| Step | Hyp | Ref
| Expression |
| 1 | | df-ov 7413 |
. 2
⊢ (𝐴 FinSum 𝐵) = ( FinSum ‘〈𝐴, 𝐵〉) |
| 2 | | df-bj-finsum 37307 |
. . 3
⊢ FinSum =
(𝑥 ∈ {〈𝑦, 𝑧〉 ∣ (𝑦 ∈ CMnd ∧ ∃𝑡 ∈ Fin 𝑧:𝑡⟶(Base‘𝑦))} ↦ (℩𝑠∃𝑚 ∈ ℕ0 ∃𝑓(𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
∧ 𝑠 =
(seq1((+g‘(1st ‘𝑥)), (𝑛 ∈ ℕ ↦ ((2nd
‘𝑥)‘(𝑓‘𝑛))))‘𝑚)))) |
| 3 | | simpr 484 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 = 〈𝐴, 𝐵〉) → 𝑥 = 〈𝐴, 𝐵〉) |
| 4 | 3 | fveq2d 6885 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 = 〈𝐴, 𝐵〉) → (1st ‘𝑥) = (1st
‘〈𝐴, 𝐵〉)) |
| 5 | | bj-finsumval0.1 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐴 ∈ CMnd) |
| 6 | 5 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 = 〈𝐴, 𝐵〉) → 𝐴 ∈ CMnd) |
| 7 | | bj-finsumval0.3 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐵:𝐼⟶(Base‘𝐴)) |
| 8 | | bj-finsumval0.2 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐼 ∈ Fin) |
| 9 | 7, 8 | fexd 7224 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐵 ∈ V) |
| 10 | 9 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 = 〈𝐴, 𝐵〉) → 𝐵 ∈ V) |
| 11 | | op1stg 8005 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ CMnd ∧ 𝐵 ∈ V) →
(1st ‘〈𝐴, 𝐵〉) = 𝐴) |
| 12 | 6, 10, 11 | syl2anc 584 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 = 〈𝐴, 𝐵〉) → (1st
‘〈𝐴, 𝐵〉) = 𝐴) |
| 13 | 4, 12 | eqtrd 2771 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 = 〈𝐴, 𝐵〉) → (1st ‘𝑥) = 𝐴) |
| 14 | 3 | fveq2d 6885 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 = 〈𝐴, 𝐵〉) → (2nd ‘𝑥) = (2nd
‘〈𝐴, 𝐵〉)) |
| 15 | | op2ndg 8006 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ CMnd ∧ 𝐵 ∈ V) →
(2nd ‘〈𝐴, 𝐵〉) = 𝐵) |
| 16 | 6, 10, 15 | syl2anc 584 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 = 〈𝐴, 𝐵〉) → (2nd
‘〈𝐴, 𝐵〉) = 𝐵) |
| 17 | 14, 16 | eqtrd 2771 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 = 〈𝐴, 𝐵〉) → (2nd ‘𝑥) = 𝐵) |
| 18 | 17 | dmeqd 5890 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 = 〈𝐴, 𝐵〉) → dom (2nd
‘𝑥) = dom 𝐵) |
| 19 | 7 | fdmd 6721 |
. . . . . . . . . 10
⊢ (𝜑 → dom 𝐵 = 𝐼) |
| 20 | 19 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 = 〈𝐴, 𝐵〉) → dom 𝐵 = 𝐼) |
| 21 | 18, 20 | eqtrd 2771 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 = 〈𝐴, 𝐵〉) → dom (2nd
‘𝑥) = 𝐼) |
| 22 | | f1oeq3 6813 |
. . . . . . . . . . . . . . 15
⊢ (dom
(2nd ‘𝑥) =
𝐼 → (𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
↔ 𝑓:(1...𝑚)–1-1-onto→𝐼)) |
| 23 | 22 | biimpd 229 |
. . . . . . . . . . . . . 14
⊢ (dom
(2nd ‘𝑥) =
𝐼 → (𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
→ 𝑓:(1...𝑚)–1-1-onto→𝐼)) |
| 24 | 23 | ad2antll 729 |
. . . . . . . . . . . . 13
⊢
(((1st ‘𝑥) = 𝐴 ∧ ((2nd ‘𝑥) = 𝐵 ∧ dom (2nd ‘𝑥) = 𝐼)) → (𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
→ 𝑓:(1...𝑚)–1-1-onto→𝐼)) |
| 25 | 24 | adantrd 491 |
. . . . . . . . . . . 12
⊢
(((1st ‘𝑥) = 𝐴 ∧ ((2nd ‘𝑥) = 𝐵 ∧ dom (2nd ‘𝑥) = 𝐼)) → ((𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
∧ 𝑠 =
(seq1((+g‘(1st ‘𝑥)), (𝑛 ∈ ℕ ↦ ((2nd
‘𝑥)‘(𝑓‘𝑛))))‘𝑚)) → 𝑓:(1...𝑚)–1-1-onto→𝐼)) |
| 26 | 25 | adantr 480 |
. . . . . . . . . . 11
⊢
((((1st ‘𝑥) = 𝐴 ∧ ((2nd ‘𝑥) = 𝐵 ∧ dom (2nd ‘𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0) → ((𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
∧ 𝑠 =
(seq1((+g‘(1st ‘𝑥)), (𝑛 ∈ ℕ ↦ ((2nd
‘𝑥)‘(𝑓‘𝑛))))‘𝑚)) → 𝑓:(1...𝑚)–1-1-onto→𝐼)) |
| 27 | | eqidd 2737 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
∧ (((1st ‘𝑥) = 𝐴 ∧ ((2nd ‘𝑥) = 𝐵 ∧ dom (2nd ‘𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) → 1 =
1) |
| 28 | | simprl 770 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
∧ ((1st ‘𝑥) = 𝐴 ∧ ((2nd ‘𝑥) = 𝐵 ∧ dom (2nd ‘𝑥) = 𝐼))) → (1st ‘𝑥) = 𝐴) |
| 29 | 28 | fveq2d 6885 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
∧ ((1st ‘𝑥) = 𝐴 ∧ ((2nd ‘𝑥) = 𝐵 ∧ dom (2nd ‘𝑥) = 𝐼))) →
(+g‘(1st ‘𝑥)) = (+g‘𝐴)) |
| 30 | 29 | adantrr 717 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
∧ (((1st ‘𝑥) = 𝐴 ∧ ((2nd ‘𝑥) = 𝐵 ∧ dom (2nd ‘𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) →
(+g‘(1st ‘𝑥)) = (+g‘𝐴)) |
| 31 | | simprrl 780 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
∧ ((1st ‘𝑥) = 𝐴 ∧ ((2nd ‘𝑥) = 𝐵 ∧ dom (2nd ‘𝑥) = 𝐼))) → (2nd ‘𝑥) = 𝐵) |
| 32 | 31 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
∧ ((1st ‘𝑥) = 𝐴 ∧ ((2nd ‘𝑥) = 𝐵 ∧ dom (2nd ‘𝑥) = 𝐼))) ∧ 𝑛 ∈ ℕ) → (2nd
‘𝑥) = 𝐵) |
| 33 | 32 | fveq1d 6883 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
∧ ((1st ‘𝑥) = 𝐴 ∧ ((2nd ‘𝑥) = 𝐵 ∧ dom (2nd ‘𝑥) = 𝐼))) ∧ 𝑛 ∈ ℕ) → ((2nd
‘𝑥)‘(𝑓‘𝑛)) = (𝐵‘(𝑓‘𝑛))) |
| 34 | 33 | mpteq2dva 5219 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
∧ ((1st ‘𝑥) = 𝐴 ∧ ((2nd ‘𝑥) = 𝐵 ∧ dom (2nd ‘𝑥) = 𝐼))) → (𝑛 ∈ ℕ ↦ ((2nd
‘𝑥)‘(𝑓‘𝑛))) = (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓‘𝑛)))) |
| 35 | 34 | adantrr 717 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
∧ (((1st ‘𝑥) = 𝐴 ∧ ((2nd ‘𝑥) = 𝐵 ∧ dom (2nd ‘𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) → (𝑛 ∈ ℕ ↦
((2nd ‘𝑥)‘(𝑓‘𝑛))) = (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓‘𝑛)))) |
| 36 | 27, 30, 35 | seqeq123d 14033 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
∧ (((1st ‘𝑥) = 𝐴 ∧ ((2nd ‘𝑥) = 𝐵 ∧ dom (2nd ‘𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) →
seq1((+g‘(1st ‘𝑥)), (𝑛 ∈ ℕ ↦ ((2nd
‘𝑥)‘(𝑓‘𝑛)))) = seq1((+g‘𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓‘𝑛))))) |
| 37 | | simprr 772 |
. . . . . . . . . . . . . . . . . 18
⊢
(((1st ‘𝑥) = 𝐴 ∧ ((2nd ‘𝑥) = 𝐵 ∧ dom (2nd ‘𝑥) = 𝐼)) → dom (2nd ‘𝑥) = 𝐼) |
| 38 | 37 | anim1ci 616 |
. . . . . . . . . . . . . . . . 17
⊢
((((1st ‘𝑥) = 𝐴 ∧ ((2nd ‘𝑥) = 𝐵 ∧ dom (2nd ‘𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0) → (𝑚 ∈ ℕ0
∧ dom (2nd ‘𝑥) = 𝐼)) |
| 39 | | hashfz1 14369 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑚 ∈ ℕ0
→ (♯‘(1...𝑚)) = 𝑚) |
| 40 | 39 | eqcomd 2742 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑚 ∈ ℕ0
→ 𝑚 =
(♯‘(1...𝑚))) |
| 41 | 40 | ad2antrl 728 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
∧ (𝑚 ∈
ℕ0 ∧ dom (2nd ‘𝑥) = 𝐼)) → 𝑚 = (♯‘(1...𝑚))) |
| 42 | | fzfid 13996 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
∧ (𝑚 ∈
ℕ0 ∧ dom (2nd ‘𝑥) = 𝐼)) → (1...𝑚) ∈ Fin) |
| 43 | | 19.8a 2182 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
→ ∃𝑓 𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)) |
| 44 | 43 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
∧ (𝑚 ∈
ℕ0 ∧ dom (2nd ‘𝑥) = 𝐼)) → ∃𝑓 𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)) |
| 45 | | hasheqf1oi 14374 |
. . . . . . . . . . . . . . . . . . 19
⊢
((1...𝑚) ∈ Fin
→ (∃𝑓 𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
→ (♯‘(1...𝑚)) = (♯‘dom (2nd
‘𝑥)))) |
| 46 | 42, 44, 45 | sylc 65 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
∧ (𝑚 ∈
ℕ0 ∧ dom (2nd ‘𝑥) = 𝐼)) → (♯‘(1...𝑚)) = (♯‘dom
(2nd ‘𝑥))) |
| 47 | | simprr 772 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
∧ (𝑚 ∈
ℕ0 ∧ dom (2nd ‘𝑥) = 𝐼)) → dom (2nd ‘𝑥) = 𝐼) |
| 48 | 47 | fveq2d 6885 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
∧ (𝑚 ∈
ℕ0 ∧ dom (2nd ‘𝑥) = 𝐼)) → (♯‘dom (2nd
‘𝑥)) =
(♯‘𝐼)) |
| 49 | 41, 46, 48 | 3eqtrd 2775 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
∧ (𝑚 ∈
ℕ0 ∧ dom (2nd ‘𝑥) = 𝐼)) → 𝑚 = (♯‘𝐼)) |
| 50 | 38, 49 | sylan2 593 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
∧ (((1st ‘𝑥) = 𝐴 ∧ ((2nd ‘𝑥) = 𝐵 ∧ dom (2nd ‘𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) → 𝑚 = (♯‘𝐼)) |
| 51 | 36, 50 | fveq12d 6888 |
. . . . . . . . . . . . . . 15
⊢ ((𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
∧ (((1st ‘𝑥) = 𝐴 ∧ ((2nd ‘𝑥) = 𝐵 ∧ dom (2nd ‘𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) →
(seq1((+g‘(1st ‘𝑥)), (𝑛 ∈ ℕ ↦ ((2nd
‘𝑥)‘(𝑓‘𝑛))))‘𝑚) = (seq1((+g‘𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓‘𝑛))))‘(♯‘𝐼))) |
| 52 | 51 | eqeq2d 2747 |
. . . . . . . . . . . . . 14
⊢ ((𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
∧ (((1st ‘𝑥) = 𝐴 ∧ ((2nd ‘𝑥) = 𝐵 ∧ dom (2nd ‘𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) → (𝑠 =
(seq1((+g‘(1st ‘𝑥)), (𝑛 ∈ ℕ ↦ ((2nd
‘𝑥)‘(𝑓‘𝑛))))‘𝑚) ↔ 𝑠 = (seq1((+g‘𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓‘𝑛))))‘(♯‘𝐼)))) |
| 53 | 52 | biimpd 229 |
. . . . . . . . . . . . 13
⊢ ((𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
∧ (((1st ‘𝑥) = 𝐴 ∧ ((2nd ‘𝑥) = 𝐵 ∧ dom (2nd ‘𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) → (𝑠 =
(seq1((+g‘(1st ‘𝑥)), (𝑛 ∈ ℕ ↦ ((2nd
‘𝑥)‘(𝑓‘𝑛))))‘𝑚) → 𝑠 = (seq1((+g‘𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓‘𝑛))))‘(♯‘𝐼)))) |
| 54 | 53 | impancom 451 |
. . . . . . . . . . . 12
⊢ ((𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
∧ 𝑠 =
(seq1((+g‘(1st ‘𝑥)), (𝑛 ∈ ℕ ↦ ((2nd
‘𝑥)‘(𝑓‘𝑛))))‘𝑚)) → ((((1st ‘𝑥) = 𝐴 ∧ ((2nd ‘𝑥) = 𝐵 ∧ dom (2nd ‘𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0) → 𝑠 =
(seq1((+g‘𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓‘𝑛))))‘(♯‘𝐼)))) |
| 55 | 54 | com12 32 |
. . . . . . . . . . 11
⊢
((((1st ‘𝑥) = 𝐴 ∧ ((2nd ‘𝑥) = 𝐵 ∧ dom (2nd ‘𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0) → ((𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
∧ 𝑠 =
(seq1((+g‘(1st ‘𝑥)), (𝑛 ∈ ℕ ↦ ((2nd
‘𝑥)‘(𝑓‘𝑛))))‘𝑚)) → 𝑠 = (seq1((+g‘𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓‘𝑛))))‘(♯‘𝐼)))) |
| 56 | 26, 55 | jcad 512 |
. . . . . . . . . 10
⊢
((((1st ‘𝑥) = 𝐴 ∧ ((2nd ‘𝑥) = 𝐵 ∧ dom (2nd ‘𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0) → ((𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
∧ 𝑠 =
(seq1((+g‘(1st ‘𝑥)), (𝑛 ∈ ℕ ↦ ((2nd
‘𝑥)‘(𝑓‘𝑛))))‘𝑚)) → (𝑓:(1...𝑚)–1-1-onto→𝐼 ∧ 𝑠 = (seq1((+g‘𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓‘𝑛))))‘(♯‘𝐼))))) |
| 57 | 22 | biimprd 248 |
. . . . . . . . . . . . . 14
⊢ (dom
(2nd ‘𝑥) =
𝐼 → (𝑓:(1...𝑚)–1-1-onto→𝐼 → 𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥))) |
| 58 | 57 | ad2antll 729 |
. . . . . . . . . . . . 13
⊢
(((1st ‘𝑥) = 𝐴 ∧ ((2nd ‘𝑥) = 𝐵 ∧ dom (2nd ‘𝑥) = 𝐼)) → (𝑓:(1...𝑚)–1-1-onto→𝐼 → 𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥))) |
| 59 | 58 | adantr 480 |
. . . . . . . . . . . 12
⊢
((((1st ‘𝑥) = 𝐴 ∧ ((2nd ‘𝑥) = 𝐵 ∧ dom (2nd ‘𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0) → (𝑓:(1...𝑚)–1-1-onto→𝐼 → 𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥))) |
| 60 | 59 | adantrd 491 |
. . . . . . . . . . 11
⊢
((((1st ‘𝑥) = 𝐴 ∧ ((2nd ‘𝑥) = 𝐵 ∧ dom (2nd ‘𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0) → ((𝑓:(1...𝑚)–1-1-onto→𝐼 ∧ 𝑠 = (seq1((+g‘𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓‘𝑛))))‘(♯‘𝐼))) → 𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥))) |
| 61 | | eqidd 2737 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑓:(1...𝑚)–1-1-onto→𝐼 ∧ (((1st
‘𝑥) = 𝐴 ∧ ((2nd
‘𝑥) = 𝐵 ∧ dom (2nd
‘𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) → 1 =
1) |
| 62 | | simpl 482 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((1st ‘𝑥) = 𝐴 ∧ ((2nd ‘𝑥) = 𝐵 ∧ dom (2nd ‘𝑥) = 𝐼)) → (1st ‘𝑥) = 𝐴) |
| 63 | | tru 1544 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
⊤ |
| 64 | 62, 63 | jctir 520 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((1st ‘𝑥) = 𝐴 ∧ ((2nd ‘𝑥) = 𝐵 ∧ dom (2nd ‘𝑥) = 𝐼)) → ((1st ‘𝑥) = 𝐴 ∧ ⊤)) |
| 65 | 64 | ad2antrl 728 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑓:(1...𝑚)–1-1-onto→𝐼 ∧ (((1st
‘𝑥) = 𝐴 ∧ ((2nd
‘𝑥) = 𝐵 ∧ dom (2nd
‘𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) →
((1st ‘𝑥)
= 𝐴 ∧
⊤)) |
| 66 | | simpl 482 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((1st ‘𝑥) = 𝐴 ∧ ⊤) → (1st
‘𝑥) = 𝐴) |
| 67 | 66 | eqcomd 2742 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((1st ‘𝑥) = 𝐴 ∧ ⊤) → 𝐴 = (1st ‘𝑥)) |
| 68 | 65, 67 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑓:(1...𝑚)–1-1-onto→𝐼 ∧ (((1st
‘𝑥) = 𝐴 ∧ ((2nd
‘𝑥) = 𝐵 ∧ dom (2nd
‘𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) → 𝐴 = (1st ‘𝑥)) |
| 69 | 68 | fveq2d 6885 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑓:(1...𝑚)–1-1-onto→𝐼 ∧ (((1st
‘𝑥) = 𝐴 ∧ ((2nd
‘𝑥) = 𝐵 ∧ dom (2nd
‘𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) →
(+g‘𝐴) =
(+g‘(1st ‘𝑥))) |
| 70 | | simpl 482 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((2nd ‘𝑥) = 𝐵 ∧ dom (2nd ‘𝑥) = 𝐼) → (2nd ‘𝑥) = 𝐵) |
| 71 | 70 | eqcomd 2742 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((2nd ‘𝑥) = 𝐵 ∧ dom (2nd ‘𝑥) = 𝐼) → 𝐵 = (2nd ‘𝑥)) |
| 72 | 71 | ad2antll 729 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑓:(1...𝑚)–1-1-onto→𝐼 ∧ ((1st
‘𝑥) = 𝐴 ∧ ((2nd
‘𝑥) = 𝐵 ∧ dom (2nd
‘𝑥) = 𝐼))) → 𝐵 = (2nd ‘𝑥)) |
| 73 | 72 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑓:(1...𝑚)–1-1-onto→𝐼 ∧ ((1st
‘𝑥) = 𝐴 ∧ ((2nd
‘𝑥) = 𝐵 ∧ dom (2nd
‘𝑥) = 𝐼))) ∧ 𝑛 ∈ ℕ) → 𝐵 = (2nd ‘𝑥)) |
| 74 | 73 | fveq1d 6883 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑓:(1...𝑚)–1-1-onto→𝐼 ∧ ((1st
‘𝑥) = 𝐴 ∧ ((2nd
‘𝑥) = 𝐵 ∧ dom (2nd
‘𝑥) = 𝐼))) ∧ 𝑛 ∈ ℕ) → (𝐵‘(𝑓‘𝑛)) = ((2nd ‘𝑥)‘(𝑓‘𝑛))) |
| 75 | 74 | adantlrr 721 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑓:(1...𝑚)–1-1-onto→𝐼 ∧ (((1st
‘𝑥) = 𝐴 ∧ ((2nd
‘𝑥) = 𝐵 ∧ dom (2nd
‘𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) ∧ 𝑛 ∈ ℕ) → (𝐵‘(𝑓‘𝑛)) = ((2nd ‘𝑥)‘(𝑓‘𝑛))) |
| 76 | 75 | mpteq2dva 5219 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑓:(1...𝑚)–1-1-onto→𝐼 ∧ (((1st
‘𝑥) = 𝐴 ∧ ((2nd
‘𝑥) = 𝐵 ∧ dom (2nd
‘𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) → (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓‘𝑛))) = (𝑛 ∈ ℕ ↦ ((2nd
‘𝑥)‘(𝑓‘𝑛)))) |
| 77 | 61, 69, 76 | seqeq123d 14033 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑓:(1...𝑚)–1-1-onto→𝐼 ∧ (((1st
‘𝑥) = 𝐴 ∧ ((2nd
‘𝑥) = 𝐵 ∧ dom (2nd
‘𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) →
seq1((+g‘𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓‘𝑛)))) =
seq1((+g‘(1st ‘𝑥)), (𝑛 ∈ ℕ ↦ ((2nd
‘𝑥)‘(𝑓‘𝑛))))) |
| 78 | 59 | impcom 407 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑓:(1...𝑚)–1-1-onto→𝐼 ∧ (((1st
‘𝑥) = 𝐴 ∧ ((2nd
‘𝑥) = 𝐵 ∧ dom (2nd
‘𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) → 𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)) |
| 79 | | simprr 772 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑓:(1...𝑚)–1-1-onto→𝐼 ∧ (((1st
‘𝑥) = 𝐴 ∧ ((2nd
‘𝑥) = 𝐵 ∧ dom (2nd
‘𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) → 𝑚 ∈
ℕ0) |
| 80 | 37 | ad2antrl 728 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑓:(1...𝑚)–1-1-onto→𝐼 ∧ (((1st
‘𝑥) = 𝐴 ∧ ((2nd
‘𝑥) = 𝐵 ∧ dom (2nd
‘𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) → dom
(2nd ‘𝑥) =
𝐼) |
| 81 | 78, 79, 80, 49 | syl12anc 836 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑓:(1...𝑚)–1-1-onto→𝐼 ∧ (((1st
‘𝑥) = 𝐴 ∧ ((2nd
‘𝑥) = 𝐵 ∧ dom (2nd
‘𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) → 𝑚 = (♯‘𝐼)) |
| 82 | 81 | eqcomd 2742 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑓:(1...𝑚)–1-1-onto→𝐼 ∧ (((1st
‘𝑥) = 𝐴 ∧ ((2nd
‘𝑥) = 𝐵 ∧ dom (2nd
‘𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) →
(♯‘𝐼) = 𝑚) |
| 83 | 77, 82 | fveq12d 6888 |
. . . . . . . . . . . . . . 15
⊢ ((𝑓:(1...𝑚)–1-1-onto→𝐼 ∧ (((1st
‘𝑥) = 𝐴 ∧ ((2nd
‘𝑥) = 𝐵 ∧ dom (2nd
‘𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) →
(seq1((+g‘𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓‘𝑛))))‘(♯‘𝐼)) =
(seq1((+g‘(1st ‘𝑥)), (𝑛 ∈ ℕ ↦ ((2nd
‘𝑥)‘(𝑓‘𝑛))))‘𝑚)) |
| 84 | 83 | eqeq2d 2747 |
. . . . . . . . . . . . . 14
⊢ ((𝑓:(1...𝑚)–1-1-onto→𝐼 ∧ (((1st
‘𝑥) = 𝐴 ∧ ((2nd
‘𝑥) = 𝐵 ∧ dom (2nd
‘𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) → (𝑠 =
(seq1((+g‘𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓‘𝑛))))‘(♯‘𝐼)) ↔ 𝑠 = (seq1((+g‘(1st
‘𝑥)), (𝑛 ∈ ℕ ↦
((2nd ‘𝑥)‘(𝑓‘𝑛))))‘𝑚))) |
| 85 | 84 | biimpd 229 |
. . . . . . . . . . . . 13
⊢ ((𝑓:(1...𝑚)–1-1-onto→𝐼 ∧ (((1st
‘𝑥) = 𝐴 ∧ ((2nd
‘𝑥) = 𝐵 ∧ dom (2nd
‘𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) → (𝑠 =
(seq1((+g‘𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓‘𝑛))))‘(♯‘𝐼)) → 𝑠 = (seq1((+g‘(1st
‘𝑥)), (𝑛 ∈ ℕ ↦
((2nd ‘𝑥)‘(𝑓‘𝑛))))‘𝑚))) |
| 86 | 85 | impancom 451 |
. . . . . . . . . . . 12
⊢ ((𝑓:(1...𝑚)–1-1-onto→𝐼 ∧ 𝑠 = (seq1((+g‘𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓‘𝑛))))‘(♯‘𝐼))) → ((((1st ‘𝑥) = 𝐴 ∧ ((2nd ‘𝑥) = 𝐵 ∧ dom (2nd ‘𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0) → 𝑠 =
(seq1((+g‘(1st ‘𝑥)), (𝑛 ∈ ℕ ↦ ((2nd
‘𝑥)‘(𝑓‘𝑛))))‘𝑚))) |
| 87 | 86 | com12 32 |
. . . . . . . . . . 11
⊢
((((1st ‘𝑥) = 𝐴 ∧ ((2nd ‘𝑥) = 𝐵 ∧ dom (2nd ‘𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0) → ((𝑓:(1...𝑚)–1-1-onto→𝐼 ∧ 𝑠 = (seq1((+g‘𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓‘𝑛))))‘(♯‘𝐼))) → 𝑠 = (seq1((+g‘(1st
‘𝑥)), (𝑛 ∈ ℕ ↦
((2nd ‘𝑥)‘(𝑓‘𝑛))))‘𝑚))) |
| 88 | 60, 87 | jcad 512 |
. . . . . . . . . 10
⊢
((((1st ‘𝑥) = 𝐴 ∧ ((2nd ‘𝑥) = 𝐵 ∧ dom (2nd ‘𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0) → ((𝑓:(1...𝑚)–1-1-onto→𝐼 ∧ 𝑠 = (seq1((+g‘𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓‘𝑛))))‘(♯‘𝐼))) → (𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
∧ 𝑠 =
(seq1((+g‘(1st ‘𝑥)), (𝑛 ∈ ℕ ↦ ((2nd
‘𝑥)‘(𝑓‘𝑛))))‘𝑚)))) |
| 89 | 56, 88 | impbid 212 |
. . . . . . . . 9
⊢
((((1st ‘𝑥) = 𝐴 ∧ ((2nd ‘𝑥) = 𝐵 ∧ dom (2nd ‘𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0) → ((𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
∧ 𝑠 =
(seq1((+g‘(1st ‘𝑥)), (𝑛 ∈ ℕ ↦ ((2nd
‘𝑥)‘(𝑓‘𝑛))))‘𝑚)) ↔ (𝑓:(1...𝑚)–1-1-onto→𝐼 ∧ 𝑠 = (seq1((+g‘𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓‘𝑛))))‘(♯‘𝐼))))) |
| 90 | 89 | ex 412 |
. . . . . . . 8
⊢
(((1st ‘𝑥) = 𝐴 ∧ ((2nd ‘𝑥) = 𝐵 ∧ dom (2nd ‘𝑥) = 𝐼)) → (𝑚 ∈ ℕ0 → ((𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
∧ 𝑠 =
(seq1((+g‘(1st ‘𝑥)), (𝑛 ∈ ℕ ↦ ((2nd
‘𝑥)‘(𝑓‘𝑛))))‘𝑚)) ↔ (𝑓:(1...𝑚)–1-1-onto→𝐼 ∧ 𝑠 = (seq1((+g‘𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓‘𝑛))))‘(♯‘𝐼)))))) |
| 91 | 13, 17, 21, 90 | syl12anc 836 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 = 〈𝐴, 𝐵〉) → (𝑚 ∈ ℕ0 → ((𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
∧ 𝑠 =
(seq1((+g‘(1st ‘𝑥)), (𝑛 ∈ ℕ ↦ ((2nd
‘𝑥)‘(𝑓‘𝑛))))‘𝑚)) ↔ (𝑓:(1...𝑚)–1-1-onto→𝐼 ∧ 𝑠 = (seq1((+g‘𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓‘𝑛))))‘(♯‘𝐼)))))) |
| 92 | 91 | imp 406 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 = 〈𝐴, 𝐵〉) ∧ 𝑚 ∈ ℕ0) → ((𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
∧ 𝑠 =
(seq1((+g‘(1st ‘𝑥)), (𝑛 ∈ ℕ ↦ ((2nd
‘𝑥)‘(𝑓‘𝑛))))‘𝑚)) ↔ (𝑓:(1...𝑚)–1-1-onto→𝐼 ∧ 𝑠 = (seq1((+g‘𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓‘𝑛))))‘(♯‘𝐼))))) |
| 93 | 92 | exbidv 1921 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 = 〈𝐴, 𝐵〉) ∧ 𝑚 ∈ ℕ0) →
(∃𝑓(𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
∧ 𝑠 =
(seq1((+g‘(1st ‘𝑥)), (𝑛 ∈ ℕ ↦ ((2nd
‘𝑥)‘(𝑓‘𝑛))))‘𝑚)) ↔ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐼 ∧ 𝑠 = (seq1((+g‘𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓‘𝑛))))‘(♯‘𝐼))))) |
| 94 | 93 | rexbidva 3163 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 = 〈𝐴, 𝐵〉) → (∃𝑚 ∈ ℕ0 ∃𝑓(𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
∧ 𝑠 =
(seq1((+g‘(1st ‘𝑥)), (𝑛 ∈ ℕ ↦ ((2nd
‘𝑥)‘(𝑓‘𝑛))))‘𝑚)) ↔ ∃𝑚 ∈ ℕ0 ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐼 ∧ 𝑠 = (seq1((+g‘𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓‘𝑛))))‘(♯‘𝐼))))) |
| 95 | 94 | iotabidv 6520 |
. . 3
⊢ ((𝜑 ∧ 𝑥 = 〈𝐴, 𝐵〉) → (℩𝑠∃𝑚 ∈ ℕ0 ∃𝑓(𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
∧ 𝑠 =
(seq1((+g‘(1st ‘𝑥)), (𝑛 ∈ ℕ ↦ ((2nd
‘𝑥)‘(𝑓‘𝑛))))‘𝑚))) = (℩𝑠∃𝑚 ∈ ℕ0 ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐼 ∧ 𝑠 = (seq1((+g‘𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓‘𝑛))))‘(♯‘𝐼))))) |
| 96 | | eleq1 2823 |
. . . . . . . . . 10
⊢ (𝑡 = 𝐼 → (𝑡 ∈ Fin ↔ 𝐼 ∈ Fin)) |
| 97 | | feq2 6692 |
. . . . . . . . . 10
⊢ (𝑡 = 𝐼 → (𝐵:𝑡⟶(Base‘𝐴) ↔ 𝐵:𝐼⟶(Base‘𝐴))) |
| 98 | 96, 97 | anbi12d 632 |
. . . . . . . . 9
⊢ (𝑡 = 𝐼 → ((𝑡 ∈ Fin ∧ 𝐵:𝑡⟶(Base‘𝐴)) ↔ (𝐼 ∈ Fin ∧ 𝐵:𝐼⟶(Base‘𝐴)))) |
| 99 | 98 | ceqsexgv 3638 |
. . . . . . . 8
⊢ (𝐼 ∈ Fin → (∃𝑡(𝑡 = 𝐼 ∧ (𝑡 ∈ Fin ∧ 𝐵:𝑡⟶(Base‘𝐴))) ↔ (𝐼 ∈ Fin ∧ 𝐵:𝐼⟶(Base‘𝐴)))) |
| 100 | 8, 99 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (∃𝑡(𝑡 = 𝐼 ∧ (𝑡 ∈ Fin ∧ 𝐵:𝑡⟶(Base‘𝐴))) ↔ (𝐼 ∈ Fin ∧ 𝐵:𝐼⟶(Base‘𝐴)))) |
| 101 | 8, 7, 100 | mpbir2and 713 |
. . . . . 6
⊢ (𝜑 → ∃𝑡(𝑡 = 𝐼 ∧ (𝑡 ∈ Fin ∧ 𝐵:𝑡⟶(Base‘𝐴)))) |
| 102 | | exsimpr 1869 |
. . . . . 6
⊢
(∃𝑡(𝑡 = 𝐼 ∧ (𝑡 ∈ Fin ∧ 𝐵:𝑡⟶(Base‘𝐴))) → ∃𝑡(𝑡 ∈ Fin ∧ 𝐵:𝑡⟶(Base‘𝐴))) |
| 103 | 101, 102 | syl 17 |
. . . . 5
⊢ (𝜑 → ∃𝑡(𝑡 ∈ Fin ∧ 𝐵:𝑡⟶(Base‘𝐴))) |
| 104 | | df-rex 3062 |
. . . . 5
⊢
(∃𝑡 ∈ Fin
𝐵:𝑡⟶(Base‘𝐴) ↔ ∃𝑡(𝑡 ∈ Fin ∧ 𝐵:𝑡⟶(Base‘𝐴))) |
| 105 | 103, 104 | sylibr 234 |
. . . 4
⊢ (𝜑 → ∃𝑡 ∈ Fin 𝐵:𝑡⟶(Base‘𝐴)) |
| 106 | | eleq1 2823 |
. . . . . . 7
⊢ (𝑦 = 𝐴 → (𝑦 ∈ CMnd ↔ 𝐴 ∈ CMnd)) |
| 107 | | fveq2 6881 |
. . . . . . . . 9
⊢ (𝑦 = 𝐴 → (Base‘𝑦) = (Base‘𝐴)) |
| 108 | 107 | feq3d 6698 |
. . . . . . . 8
⊢ (𝑦 = 𝐴 → (𝑧:𝑡⟶(Base‘𝑦) ↔ 𝑧:𝑡⟶(Base‘𝐴))) |
| 109 | 108 | rexbidv 3165 |
. . . . . . 7
⊢ (𝑦 = 𝐴 → (∃𝑡 ∈ Fin 𝑧:𝑡⟶(Base‘𝑦) ↔ ∃𝑡 ∈ Fin 𝑧:𝑡⟶(Base‘𝐴))) |
| 110 | 106, 109 | anbi12d 632 |
. . . . . 6
⊢ (𝑦 = 𝐴 → ((𝑦 ∈ CMnd ∧ ∃𝑡 ∈ Fin 𝑧:𝑡⟶(Base‘𝑦)) ↔ (𝐴 ∈ CMnd ∧ ∃𝑡 ∈ Fin 𝑧:𝑡⟶(Base‘𝐴)))) |
| 111 | | feq1 6691 |
. . . . . . . 8
⊢ (𝑧 = 𝐵 → (𝑧:𝑡⟶(Base‘𝐴) ↔ 𝐵:𝑡⟶(Base‘𝐴))) |
| 112 | 111 | rexbidv 3165 |
. . . . . . 7
⊢ (𝑧 = 𝐵 → (∃𝑡 ∈ Fin 𝑧:𝑡⟶(Base‘𝐴) ↔ ∃𝑡 ∈ Fin 𝐵:𝑡⟶(Base‘𝐴))) |
| 113 | 112 | anbi2d 630 |
. . . . . 6
⊢ (𝑧 = 𝐵 → ((𝐴 ∈ CMnd ∧ ∃𝑡 ∈ Fin 𝑧:𝑡⟶(Base‘𝐴)) ↔ (𝐴 ∈ CMnd ∧ ∃𝑡 ∈ Fin 𝐵:𝑡⟶(Base‘𝐴)))) |
| 114 | 110, 113 | opelopabg 5518 |
. . . . 5
⊢ ((𝐴 ∈ CMnd ∧ 𝐵 ∈ V) → (〈𝐴, 𝐵〉 ∈ {〈𝑦, 𝑧〉 ∣ (𝑦 ∈ CMnd ∧ ∃𝑡 ∈ Fin 𝑧:𝑡⟶(Base‘𝑦))} ↔ (𝐴 ∈ CMnd ∧ ∃𝑡 ∈ Fin 𝐵:𝑡⟶(Base‘𝐴)))) |
| 115 | 5, 9, 114 | syl2anc 584 |
. . . 4
⊢ (𝜑 → (〈𝐴, 𝐵〉 ∈ {〈𝑦, 𝑧〉 ∣ (𝑦 ∈ CMnd ∧ ∃𝑡 ∈ Fin 𝑧:𝑡⟶(Base‘𝑦))} ↔ (𝐴 ∈ CMnd ∧ ∃𝑡 ∈ Fin 𝐵:𝑡⟶(Base‘𝐴)))) |
| 116 | 5, 105, 115 | mpbir2and 713 |
. . 3
⊢ (𝜑 → 〈𝐴, 𝐵〉 ∈ {〈𝑦, 𝑧〉 ∣ (𝑦 ∈ CMnd ∧ ∃𝑡 ∈ Fin 𝑧:𝑡⟶(Base‘𝑦))}) |
| 117 | | iotaex 6509 |
. . . 4
⊢
(℩𝑠∃𝑚 ∈ ℕ0 ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐼 ∧ 𝑠 = (seq1((+g‘𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓‘𝑛))))‘(♯‘𝐼)))) ∈ V |
| 118 | 117 | a1i 11 |
. . 3
⊢ (𝜑 → (℩𝑠∃𝑚 ∈ ℕ0 ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐼 ∧ 𝑠 = (seq1((+g‘𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓‘𝑛))))‘(♯‘𝐼)))) ∈ V) |
| 119 | 2, 95, 116, 118 | fvmptd2 6999 |
. 2
⊢ (𝜑 → ( FinSum
‘〈𝐴, 𝐵〉) = (℩𝑠∃𝑚 ∈ ℕ0 ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐼 ∧ 𝑠 = (seq1((+g‘𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓‘𝑛))))‘(♯‘𝐼))))) |
| 120 | 1, 119 | eqtrid 2783 |
1
⊢ (𝜑 → (𝐴 FinSum 𝐵) = (℩𝑠∃𝑚 ∈ ℕ0 ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐼 ∧ 𝑠 = (seq1((+g‘𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓‘𝑛))))‘(♯‘𝐼))))) |