV, 29-Oct-2019.)
𝑇 = (𝑁 matToPolyMat 𝑅)    &   𝐴 = (𝑁 Mat 𝑅)    &   𝐵 = (Base‘𝐴)    &   𝑃 = (Poly1𝑅)    &   𝐶 = (𝑁 Mat 𝑃)    &   𝐻 = (Base‘𝐶)       ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑇 ∈ (𝐴 RingHom 𝐶))
 
Theoremmat2pmatlin 21792 The transformation of matrices into polynomial matrices is "linear", analogous to lmhmlin 20212. Since 𝐴 and 𝐶 have different scalar rings, 𝑇 cannot be a left module homomorphism as defined in df-lmhm 20199, see lmhmsca 20207. (Contributed by AV, 13-Nov-2019.) (Proof shortened by AV, 28-Nov-2019.)
𝑇 = (𝑁 matToPolyMat 𝑅)    &   𝐴 = (𝑁 Mat 𝑅)    &   𝐵 = (Base‘𝐴)    &   𝑃 = (Poly1𝑅)    &   𝐶 = (𝑁 Mat 𝑃)    &   𝐻 = (Base‘𝐶)    &   𝐾 = (Base‘𝑅)    &   𝑆 = (algSc‘𝑃)    &    · = ( ·𝑠𝐴)    &    × = ( ·𝑠𝐶)       (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑋𝐾𝑌𝐵)) → (𝑇‘(𝑋 · 𝑌)) = ((𝑆𝑋) × (𝑇𝑌)))
 
Theorem0mat2pmat 21793 The transformed zero matrix is the zero polynomial matrix. (Contributed by AV, 5-Aug-2019.) (Proof shortened by AV, 19-Nov-2019.)
𝑇 = (𝑁 matToPolyMat 𝑅)    &   𝑃 = (Poly1𝑅)    &    0 = (0g‘(𝑁 Mat 𝑅))    &   𝑍 = (0g‘(𝑁 Mat 𝑃))       ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) → (𝑇0 ) = 𝑍)
 
Theoremidmatidpmat 21794 The transformed identity matrix is the identity polynomial matrix. (Contributed by AV, 1-Aug-2019.) (Proof shortened by AV, 19-Nov-2019.)
𝑇 = (𝑁 matToPolyMat 𝑅)    &   𝑃 = (Poly1𝑅)    &    1 = (1r‘(𝑁 Mat 𝑅))    &   𝐼 = (1r‘(𝑁 Mat 𝑃))       ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) → (𝑇1 ) = 𝐼)
 
Theoremd0mat2pmat 21795 The transformed empty set as matrix of dimenson 0 is the empty set (i.e., the polynomial matrix of dimension 0). (Contributed by AV, 4-Aug-2019.)
(𝑅𝑉 → ((∅ matToPolyMat 𝑅)‘∅) = ∅)
 
Theoremd1mat2pmat 21796 The transformation of a matrix of dimenson 1. (Contributed by AV, 4-Aug-2019.)
𝑇 = (𝑁 matToPolyMat 𝑅)    &   𝐵 = (Base‘(𝑁 Mat 𝑅))    &   𝑃 = (Poly1𝑅)    &   𝑆 = (algSc‘𝑃)       ((𝑅𝑉 ∧ (𝑁 = {𝐴} ∧ 𝐴𝑉) ∧ 𝑀𝐵) → (𝑇𝑀) = {⟨⟨𝐴, 𝐴⟩, (𝑆‘(𝐴𝑀𝐴))⟩})
 
Theoremmat2pmatscmxcl 21797 A transformed matrix multiplied with a power of the variable of a polynomial is a polynomial matrix. (Contributed by AV, 6-Nov-2019.) (Proof shortened by AV, 28-Nov-2019.)
𝐴 = (𝑁 Mat 𝑅)    &   𝐾 = (Base‘𝐴)    &   𝑇 = (𝑁 matToPolyMat 𝑅)    &   𝑃 = (Poly1𝑅)    &   𝐶 = (𝑁 Mat 𝑃)    &   𝐵 = (Base‘𝐶)    &    = ( ·𝑠𝐶)    &    = (.g‘(mulGrp‘𝑃))    &   𝑋 = (var1𝑅)       (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) → ((𝐿 𝑋) (𝑇𝑀)) ∈ 𝐵)
 
Theoremm2cpm 21798 The result of a matrix transformation is a constant polynomial matrix. (Contributed by AV, 18-Nov-2019.) (Proof shortened by AV, 28-Nov-2019.)
𝑆 = (𝑁 ConstPolyMat 𝑅)    &   𝑇 = (𝑁 matToPolyMat 𝑅)    &   𝐴 = (𝑁 Mat 𝑅)    &   𝐵 = (Base‘𝐴)       ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑇𝑀) ∈ 𝑆)
 
Theoremm2cpmf 21799 The matrix transformation is a function from the matrices to the constant polynomial matrices. (Contributed by AV, 18-Nov-2019.)
𝑆 = (𝑁 ConstPolyMat 𝑅)    &   𝑇 = (𝑁 matToPolyMat 𝑅)    &   𝐴 = (𝑁 Mat 𝑅)    &   𝐵 = (Base‘𝐴)       ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑇:𝐵𝑆)
 
Theoremm2cpmf1 21800 The matrix transformation is a 1-1 function from the matrices to the constant polynomial matrices. (Contributed by AV, 18-Nov-2019.)
𝑆 = (𝑁 ConstPolyMat 𝑅)    &   𝑇 = (𝑁 matToPolyMat 𝑅)    &   𝐴 = (𝑁 Mat 𝑅)    &   𝐵 = (Base‘𝐴)       ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑇:𝐵1-1𝑆)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46395
  Copyright terms: Public domain < Previous  Next >