Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-bj-finsum Structured version   Visualization version   GIF version

Definition df-bj-finsum 37243
Description: Finite summation in commutative monoids. This finite summation function can be extended to pairs 𝑦, 𝑧 where 𝑦 is a left-unital magma and 𝑧 is defined on a totally ordered set (choosing left-associative composition), or dropping unitality and requiring nonempty families, or on any monoids for families of permutable elements, etc. We use the term "summation", even though the definition stands for any unital, commutative and associative composition law. (Contributed by BJ, 9-Jun-2019.)
Assertion
Ref Expression
df-bj-finsum FinSum = (𝑥 ∈ {⟨𝑦, 𝑧⟩ ∣ (𝑦 ∈ CMnd ∧ ∃𝑡 ∈ Fin 𝑧:𝑡⟶(Base‘𝑦))} ↦ (℩𝑠𝑚 ∈ ℕ0𝑓(𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥) ∧ 𝑠 = (seq1((+g‘(1st𝑥)), (𝑛 ∈ ℕ ↦ ((2nd𝑥)‘(𝑓𝑛))))‘𝑚))))
Distinct variable group:   𝑥,𝑦,𝑧,𝑡,𝑠,𝑓,𝑚,𝑛

Detailed syntax breakdown of Definition df-bj-finsum
StepHypRef Expression
1 cfinsum 37242 . 2 class FinSum
2 vx . . 3 setvar 𝑥
3 vy . . . . . . 7 setvar 𝑦
43cv 1536 . . . . . 6 class 𝑦
5 ccmn 19816 . . . . . 6 class CMnd
64, 5wcel 2108 . . . . 5 wff 𝑦 ∈ CMnd
7 vt . . . . . . . 8 setvar 𝑡
87cv 1536 . . . . . . 7 class 𝑡
9 cbs 17252 . . . . . . . 8 class Base
104, 9cfv 6568 . . . . . . 7 class (Base‘𝑦)
11 vz . . . . . . . 8 setvar 𝑧
1211cv 1536 . . . . . . 7 class 𝑧
138, 10, 12wf 6564 . . . . . 6 wff 𝑧:𝑡⟶(Base‘𝑦)
14 cfn 8997 . . . . . 6 class Fin
1513, 7, 14wrex 3076 . . . . 5 wff 𝑡 ∈ Fin 𝑧:𝑡⟶(Base‘𝑦)
166, 15wa 395 . . . 4 wff (𝑦 ∈ CMnd ∧ ∃𝑡 ∈ Fin 𝑧:𝑡⟶(Base‘𝑦))
1716, 3, 11copab 5228 . . 3 class {⟨𝑦, 𝑧⟩ ∣ (𝑦 ∈ CMnd ∧ ∃𝑡 ∈ Fin 𝑧:𝑡⟶(Base‘𝑦))}
18 c1 11179 . . . . . . . . 9 class 1
19 vm . . . . . . . . . 10 setvar 𝑚
2019cv 1536 . . . . . . . . 9 class 𝑚
21 cfz 13561 . . . . . . . . 9 class ...
2218, 20, 21co 7443 . . . . . . . 8 class (1...𝑚)
232cv 1536 . . . . . . . . . 10 class 𝑥
24 c2nd 8023 . . . . . . . . . 10 class 2nd
2523, 24cfv 6568 . . . . . . . . 9 class (2nd𝑥)
2625cdm 5695 . . . . . . . 8 class dom (2nd𝑥)
27 vf . . . . . . . . 9 setvar 𝑓
2827cv 1536 . . . . . . . 8 class 𝑓
2922, 26, 28wf1o 6567 . . . . . . 7 wff 𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥)
30 vs . . . . . . . . 9 setvar 𝑠
3130cv 1536 . . . . . . . 8 class 𝑠
32 c1st 8022 . . . . . . . . . . . 12 class 1st
3323, 32cfv 6568 . . . . . . . . . . 11 class (1st𝑥)
34 cplusg 17305 . . . . . . . . . . 11 class +g
3533, 34cfv 6568 . . . . . . . . . 10 class (+g‘(1st𝑥))
36 vn . . . . . . . . . . 11 setvar 𝑛
37 cn 12287 . . . . . . . . . . 11 class
3836cv 1536 . . . . . . . . . . . . 13 class 𝑛
3938, 28cfv 6568 . . . . . . . . . . . 12 class (𝑓𝑛)
4039, 25cfv 6568 . . . . . . . . . . 11 class ((2nd𝑥)‘(𝑓𝑛))
4136, 37, 40cmpt 5249 . . . . . . . . . 10 class (𝑛 ∈ ℕ ↦ ((2nd𝑥)‘(𝑓𝑛)))
4235, 41, 18cseq 14046 . . . . . . . . 9 class seq1((+g‘(1st𝑥)), (𝑛 ∈ ℕ ↦ ((2nd𝑥)‘(𝑓𝑛))))
4320, 42cfv 6568 . . . . . . . 8 class (seq1((+g‘(1st𝑥)), (𝑛 ∈ ℕ ↦ ((2nd𝑥)‘(𝑓𝑛))))‘𝑚)
4431, 43wceq 1537 . . . . . . 7 wff 𝑠 = (seq1((+g‘(1st𝑥)), (𝑛 ∈ ℕ ↦ ((2nd𝑥)‘(𝑓𝑛))))‘𝑚)
4529, 44wa 395 . . . . . 6 wff (𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥) ∧ 𝑠 = (seq1((+g‘(1st𝑥)), (𝑛 ∈ ℕ ↦ ((2nd𝑥)‘(𝑓𝑛))))‘𝑚))
4645, 27wex 1777 . . . . 5 wff 𝑓(𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥) ∧ 𝑠 = (seq1((+g‘(1st𝑥)), (𝑛 ∈ ℕ ↦ ((2nd𝑥)‘(𝑓𝑛))))‘𝑚))
47 cn0 12547 . . . . 5 class 0
4846, 19, 47wrex 3076 . . . 4 wff 𝑚 ∈ ℕ0𝑓(𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥) ∧ 𝑠 = (seq1((+g‘(1st𝑥)), (𝑛 ∈ ℕ ↦ ((2nd𝑥)‘(𝑓𝑛))))‘𝑚))
4948, 30cio 6518 . . 3 class (℩𝑠𝑚 ∈ ℕ0𝑓(𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥) ∧ 𝑠 = (seq1((+g‘(1st𝑥)), (𝑛 ∈ ℕ ↦ ((2nd𝑥)‘(𝑓𝑛))))‘𝑚)))
502, 17, 49cmpt 5249 . 2 class (𝑥 ∈ {⟨𝑦, 𝑧⟩ ∣ (𝑦 ∈ CMnd ∧ ∃𝑡 ∈ Fin 𝑧:𝑡⟶(Base‘𝑦))} ↦ (℩𝑠𝑚 ∈ ℕ0𝑓(𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥) ∧ 𝑠 = (seq1((+g‘(1st𝑥)), (𝑛 ∈ ℕ ↦ ((2nd𝑥)‘(𝑓𝑛))))‘𝑚))))
511, 50wceq 1537 1 wff FinSum = (𝑥 ∈ {⟨𝑦, 𝑧⟩ ∣ (𝑦 ∈ CMnd ∧ ∃𝑡 ∈ Fin 𝑧:𝑡⟶(Base‘𝑦))} ↦ (℩𝑠𝑚 ∈ ℕ0𝑓(𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥) ∧ 𝑠 = (seq1((+g‘(1st𝑥)), (𝑛 ∈ ℕ ↦ ((2nd𝑥)‘(𝑓𝑛))))‘𝑚))))
Colors of variables: wff setvar class
This definition is referenced by:  bj-finsumval0  37244
  Copyright terms: Public domain W3C validator