| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | df-ov 7434 | . 2
⊢ (𝐴 FinSum 𝐵) = ( FinSum ‘〈𝐴, 𝐵〉) | 
| 2 |  | df-bj-finsum 37285 | . . 3
⊢  FinSum =
(𝑥 ∈ {〈𝑦, 𝑧〉 ∣ (𝑦 ∈ CMnd ∧ ∃𝑡 ∈ Fin 𝑧:𝑡⟶(Base‘𝑦))} ↦ (℩𝑠∃𝑚 ∈ ℕ0 ∃𝑓(𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
∧ 𝑠 =
(seq1((+g‘(1st ‘𝑥)), (𝑛 ∈ ℕ ↦ ((2nd
‘𝑥)‘(𝑓‘𝑛))))‘𝑚)))) | 
| 3 |  | simpr 484 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 = 〈𝐴, 𝐵〉) → 𝑥 = 〈𝐴, 𝐵〉) | 
| 4 | 3 | fveq2d 6910 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 = 〈𝐴, 𝐵〉) → (1st ‘𝑥) = (1st
‘〈𝐴, 𝐵〉)) | 
| 5 |  | bj-finsumval0.1 | . . . . . . . . . . 11
⊢ (𝜑 → 𝐴 ∈ CMnd) | 
| 6 | 5 | adantr 480 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 = 〈𝐴, 𝐵〉) → 𝐴 ∈ CMnd) | 
| 7 |  | bj-finsumval0.3 | . . . . . . . . . . . 12
⊢ (𝜑 → 𝐵:𝐼⟶(Base‘𝐴)) | 
| 8 |  | bj-finsumval0.2 | . . . . . . . . . . . 12
⊢ (𝜑 → 𝐼 ∈ Fin) | 
| 9 | 7, 8 | fexd 7247 | . . . . . . . . . . 11
⊢ (𝜑 → 𝐵 ∈ V) | 
| 10 | 9 | adantr 480 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 = 〈𝐴, 𝐵〉) → 𝐵 ∈ V) | 
| 11 |  | op1stg 8026 | . . . . . . . . . 10
⊢ ((𝐴 ∈ CMnd ∧ 𝐵 ∈ V) →
(1st ‘〈𝐴, 𝐵〉) = 𝐴) | 
| 12 | 6, 10, 11 | syl2anc 584 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 = 〈𝐴, 𝐵〉) → (1st
‘〈𝐴, 𝐵〉) = 𝐴) | 
| 13 | 4, 12 | eqtrd 2777 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 = 〈𝐴, 𝐵〉) → (1st ‘𝑥) = 𝐴) | 
| 14 | 3 | fveq2d 6910 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 = 〈𝐴, 𝐵〉) → (2nd ‘𝑥) = (2nd
‘〈𝐴, 𝐵〉)) | 
| 15 |  | op2ndg 8027 | . . . . . . . . . 10
⊢ ((𝐴 ∈ CMnd ∧ 𝐵 ∈ V) →
(2nd ‘〈𝐴, 𝐵〉) = 𝐵) | 
| 16 | 6, 10, 15 | syl2anc 584 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 = 〈𝐴, 𝐵〉) → (2nd
‘〈𝐴, 𝐵〉) = 𝐵) | 
| 17 | 14, 16 | eqtrd 2777 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 = 〈𝐴, 𝐵〉) → (2nd ‘𝑥) = 𝐵) | 
| 18 | 17 | dmeqd 5916 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 = 〈𝐴, 𝐵〉) → dom (2nd
‘𝑥) = dom 𝐵) | 
| 19 | 7 | fdmd 6746 | . . . . . . . . . 10
⊢ (𝜑 → dom 𝐵 = 𝐼) | 
| 20 | 19 | adantr 480 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 = 〈𝐴, 𝐵〉) → dom 𝐵 = 𝐼) | 
| 21 | 18, 20 | eqtrd 2777 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 = 〈𝐴, 𝐵〉) → dom (2nd
‘𝑥) = 𝐼) | 
| 22 |  | f1oeq3 6838 | . . . . . . . . . . . . . . 15
⊢ (dom
(2nd ‘𝑥) =
𝐼 → (𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
↔ 𝑓:(1...𝑚)–1-1-onto→𝐼)) | 
| 23 | 22 | biimpd 229 | . . . . . . . . . . . . . 14
⊢ (dom
(2nd ‘𝑥) =
𝐼 → (𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
→ 𝑓:(1...𝑚)–1-1-onto→𝐼)) | 
| 24 | 23 | ad2antll 729 | . . . . . . . . . . . . 13
⊢
(((1st ‘𝑥) = 𝐴 ∧ ((2nd ‘𝑥) = 𝐵 ∧ dom (2nd ‘𝑥) = 𝐼)) → (𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
→ 𝑓:(1...𝑚)–1-1-onto→𝐼)) | 
| 25 | 24 | adantrd 491 | . . . . . . . . . . . 12
⊢
(((1st ‘𝑥) = 𝐴 ∧ ((2nd ‘𝑥) = 𝐵 ∧ dom (2nd ‘𝑥) = 𝐼)) → ((𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
∧ 𝑠 =
(seq1((+g‘(1st ‘𝑥)), (𝑛 ∈ ℕ ↦ ((2nd
‘𝑥)‘(𝑓‘𝑛))))‘𝑚)) → 𝑓:(1...𝑚)–1-1-onto→𝐼)) | 
| 26 | 25 | adantr 480 | . . . . . . . . . . 11
⊢
((((1st ‘𝑥) = 𝐴 ∧ ((2nd ‘𝑥) = 𝐵 ∧ dom (2nd ‘𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0) → ((𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
∧ 𝑠 =
(seq1((+g‘(1st ‘𝑥)), (𝑛 ∈ ℕ ↦ ((2nd
‘𝑥)‘(𝑓‘𝑛))))‘𝑚)) → 𝑓:(1...𝑚)–1-1-onto→𝐼)) | 
| 27 |  | eqidd 2738 | . . . . . . . . . . . . . . . . 17
⊢ ((𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
∧ (((1st ‘𝑥) = 𝐴 ∧ ((2nd ‘𝑥) = 𝐵 ∧ dom (2nd ‘𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) → 1 =
1) | 
| 28 |  | simprl 771 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
∧ ((1st ‘𝑥) = 𝐴 ∧ ((2nd ‘𝑥) = 𝐵 ∧ dom (2nd ‘𝑥) = 𝐼))) → (1st ‘𝑥) = 𝐴) | 
| 29 | 28 | fveq2d 6910 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
∧ ((1st ‘𝑥) = 𝐴 ∧ ((2nd ‘𝑥) = 𝐵 ∧ dom (2nd ‘𝑥) = 𝐼))) →
(+g‘(1st ‘𝑥)) = (+g‘𝐴)) | 
| 30 | 29 | adantrr 717 | . . . . . . . . . . . . . . . . 17
⊢ ((𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
∧ (((1st ‘𝑥) = 𝐴 ∧ ((2nd ‘𝑥) = 𝐵 ∧ dom (2nd ‘𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) →
(+g‘(1st ‘𝑥)) = (+g‘𝐴)) | 
| 31 |  | simprrl 781 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
∧ ((1st ‘𝑥) = 𝐴 ∧ ((2nd ‘𝑥) = 𝐵 ∧ dom (2nd ‘𝑥) = 𝐼))) → (2nd ‘𝑥) = 𝐵) | 
| 32 | 31 | adantr 480 | . . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
∧ ((1st ‘𝑥) = 𝐴 ∧ ((2nd ‘𝑥) = 𝐵 ∧ dom (2nd ‘𝑥) = 𝐼))) ∧ 𝑛 ∈ ℕ) → (2nd
‘𝑥) = 𝐵) | 
| 33 | 32 | fveq1d 6908 | . . . . . . . . . . . . . . . . . . 19
⊢ (((𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
∧ ((1st ‘𝑥) = 𝐴 ∧ ((2nd ‘𝑥) = 𝐵 ∧ dom (2nd ‘𝑥) = 𝐼))) ∧ 𝑛 ∈ ℕ) → ((2nd
‘𝑥)‘(𝑓‘𝑛)) = (𝐵‘(𝑓‘𝑛))) | 
| 34 | 33 | mpteq2dva 5242 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
∧ ((1st ‘𝑥) = 𝐴 ∧ ((2nd ‘𝑥) = 𝐵 ∧ dom (2nd ‘𝑥) = 𝐼))) → (𝑛 ∈ ℕ ↦ ((2nd
‘𝑥)‘(𝑓‘𝑛))) = (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓‘𝑛)))) | 
| 35 | 34 | adantrr 717 | . . . . . . . . . . . . . . . . 17
⊢ ((𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
∧ (((1st ‘𝑥) = 𝐴 ∧ ((2nd ‘𝑥) = 𝐵 ∧ dom (2nd ‘𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) → (𝑛 ∈ ℕ ↦
((2nd ‘𝑥)‘(𝑓‘𝑛))) = (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓‘𝑛)))) | 
| 36 | 27, 30, 35 | seqeq123d 14051 | . . . . . . . . . . . . . . . 16
⊢ ((𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
∧ (((1st ‘𝑥) = 𝐴 ∧ ((2nd ‘𝑥) = 𝐵 ∧ dom (2nd ‘𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) →
seq1((+g‘(1st ‘𝑥)), (𝑛 ∈ ℕ ↦ ((2nd
‘𝑥)‘(𝑓‘𝑛)))) = seq1((+g‘𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓‘𝑛))))) | 
| 37 |  | simprr 773 | . . . . . . . . . . . . . . . . . 18
⊢
(((1st ‘𝑥) = 𝐴 ∧ ((2nd ‘𝑥) = 𝐵 ∧ dom (2nd ‘𝑥) = 𝐼)) → dom (2nd ‘𝑥) = 𝐼) | 
| 38 | 37 | anim1ci 616 | . . . . . . . . . . . . . . . . 17
⊢
((((1st ‘𝑥) = 𝐴 ∧ ((2nd ‘𝑥) = 𝐵 ∧ dom (2nd ‘𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0) → (𝑚 ∈ ℕ0
∧ dom (2nd ‘𝑥) = 𝐼)) | 
| 39 |  | hashfz1 14385 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑚 ∈ ℕ0
→ (♯‘(1...𝑚)) = 𝑚) | 
| 40 | 39 | eqcomd 2743 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑚 ∈ ℕ0
→ 𝑚 =
(♯‘(1...𝑚))) | 
| 41 | 40 | ad2antrl 728 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
∧ (𝑚 ∈
ℕ0 ∧ dom (2nd ‘𝑥) = 𝐼)) → 𝑚 = (♯‘(1...𝑚))) | 
| 42 |  | fzfid 14014 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
∧ (𝑚 ∈
ℕ0 ∧ dom (2nd ‘𝑥) = 𝐼)) → (1...𝑚) ∈ Fin) | 
| 43 |  | 19.8a 2181 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
→ ∃𝑓 𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)) | 
| 44 | 43 | adantr 480 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
∧ (𝑚 ∈
ℕ0 ∧ dom (2nd ‘𝑥) = 𝐼)) → ∃𝑓 𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)) | 
| 45 |  | hasheqf1oi 14390 | . . . . . . . . . . . . . . . . . . 19
⊢
((1...𝑚) ∈ Fin
→ (∃𝑓 𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
→ (♯‘(1...𝑚)) = (♯‘dom (2nd
‘𝑥)))) | 
| 46 | 42, 44, 45 | sylc 65 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
∧ (𝑚 ∈
ℕ0 ∧ dom (2nd ‘𝑥) = 𝐼)) → (♯‘(1...𝑚)) = (♯‘dom
(2nd ‘𝑥))) | 
| 47 |  | simprr 773 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
∧ (𝑚 ∈
ℕ0 ∧ dom (2nd ‘𝑥) = 𝐼)) → dom (2nd ‘𝑥) = 𝐼) | 
| 48 | 47 | fveq2d 6910 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
∧ (𝑚 ∈
ℕ0 ∧ dom (2nd ‘𝑥) = 𝐼)) → (♯‘dom (2nd
‘𝑥)) =
(♯‘𝐼)) | 
| 49 | 41, 46, 48 | 3eqtrd 2781 | . . . . . . . . . . . . . . . . 17
⊢ ((𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
∧ (𝑚 ∈
ℕ0 ∧ dom (2nd ‘𝑥) = 𝐼)) → 𝑚 = (♯‘𝐼)) | 
| 50 | 38, 49 | sylan2 593 | . . . . . . . . . . . . . . . 16
⊢ ((𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
∧ (((1st ‘𝑥) = 𝐴 ∧ ((2nd ‘𝑥) = 𝐵 ∧ dom (2nd ‘𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) → 𝑚 = (♯‘𝐼)) | 
| 51 | 36, 50 | fveq12d 6913 | . . . . . . . . . . . . . . 15
⊢ ((𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
∧ (((1st ‘𝑥) = 𝐴 ∧ ((2nd ‘𝑥) = 𝐵 ∧ dom (2nd ‘𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) →
(seq1((+g‘(1st ‘𝑥)), (𝑛 ∈ ℕ ↦ ((2nd
‘𝑥)‘(𝑓‘𝑛))))‘𝑚) = (seq1((+g‘𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓‘𝑛))))‘(♯‘𝐼))) | 
| 52 | 51 | eqeq2d 2748 | . . . . . . . . . . . . . 14
⊢ ((𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
∧ (((1st ‘𝑥) = 𝐴 ∧ ((2nd ‘𝑥) = 𝐵 ∧ dom (2nd ‘𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) → (𝑠 =
(seq1((+g‘(1st ‘𝑥)), (𝑛 ∈ ℕ ↦ ((2nd
‘𝑥)‘(𝑓‘𝑛))))‘𝑚) ↔ 𝑠 = (seq1((+g‘𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓‘𝑛))))‘(♯‘𝐼)))) | 
| 53 | 52 | biimpd 229 | . . . . . . . . . . . . 13
⊢ ((𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
∧ (((1st ‘𝑥) = 𝐴 ∧ ((2nd ‘𝑥) = 𝐵 ∧ dom (2nd ‘𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) → (𝑠 =
(seq1((+g‘(1st ‘𝑥)), (𝑛 ∈ ℕ ↦ ((2nd
‘𝑥)‘(𝑓‘𝑛))))‘𝑚) → 𝑠 = (seq1((+g‘𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓‘𝑛))))‘(♯‘𝐼)))) | 
| 54 | 53 | impancom 451 | . . . . . . . . . . . 12
⊢ ((𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
∧ 𝑠 =
(seq1((+g‘(1st ‘𝑥)), (𝑛 ∈ ℕ ↦ ((2nd
‘𝑥)‘(𝑓‘𝑛))))‘𝑚)) → ((((1st ‘𝑥) = 𝐴 ∧ ((2nd ‘𝑥) = 𝐵 ∧ dom (2nd ‘𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0) → 𝑠 =
(seq1((+g‘𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓‘𝑛))))‘(♯‘𝐼)))) | 
| 55 | 54 | com12 32 | . . . . . . . . . . 11
⊢
((((1st ‘𝑥) = 𝐴 ∧ ((2nd ‘𝑥) = 𝐵 ∧ dom (2nd ‘𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0) → ((𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
∧ 𝑠 =
(seq1((+g‘(1st ‘𝑥)), (𝑛 ∈ ℕ ↦ ((2nd
‘𝑥)‘(𝑓‘𝑛))))‘𝑚)) → 𝑠 = (seq1((+g‘𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓‘𝑛))))‘(♯‘𝐼)))) | 
| 56 | 26, 55 | jcad 512 | . . . . . . . . . 10
⊢
((((1st ‘𝑥) = 𝐴 ∧ ((2nd ‘𝑥) = 𝐵 ∧ dom (2nd ‘𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0) → ((𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
∧ 𝑠 =
(seq1((+g‘(1st ‘𝑥)), (𝑛 ∈ ℕ ↦ ((2nd
‘𝑥)‘(𝑓‘𝑛))))‘𝑚)) → (𝑓:(1...𝑚)–1-1-onto→𝐼 ∧ 𝑠 = (seq1((+g‘𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓‘𝑛))))‘(♯‘𝐼))))) | 
| 57 | 22 | biimprd 248 | . . . . . . . . . . . . . 14
⊢ (dom
(2nd ‘𝑥) =
𝐼 → (𝑓:(1...𝑚)–1-1-onto→𝐼 → 𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥))) | 
| 58 | 57 | ad2antll 729 | . . . . . . . . . . . . 13
⊢
(((1st ‘𝑥) = 𝐴 ∧ ((2nd ‘𝑥) = 𝐵 ∧ dom (2nd ‘𝑥) = 𝐼)) → (𝑓:(1...𝑚)–1-1-onto→𝐼 → 𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥))) | 
| 59 | 58 | adantr 480 | . . . . . . . . . . . 12
⊢
((((1st ‘𝑥) = 𝐴 ∧ ((2nd ‘𝑥) = 𝐵 ∧ dom (2nd ‘𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0) → (𝑓:(1...𝑚)–1-1-onto→𝐼 → 𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥))) | 
| 60 | 59 | adantrd 491 | . . . . . . . . . . 11
⊢
((((1st ‘𝑥) = 𝐴 ∧ ((2nd ‘𝑥) = 𝐵 ∧ dom (2nd ‘𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0) → ((𝑓:(1...𝑚)–1-1-onto→𝐼 ∧ 𝑠 = (seq1((+g‘𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓‘𝑛))))‘(♯‘𝐼))) → 𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥))) | 
| 61 |  | eqidd 2738 | . . . . . . . . . . . . . . . . 17
⊢ ((𝑓:(1...𝑚)–1-1-onto→𝐼 ∧ (((1st
‘𝑥) = 𝐴 ∧ ((2nd
‘𝑥) = 𝐵 ∧ dom (2nd
‘𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) → 1 =
1) | 
| 62 |  | simpl 482 | . . . . . . . . . . . . . . . . . . . . 21
⊢
(((1st ‘𝑥) = 𝐴 ∧ ((2nd ‘𝑥) = 𝐵 ∧ dom (2nd ‘𝑥) = 𝐼)) → (1st ‘𝑥) = 𝐴) | 
| 63 |  | tru 1544 | . . . . . . . . . . . . . . . . . . . . 21
⊢
⊤ | 
| 64 | 62, 63 | jctir 520 | . . . . . . . . . . . . . . . . . . . 20
⊢
(((1st ‘𝑥) = 𝐴 ∧ ((2nd ‘𝑥) = 𝐵 ∧ dom (2nd ‘𝑥) = 𝐼)) → ((1st ‘𝑥) = 𝐴 ∧ ⊤)) | 
| 65 | 64 | ad2antrl 728 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝑓:(1...𝑚)–1-1-onto→𝐼 ∧ (((1st
‘𝑥) = 𝐴 ∧ ((2nd
‘𝑥) = 𝐵 ∧ dom (2nd
‘𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) →
((1st ‘𝑥)
= 𝐴 ∧
⊤)) | 
| 66 |  | simpl 482 | . . . . . . . . . . . . . . . . . . . 20
⊢
(((1st ‘𝑥) = 𝐴 ∧ ⊤) → (1st
‘𝑥) = 𝐴) | 
| 67 | 66 | eqcomd 2743 | . . . . . . . . . . . . . . . . . . 19
⊢
(((1st ‘𝑥) = 𝐴 ∧ ⊤) → 𝐴 = (1st ‘𝑥)) | 
| 68 | 65, 67 | syl 17 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝑓:(1...𝑚)–1-1-onto→𝐼 ∧ (((1st
‘𝑥) = 𝐴 ∧ ((2nd
‘𝑥) = 𝐵 ∧ dom (2nd
‘𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) → 𝐴 = (1st ‘𝑥)) | 
| 69 | 68 | fveq2d 6910 | . . . . . . . . . . . . . . . . 17
⊢ ((𝑓:(1...𝑚)–1-1-onto→𝐼 ∧ (((1st
‘𝑥) = 𝐴 ∧ ((2nd
‘𝑥) = 𝐵 ∧ dom (2nd
‘𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) →
(+g‘𝐴) =
(+g‘(1st ‘𝑥))) | 
| 70 |  | simpl 482 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((2nd ‘𝑥) = 𝐵 ∧ dom (2nd ‘𝑥) = 𝐼) → (2nd ‘𝑥) = 𝐵) | 
| 71 | 70 | eqcomd 2743 | . . . . . . . . . . . . . . . . . . . . . 22
⊢
(((2nd ‘𝑥) = 𝐵 ∧ dom (2nd ‘𝑥) = 𝐼) → 𝐵 = (2nd ‘𝑥)) | 
| 72 | 71 | ad2antll 729 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑓:(1...𝑚)–1-1-onto→𝐼 ∧ ((1st
‘𝑥) = 𝐴 ∧ ((2nd
‘𝑥) = 𝐵 ∧ dom (2nd
‘𝑥) = 𝐼))) → 𝐵 = (2nd ‘𝑥)) | 
| 73 | 72 | adantr 480 | . . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑓:(1...𝑚)–1-1-onto→𝐼 ∧ ((1st
‘𝑥) = 𝐴 ∧ ((2nd
‘𝑥) = 𝐵 ∧ dom (2nd
‘𝑥) = 𝐼))) ∧ 𝑛 ∈ ℕ) → 𝐵 = (2nd ‘𝑥)) | 
| 74 | 73 | fveq1d 6908 | . . . . . . . . . . . . . . . . . . 19
⊢ (((𝑓:(1...𝑚)–1-1-onto→𝐼 ∧ ((1st
‘𝑥) = 𝐴 ∧ ((2nd
‘𝑥) = 𝐵 ∧ dom (2nd
‘𝑥) = 𝐼))) ∧ 𝑛 ∈ ℕ) → (𝐵‘(𝑓‘𝑛)) = ((2nd ‘𝑥)‘(𝑓‘𝑛))) | 
| 75 | 74 | adantlrr 721 | . . . . . . . . . . . . . . . . . 18
⊢ (((𝑓:(1...𝑚)–1-1-onto→𝐼 ∧ (((1st
‘𝑥) = 𝐴 ∧ ((2nd
‘𝑥) = 𝐵 ∧ dom (2nd
‘𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) ∧ 𝑛 ∈ ℕ) → (𝐵‘(𝑓‘𝑛)) = ((2nd ‘𝑥)‘(𝑓‘𝑛))) | 
| 76 | 75 | mpteq2dva 5242 | . . . . . . . . . . . . . . . . 17
⊢ ((𝑓:(1...𝑚)–1-1-onto→𝐼 ∧ (((1st
‘𝑥) = 𝐴 ∧ ((2nd
‘𝑥) = 𝐵 ∧ dom (2nd
‘𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) → (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓‘𝑛))) = (𝑛 ∈ ℕ ↦ ((2nd
‘𝑥)‘(𝑓‘𝑛)))) | 
| 77 | 61, 69, 76 | seqeq123d 14051 | . . . . . . . . . . . . . . . 16
⊢ ((𝑓:(1...𝑚)–1-1-onto→𝐼 ∧ (((1st
‘𝑥) = 𝐴 ∧ ((2nd
‘𝑥) = 𝐵 ∧ dom (2nd
‘𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) →
seq1((+g‘𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓‘𝑛)))) =
seq1((+g‘(1st ‘𝑥)), (𝑛 ∈ ℕ ↦ ((2nd
‘𝑥)‘(𝑓‘𝑛))))) | 
| 78 | 59 | impcom 407 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝑓:(1...𝑚)–1-1-onto→𝐼 ∧ (((1st
‘𝑥) = 𝐴 ∧ ((2nd
‘𝑥) = 𝐵 ∧ dom (2nd
‘𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) → 𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)) | 
| 79 |  | simprr 773 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝑓:(1...𝑚)–1-1-onto→𝐼 ∧ (((1st
‘𝑥) = 𝐴 ∧ ((2nd
‘𝑥) = 𝐵 ∧ dom (2nd
‘𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) → 𝑚 ∈
ℕ0) | 
| 80 | 37 | ad2antrl 728 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝑓:(1...𝑚)–1-1-onto→𝐼 ∧ (((1st
‘𝑥) = 𝐴 ∧ ((2nd
‘𝑥) = 𝐵 ∧ dom (2nd
‘𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) → dom
(2nd ‘𝑥) =
𝐼) | 
| 81 | 78, 79, 80, 49 | syl12anc 837 | . . . . . . . . . . . . . . . . 17
⊢ ((𝑓:(1...𝑚)–1-1-onto→𝐼 ∧ (((1st
‘𝑥) = 𝐴 ∧ ((2nd
‘𝑥) = 𝐵 ∧ dom (2nd
‘𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) → 𝑚 = (♯‘𝐼)) | 
| 82 | 81 | eqcomd 2743 | . . . . . . . . . . . . . . . 16
⊢ ((𝑓:(1...𝑚)–1-1-onto→𝐼 ∧ (((1st
‘𝑥) = 𝐴 ∧ ((2nd
‘𝑥) = 𝐵 ∧ dom (2nd
‘𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) →
(♯‘𝐼) = 𝑚) | 
| 83 | 77, 82 | fveq12d 6913 | . . . . . . . . . . . . . . 15
⊢ ((𝑓:(1...𝑚)–1-1-onto→𝐼 ∧ (((1st
‘𝑥) = 𝐴 ∧ ((2nd
‘𝑥) = 𝐵 ∧ dom (2nd
‘𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) →
(seq1((+g‘𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓‘𝑛))))‘(♯‘𝐼)) =
(seq1((+g‘(1st ‘𝑥)), (𝑛 ∈ ℕ ↦ ((2nd
‘𝑥)‘(𝑓‘𝑛))))‘𝑚)) | 
| 84 | 83 | eqeq2d 2748 | . . . . . . . . . . . . . 14
⊢ ((𝑓:(1...𝑚)–1-1-onto→𝐼 ∧ (((1st
‘𝑥) = 𝐴 ∧ ((2nd
‘𝑥) = 𝐵 ∧ dom (2nd
‘𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) → (𝑠 =
(seq1((+g‘𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓‘𝑛))))‘(♯‘𝐼)) ↔ 𝑠 = (seq1((+g‘(1st
‘𝑥)), (𝑛 ∈ ℕ ↦
((2nd ‘𝑥)‘(𝑓‘𝑛))))‘𝑚))) | 
| 85 | 84 | biimpd 229 | . . . . . . . . . . . . 13
⊢ ((𝑓:(1...𝑚)–1-1-onto→𝐼 ∧ (((1st
‘𝑥) = 𝐴 ∧ ((2nd
‘𝑥) = 𝐵 ∧ dom (2nd
‘𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) → (𝑠 =
(seq1((+g‘𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓‘𝑛))))‘(♯‘𝐼)) → 𝑠 = (seq1((+g‘(1st
‘𝑥)), (𝑛 ∈ ℕ ↦
((2nd ‘𝑥)‘(𝑓‘𝑛))))‘𝑚))) | 
| 86 | 85 | impancom 451 | . . . . . . . . . . . 12
⊢ ((𝑓:(1...𝑚)–1-1-onto→𝐼 ∧ 𝑠 = (seq1((+g‘𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓‘𝑛))))‘(♯‘𝐼))) → ((((1st ‘𝑥) = 𝐴 ∧ ((2nd ‘𝑥) = 𝐵 ∧ dom (2nd ‘𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0) → 𝑠 =
(seq1((+g‘(1st ‘𝑥)), (𝑛 ∈ ℕ ↦ ((2nd
‘𝑥)‘(𝑓‘𝑛))))‘𝑚))) | 
| 87 | 86 | com12 32 | . . . . . . . . . . 11
⊢
((((1st ‘𝑥) = 𝐴 ∧ ((2nd ‘𝑥) = 𝐵 ∧ dom (2nd ‘𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0) → ((𝑓:(1...𝑚)–1-1-onto→𝐼 ∧ 𝑠 = (seq1((+g‘𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓‘𝑛))))‘(♯‘𝐼))) → 𝑠 = (seq1((+g‘(1st
‘𝑥)), (𝑛 ∈ ℕ ↦
((2nd ‘𝑥)‘(𝑓‘𝑛))))‘𝑚))) | 
| 88 | 60, 87 | jcad 512 | . . . . . . . . . 10
⊢
((((1st ‘𝑥) = 𝐴 ∧ ((2nd ‘𝑥) = 𝐵 ∧ dom (2nd ‘𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0) → ((𝑓:(1...𝑚)–1-1-onto→𝐼 ∧ 𝑠 = (seq1((+g‘𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓‘𝑛))))‘(♯‘𝐼))) → (𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
∧ 𝑠 =
(seq1((+g‘(1st ‘𝑥)), (𝑛 ∈ ℕ ↦ ((2nd
‘𝑥)‘(𝑓‘𝑛))))‘𝑚)))) | 
| 89 | 56, 88 | impbid 212 | . . . . . . . . 9
⊢
((((1st ‘𝑥) = 𝐴 ∧ ((2nd ‘𝑥) = 𝐵 ∧ dom (2nd ‘𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0) → ((𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
∧ 𝑠 =
(seq1((+g‘(1st ‘𝑥)), (𝑛 ∈ ℕ ↦ ((2nd
‘𝑥)‘(𝑓‘𝑛))))‘𝑚)) ↔ (𝑓:(1...𝑚)–1-1-onto→𝐼 ∧ 𝑠 = (seq1((+g‘𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓‘𝑛))))‘(♯‘𝐼))))) | 
| 90 | 89 | ex 412 | . . . . . . . 8
⊢
(((1st ‘𝑥) = 𝐴 ∧ ((2nd ‘𝑥) = 𝐵 ∧ dom (2nd ‘𝑥) = 𝐼)) → (𝑚 ∈ ℕ0 → ((𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
∧ 𝑠 =
(seq1((+g‘(1st ‘𝑥)), (𝑛 ∈ ℕ ↦ ((2nd
‘𝑥)‘(𝑓‘𝑛))))‘𝑚)) ↔ (𝑓:(1...𝑚)–1-1-onto→𝐼 ∧ 𝑠 = (seq1((+g‘𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓‘𝑛))))‘(♯‘𝐼)))))) | 
| 91 | 13, 17, 21, 90 | syl12anc 837 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑥 = 〈𝐴, 𝐵〉) → (𝑚 ∈ ℕ0 → ((𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
∧ 𝑠 =
(seq1((+g‘(1st ‘𝑥)), (𝑛 ∈ ℕ ↦ ((2nd
‘𝑥)‘(𝑓‘𝑛))))‘𝑚)) ↔ (𝑓:(1...𝑚)–1-1-onto→𝐼 ∧ 𝑠 = (seq1((+g‘𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓‘𝑛))))‘(♯‘𝐼)))))) | 
| 92 | 91 | imp 406 | . . . . . 6
⊢ (((𝜑 ∧ 𝑥 = 〈𝐴, 𝐵〉) ∧ 𝑚 ∈ ℕ0) → ((𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
∧ 𝑠 =
(seq1((+g‘(1st ‘𝑥)), (𝑛 ∈ ℕ ↦ ((2nd
‘𝑥)‘(𝑓‘𝑛))))‘𝑚)) ↔ (𝑓:(1...𝑚)–1-1-onto→𝐼 ∧ 𝑠 = (seq1((+g‘𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓‘𝑛))))‘(♯‘𝐼))))) | 
| 93 | 92 | exbidv 1921 | . . . . 5
⊢ (((𝜑 ∧ 𝑥 = 〈𝐴, 𝐵〉) ∧ 𝑚 ∈ ℕ0) →
(∃𝑓(𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
∧ 𝑠 =
(seq1((+g‘(1st ‘𝑥)), (𝑛 ∈ ℕ ↦ ((2nd
‘𝑥)‘(𝑓‘𝑛))))‘𝑚)) ↔ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐼 ∧ 𝑠 = (seq1((+g‘𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓‘𝑛))))‘(♯‘𝐼))))) | 
| 94 | 93 | rexbidva 3177 | . . . 4
⊢ ((𝜑 ∧ 𝑥 = 〈𝐴, 𝐵〉) → (∃𝑚 ∈ ℕ0 ∃𝑓(𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
∧ 𝑠 =
(seq1((+g‘(1st ‘𝑥)), (𝑛 ∈ ℕ ↦ ((2nd
‘𝑥)‘(𝑓‘𝑛))))‘𝑚)) ↔ ∃𝑚 ∈ ℕ0 ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐼 ∧ 𝑠 = (seq1((+g‘𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓‘𝑛))))‘(♯‘𝐼))))) | 
| 95 | 94 | iotabidv 6545 | . . 3
⊢ ((𝜑 ∧ 𝑥 = 〈𝐴, 𝐵〉) → (℩𝑠∃𝑚 ∈ ℕ0 ∃𝑓(𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
∧ 𝑠 =
(seq1((+g‘(1st ‘𝑥)), (𝑛 ∈ ℕ ↦ ((2nd
‘𝑥)‘(𝑓‘𝑛))))‘𝑚))) = (℩𝑠∃𝑚 ∈ ℕ0 ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐼 ∧ 𝑠 = (seq1((+g‘𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓‘𝑛))))‘(♯‘𝐼))))) | 
| 96 |  | eleq1 2829 | . . . . . . . . . 10
⊢ (𝑡 = 𝐼 → (𝑡 ∈ Fin ↔ 𝐼 ∈ Fin)) | 
| 97 |  | feq2 6717 | . . . . . . . . . 10
⊢ (𝑡 = 𝐼 → (𝐵:𝑡⟶(Base‘𝐴) ↔ 𝐵:𝐼⟶(Base‘𝐴))) | 
| 98 | 96, 97 | anbi12d 632 | . . . . . . . . 9
⊢ (𝑡 = 𝐼 → ((𝑡 ∈ Fin ∧ 𝐵:𝑡⟶(Base‘𝐴)) ↔ (𝐼 ∈ Fin ∧ 𝐵:𝐼⟶(Base‘𝐴)))) | 
| 99 | 98 | ceqsexgv 3654 | . . . . . . . 8
⊢ (𝐼 ∈ Fin → (∃𝑡(𝑡 = 𝐼 ∧ (𝑡 ∈ Fin ∧ 𝐵:𝑡⟶(Base‘𝐴))) ↔ (𝐼 ∈ Fin ∧ 𝐵:𝐼⟶(Base‘𝐴)))) | 
| 100 | 8, 99 | syl 17 | . . . . . . 7
⊢ (𝜑 → (∃𝑡(𝑡 = 𝐼 ∧ (𝑡 ∈ Fin ∧ 𝐵:𝑡⟶(Base‘𝐴))) ↔ (𝐼 ∈ Fin ∧ 𝐵:𝐼⟶(Base‘𝐴)))) | 
| 101 | 8, 7, 100 | mpbir2and 713 | . . . . . 6
⊢ (𝜑 → ∃𝑡(𝑡 = 𝐼 ∧ (𝑡 ∈ Fin ∧ 𝐵:𝑡⟶(Base‘𝐴)))) | 
| 102 |  | exsimpr 1869 | . . . . . 6
⊢
(∃𝑡(𝑡 = 𝐼 ∧ (𝑡 ∈ Fin ∧ 𝐵:𝑡⟶(Base‘𝐴))) → ∃𝑡(𝑡 ∈ Fin ∧ 𝐵:𝑡⟶(Base‘𝐴))) | 
| 103 | 101, 102 | syl 17 | . . . . 5
⊢ (𝜑 → ∃𝑡(𝑡 ∈ Fin ∧ 𝐵:𝑡⟶(Base‘𝐴))) | 
| 104 |  | df-rex 3071 | . . . . 5
⊢
(∃𝑡 ∈ Fin
𝐵:𝑡⟶(Base‘𝐴) ↔ ∃𝑡(𝑡 ∈ Fin ∧ 𝐵:𝑡⟶(Base‘𝐴))) | 
| 105 | 103, 104 | sylibr 234 | . . . 4
⊢ (𝜑 → ∃𝑡 ∈ Fin 𝐵:𝑡⟶(Base‘𝐴)) | 
| 106 |  | eleq1 2829 | . . . . . . 7
⊢ (𝑦 = 𝐴 → (𝑦 ∈ CMnd ↔ 𝐴 ∈ CMnd)) | 
| 107 |  | fveq2 6906 | . . . . . . . . 9
⊢ (𝑦 = 𝐴 → (Base‘𝑦) = (Base‘𝐴)) | 
| 108 | 107 | feq3d 6723 | . . . . . . . 8
⊢ (𝑦 = 𝐴 → (𝑧:𝑡⟶(Base‘𝑦) ↔ 𝑧:𝑡⟶(Base‘𝐴))) | 
| 109 | 108 | rexbidv 3179 | . . . . . . 7
⊢ (𝑦 = 𝐴 → (∃𝑡 ∈ Fin 𝑧:𝑡⟶(Base‘𝑦) ↔ ∃𝑡 ∈ Fin 𝑧:𝑡⟶(Base‘𝐴))) | 
| 110 | 106, 109 | anbi12d 632 | . . . . . 6
⊢ (𝑦 = 𝐴 → ((𝑦 ∈ CMnd ∧ ∃𝑡 ∈ Fin 𝑧:𝑡⟶(Base‘𝑦)) ↔ (𝐴 ∈ CMnd ∧ ∃𝑡 ∈ Fin 𝑧:𝑡⟶(Base‘𝐴)))) | 
| 111 |  | feq1 6716 | . . . . . . . 8
⊢ (𝑧 = 𝐵 → (𝑧:𝑡⟶(Base‘𝐴) ↔ 𝐵:𝑡⟶(Base‘𝐴))) | 
| 112 | 111 | rexbidv 3179 | . . . . . . 7
⊢ (𝑧 = 𝐵 → (∃𝑡 ∈ Fin 𝑧:𝑡⟶(Base‘𝐴) ↔ ∃𝑡 ∈ Fin 𝐵:𝑡⟶(Base‘𝐴))) | 
| 113 | 112 | anbi2d 630 | . . . . . 6
⊢ (𝑧 = 𝐵 → ((𝐴 ∈ CMnd ∧ ∃𝑡 ∈ Fin 𝑧:𝑡⟶(Base‘𝐴)) ↔ (𝐴 ∈ CMnd ∧ ∃𝑡 ∈ Fin 𝐵:𝑡⟶(Base‘𝐴)))) | 
| 114 | 110, 113 | opelopabg 5543 | . . . . 5
⊢ ((𝐴 ∈ CMnd ∧ 𝐵 ∈ V) → (〈𝐴, 𝐵〉 ∈ {〈𝑦, 𝑧〉 ∣ (𝑦 ∈ CMnd ∧ ∃𝑡 ∈ Fin 𝑧:𝑡⟶(Base‘𝑦))} ↔ (𝐴 ∈ CMnd ∧ ∃𝑡 ∈ Fin 𝐵:𝑡⟶(Base‘𝐴)))) | 
| 115 | 5, 9, 114 | syl2anc 584 | . . . 4
⊢ (𝜑 → (〈𝐴, 𝐵〉 ∈ {〈𝑦, 𝑧〉 ∣ (𝑦 ∈ CMnd ∧ ∃𝑡 ∈ Fin 𝑧:𝑡⟶(Base‘𝑦))} ↔ (𝐴 ∈ CMnd ∧ ∃𝑡 ∈ Fin 𝐵:𝑡⟶(Base‘𝐴)))) | 
| 116 | 5, 105, 115 | mpbir2and 713 | . . 3
⊢ (𝜑 → 〈𝐴, 𝐵〉 ∈ {〈𝑦, 𝑧〉 ∣ (𝑦 ∈ CMnd ∧ ∃𝑡 ∈ Fin 𝑧:𝑡⟶(Base‘𝑦))}) | 
| 117 |  | iotaex 6534 | . . . 4
⊢
(℩𝑠∃𝑚 ∈ ℕ0 ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐼 ∧ 𝑠 = (seq1((+g‘𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓‘𝑛))))‘(♯‘𝐼)))) ∈ V | 
| 118 | 117 | a1i 11 | . . 3
⊢ (𝜑 → (℩𝑠∃𝑚 ∈ ℕ0 ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐼 ∧ 𝑠 = (seq1((+g‘𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓‘𝑛))))‘(♯‘𝐼)))) ∈ V) | 
| 119 | 2, 95, 116, 118 | fvmptd2 7024 | . 2
⊢ (𝜑 → ( FinSum
‘〈𝐴, 𝐵〉) = (℩𝑠∃𝑚 ∈ ℕ0 ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐼 ∧ 𝑠 = (seq1((+g‘𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓‘𝑛))))‘(♯‘𝐼))))) | 
| 120 | 1, 119 | eqtrid 2789 | 1
⊢ (𝜑 → (𝐴 FinSum 𝐵) = (℩𝑠∃𝑚 ∈ ℕ0 ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐼 ∧ 𝑠 = (seq1((+g‘𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓‘𝑛))))‘(♯‘𝐼))))) |