Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-bj-finsum Structured version   Visualization version   GIF version

Definition df-bj-finsum 37265
Description: Finite summation in commutative monoids. This finite summation function can be extended to pairs 𝑦, 𝑧 where 𝑦 is a left-unital magma and 𝑧 is defined on a totally ordered set (choosing left-associative composition), or dropping unitality and requiring nonempty families, or on any monoids for families of permutable elements, etc. We use the term "summation", even though the definition stands for any unital, commutative and associative composition law. (Contributed by BJ, 9-Jun-2019.)
Assertion
Ref Expression
df-bj-finsum FinSum = (𝑥 ∈ {⟨𝑦, 𝑧⟩ ∣ (𝑦 ∈ CMnd ∧ ∃𝑡 ∈ Fin 𝑧:𝑡⟶(Base‘𝑦))} ↦ (℩𝑠𝑚 ∈ ℕ0𝑓(𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥) ∧ 𝑠 = (seq1((+g‘(1st𝑥)), (𝑛 ∈ ℕ ↦ ((2nd𝑥)‘(𝑓𝑛))))‘𝑚))))
Distinct variable group:   𝑥,𝑦,𝑧,𝑡,𝑠,𝑓,𝑚,𝑛

Detailed syntax breakdown of Definition df-bj-finsum
StepHypRef Expression
1 cfinsum 37264 . 2 class FinSum
2 vx . . 3 setvar 𝑥
3 vy . . . . . . 7 setvar 𝑦
43cv 1539 . . . . . 6 class 𝑦
5 ccmn 19694 . . . . . 6 class CMnd
64, 5wcel 2109 . . . . 5 wff 𝑦 ∈ CMnd
7 vt . . . . . . . 8 setvar 𝑡
87cv 1539 . . . . . . 7 class 𝑡
9 cbs 17155 . . . . . . . 8 class Base
104, 9cfv 6499 . . . . . . 7 class (Base‘𝑦)
11 vz . . . . . . . 8 setvar 𝑧
1211cv 1539 . . . . . . 7 class 𝑧
138, 10, 12wf 6495 . . . . . 6 wff 𝑧:𝑡⟶(Base‘𝑦)
14 cfn 8895 . . . . . 6 class Fin
1513, 7, 14wrex 3053 . . . . 5 wff 𝑡 ∈ Fin 𝑧:𝑡⟶(Base‘𝑦)
166, 15wa 395 . . . 4 wff (𝑦 ∈ CMnd ∧ ∃𝑡 ∈ Fin 𝑧:𝑡⟶(Base‘𝑦))
1716, 3, 11copab 5164 . . 3 class {⟨𝑦, 𝑧⟩ ∣ (𝑦 ∈ CMnd ∧ ∃𝑡 ∈ Fin 𝑧:𝑡⟶(Base‘𝑦))}
18 c1 11045 . . . . . . . . 9 class 1
19 vm . . . . . . . . . 10 setvar 𝑚
2019cv 1539 . . . . . . . . 9 class 𝑚
21 cfz 13444 . . . . . . . . 9 class ...
2218, 20, 21co 7369 . . . . . . . 8 class (1...𝑚)
232cv 1539 . . . . . . . . . 10 class 𝑥
24 c2nd 7946 . . . . . . . . . 10 class 2nd
2523, 24cfv 6499 . . . . . . . . 9 class (2nd𝑥)
2625cdm 5631 . . . . . . . 8 class dom (2nd𝑥)
27 vf . . . . . . . . 9 setvar 𝑓
2827cv 1539 . . . . . . . 8 class 𝑓
2922, 26, 28wf1o 6498 . . . . . . 7 wff 𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥)
30 vs . . . . . . . . 9 setvar 𝑠
3130cv 1539 . . . . . . . 8 class 𝑠
32 c1st 7945 . . . . . . . . . . . 12 class 1st
3323, 32cfv 6499 . . . . . . . . . . 11 class (1st𝑥)
34 cplusg 17196 . . . . . . . . . . 11 class +g
3533, 34cfv 6499 . . . . . . . . . 10 class (+g‘(1st𝑥))
36 vn . . . . . . . . . . 11 setvar 𝑛
37 cn 12162 . . . . . . . . . . 11 class
3836cv 1539 . . . . . . . . . . . . 13 class 𝑛
3938, 28cfv 6499 . . . . . . . . . . . 12 class (𝑓𝑛)
4039, 25cfv 6499 . . . . . . . . . . 11 class ((2nd𝑥)‘(𝑓𝑛))
4136, 37, 40cmpt 5183 . . . . . . . . . 10 class (𝑛 ∈ ℕ ↦ ((2nd𝑥)‘(𝑓𝑛)))
4235, 41, 18cseq 13942 . . . . . . . . 9 class seq1((+g‘(1st𝑥)), (𝑛 ∈ ℕ ↦ ((2nd𝑥)‘(𝑓𝑛))))
4320, 42cfv 6499 . . . . . . . 8 class (seq1((+g‘(1st𝑥)), (𝑛 ∈ ℕ ↦ ((2nd𝑥)‘(𝑓𝑛))))‘𝑚)
4431, 43wceq 1540 . . . . . . 7 wff 𝑠 = (seq1((+g‘(1st𝑥)), (𝑛 ∈ ℕ ↦ ((2nd𝑥)‘(𝑓𝑛))))‘𝑚)
4529, 44wa 395 . . . . . 6 wff (𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥) ∧ 𝑠 = (seq1((+g‘(1st𝑥)), (𝑛 ∈ ℕ ↦ ((2nd𝑥)‘(𝑓𝑛))))‘𝑚))
4645, 27wex 1779 . . . . 5 wff 𝑓(𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥) ∧ 𝑠 = (seq1((+g‘(1st𝑥)), (𝑛 ∈ ℕ ↦ ((2nd𝑥)‘(𝑓𝑛))))‘𝑚))
47 cn0 12418 . . . . 5 class 0
4846, 19, 47wrex 3053 . . . 4 wff 𝑚 ∈ ℕ0𝑓(𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥) ∧ 𝑠 = (seq1((+g‘(1st𝑥)), (𝑛 ∈ ℕ ↦ ((2nd𝑥)‘(𝑓𝑛))))‘𝑚))
4948, 30cio 6450 . . 3 class (℩𝑠𝑚 ∈ ℕ0𝑓(𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥) ∧ 𝑠 = (seq1((+g‘(1st𝑥)), (𝑛 ∈ ℕ ↦ ((2nd𝑥)‘(𝑓𝑛))))‘𝑚)))
502, 17, 49cmpt 5183 . 2 class (𝑥 ∈ {⟨𝑦, 𝑧⟩ ∣ (𝑦 ∈ CMnd ∧ ∃𝑡 ∈ Fin 𝑧:𝑡⟶(Base‘𝑦))} ↦ (℩𝑠𝑚 ∈ ℕ0𝑓(𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥) ∧ 𝑠 = (seq1((+g‘(1st𝑥)), (𝑛 ∈ ℕ ↦ ((2nd𝑥)‘(𝑓𝑛))))‘𝑚))))
511, 50wceq 1540 1 wff FinSum = (𝑥 ∈ {⟨𝑦, 𝑧⟩ ∣ (𝑦 ∈ CMnd ∧ ∃𝑡 ∈ Fin 𝑧:𝑡⟶(Base‘𝑦))} ↦ (℩𝑠𝑚 ∈ ℕ0𝑓(𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥) ∧ 𝑠 = (seq1((+g‘(1st𝑥)), (𝑛 ∈ ℕ ↦ ((2nd𝑥)‘(𝑓𝑛))))‘𝑚))))
Colors of variables: wff setvar class
This definition is referenced by:  bj-finsumval0  37266
  Copyright terms: Public domain W3C validator