Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-bj-finsum Structured version   Visualization version   GIF version

Definition df-bj-finsum 37272
Description: Finite summation in commutative monoids. This finite summation function can be extended to pairs 𝑦, 𝑧 where 𝑦 is a left-unital magma and 𝑧 is defined on a totally ordered set (choosing left-associative composition), or dropping unitality and requiring nonempty families, or on any monoids for families of permutable elements, etc. We use the term "summation", even though the definition stands for any unital, commutative and associative composition law. (Contributed by BJ, 9-Jun-2019.)
Assertion
Ref Expression
df-bj-finsum FinSum = (𝑥 ∈ {⟨𝑦, 𝑧⟩ ∣ (𝑦 ∈ CMnd ∧ ∃𝑡 ∈ Fin 𝑧:𝑡⟶(Base‘𝑦))} ↦ (℩𝑠𝑚 ∈ ℕ0𝑓(𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥) ∧ 𝑠 = (seq1((+g‘(1st𝑥)), (𝑛 ∈ ℕ ↦ ((2nd𝑥)‘(𝑓𝑛))))‘𝑚))))
Distinct variable group:   𝑥,𝑦,𝑧,𝑡,𝑠,𝑓,𝑚,𝑛

Detailed syntax breakdown of Definition df-bj-finsum
StepHypRef Expression
1 cfinsum 37271 . 2 class FinSum
2 vx . . 3 setvar 𝑥
3 vy . . . . . . 7 setvar 𝑦
43cv 1539 . . . . . 6 class 𝑦
5 ccmn 19710 . . . . . 6 class CMnd
64, 5wcel 2109 . . . . 5 wff 𝑦 ∈ CMnd
7 vt . . . . . . . 8 setvar 𝑡
87cv 1539 . . . . . . 7 class 𝑡
9 cbs 17179 . . . . . . . 8 class Base
104, 9cfv 6511 . . . . . . 7 class (Base‘𝑦)
11 vz . . . . . . . 8 setvar 𝑧
1211cv 1539 . . . . . . 7 class 𝑧
138, 10, 12wf 6507 . . . . . 6 wff 𝑧:𝑡⟶(Base‘𝑦)
14 cfn 8918 . . . . . 6 class Fin
1513, 7, 14wrex 3053 . . . . 5 wff 𝑡 ∈ Fin 𝑧:𝑡⟶(Base‘𝑦)
166, 15wa 395 . . . 4 wff (𝑦 ∈ CMnd ∧ ∃𝑡 ∈ Fin 𝑧:𝑡⟶(Base‘𝑦))
1716, 3, 11copab 5169 . . 3 class {⟨𝑦, 𝑧⟩ ∣ (𝑦 ∈ CMnd ∧ ∃𝑡 ∈ Fin 𝑧:𝑡⟶(Base‘𝑦))}
18 c1 11069 . . . . . . . . 9 class 1
19 vm . . . . . . . . . 10 setvar 𝑚
2019cv 1539 . . . . . . . . 9 class 𝑚
21 cfz 13468 . . . . . . . . 9 class ...
2218, 20, 21co 7387 . . . . . . . 8 class (1...𝑚)
232cv 1539 . . . . . . . . . 10 class 𝑥
24 c2nd 7967 . . . . . . . . . 10 class 2nd
2523, 24cfv 6511 . . . . . . . . 9 class (2nd𝑥)
2625cdm 5638 . . . . . . . 8 class dom (2nd𝑥)
27 vf . . . . . . . . 9 setvar 𝑓
2827cv 1539 . . . . . . . 8 class 𝑓
2922, 26, 28wf1o 6510 . . . . . . 7 wff 𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥)
30 vs . . . . . . . . 9 setvar 𝑠
3130cv 1539 . . . . . . . 8 class 𝑠
32 c1st 7966 . . . . . . . . . . . 12 class 1st
3323, 32cfv 6511 . . . . . . . . . . 11 class (1st𝑥)
34 cplusg 17220 . . . . . . . . . . 11 class +g
3533, 34cfv 6511 . . . . . . . . . 10 class (+g‘(1st𝑥))
36 vn . . . . . . . . . . 11 setvar 𝑛
37 cn 12186 . . . . . . . . . . 11 class
3836cv 1539 . . . . . . . . . . . . 13 class 𝑛
3938, 28cfv 6511 . . . . . . . . . . . 12 class (𝑓𝑛)
4039, 25cfv 6511 . . . . . . . . . . 11 class ((2nd𝑥)‘(𝑓𝑛))
4136, 37, 40cmpt 5188 . . . . . . . . . 10 class (𝑛 ∈ ℕ ↦ ((2nd𝑥)‘(𝑓𝑛)))
4235, 41, 18cseq 13966 . . . . . . . . 9 class seq1((+g‘(1st𝑥)), (𝑛 ∈ ℕ ↦ ((2nd𝑥)‘(𝑓𝑛))))
4320, 42cfv 6511 . . . . . . . 8 class (seq1((+g‘(1st𝑥)), (𝑛 ∈ ℕ ↦ ((2nd𝑥)‘(𝑓𝑛))))‘𝑚)
4431, 43wceq 1540 . . . . . . 7 wff 𝑠 = (seq1((+g‘(1st𝑥)), (𝑛 ∈ ℕ ↦ ((2nd𝑥)‘(𝑓𝑛))))‘𝑚)
4529, 44wa 395 . . . . . 6 wff (𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥) ∧ 𝑠 = (seq1((+g‘(1st𝑥)), (𝑛 ∈ ℕ ↦ ((2nd𝑥)‘(𝑓𝑛))))‘𝑚))
4645, 27wex 1779 . . . . 5 wff 𝑓(𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥) ∧ 𝑠 = (seq1((+g‘(1st𝑥)), (𝑛 ∈ ℕ ↦ ((2nd𝑥)‘(𝑓𝑛))))‘𝑚))
47 cn0 12442 . . . . 5 class 0
4846, 19, 47wrex 3053 . . . 4 wff 𝑚 ∈ ℕ0𝑓(𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥) ∧ 𝑠 = (seq1((+g‘(1st𝑥)), (𝑛 ∈ ℕ ↦ ((2nd𝑥)‘(𝑓𝑛))))‘𝑚))
4948, 30cio 6462 . . 3 class (℩𝑠𝑚 ∈ ℕ0𝑓(𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥) ∧ 𝑠 = (seq1((+g‘(1st𝑥)), (𝑛 ∈ ℕ ↦ ((2nd𝑥)‘(𝑓𝑛))))‘𝑚)))
502, 17, 49cmpt 5188 . 2 class (𝑥 ∈ {⟨𝑦, 𝑧⟩ ∣ (𝑦 ∈ CMnd ∧ ∃𝑡 ∈ Fin 𝑧:𝑡⟶(Base‘𝑦))} ↦ (℩𝑠𝑚 ∈ ℕ0𝑓(𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥) ∧ 𝑠 = (seq1((+g‘(1st𝑥)), (𝑛 ∈ ℕ ↦ ((2nd𝑥)‘(𝑓𝑛))))‘𝑚))))
511, 50wceq 1540 1 wff FinSum = (𝑥 ∈ {⟨𝑦, 𝑧⟩ ∣ (𝑦 ∈ CMnd ∧ ∃𝑡 ∈ Fin 𝑧:𝑡⟶(Base‘𝑦))} ↦ (℩𝑠𝑚 ∈ ℕ0𝑓(𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥) ∧ 𝑠 = (seq1((+g‘(1st𝑥)), (𝑛 ∈ ℕ ↦ ((2nd𝑥)‘(𝑓𝑛))))‘𝑚))))
Colors of variables: wff setvar class
This definition is referenced by:  bj-finsumval0  37273
  Copyright terms: Public domain W3C validator