Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-finsumval0 Structured version   Visualization version   GIF version

Theorem bj-finsumval0 37329
Description: Value of a finite sum. (Contributed by BJ, 9-Jun-2019.) (Proof shortened by AV, 5-May-2021.)
Hypotheses
Ref Expression
bj-finsumval0.1 (𝜑𝐴 ∈ CMnd)
bj-finsumval0.2 (𝜑𝐼 ∈ Fin)
bj-finsumval0.3 (𝜑𝐵:𝐼⟶(Base‘𝐴))
Assertion
Ref Expression
bj-finsumval0 (𝜑 → (𝐴 FinSum 𝐵) = (℩𝑠𝑚 ∈ ℕ0𝑓(𝑓:(1...𝑚)–1-1-onto𝐼𝑠 = (seq1((+g𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓𝑛))))‘(♯‘𝐼)))))
Distinct variable groups:   𝐴,𝑠,𝑓,𝑚,𝑛   𝐵,𝑓,𝑚,𝑛,𝑠   𝑓,𝐼,𝑛   𝜑,𝑓,𝑚,𝑠
Allowed substitution hints:   𝜑(𝑛)   𝐼(𝑚,𝑠)

Proof of Theorem bj-finsumval0
Dummy variables 𝑡 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ov 7349 . 2 (𝐴 FinSum 𝐵) = ( FinSum ‘⟨𝐴, 𝐵⟩)
2 df-bj-finsum 37328 . . 3 FinSum = (𝑥 ∈ {⟨𝑦, 𝑧⟩ ∣ (𝑦 ∈ CMnd ∧ ∃𝑡 ∈ Fin 𝑧:𝑡⟶(Base‘𝑦))} ↦ (℩𝑠𝑚 ∈ ℕ0𝑓(𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥) ∧ 𝑠 = (seq1((+g‘(1st𝑥)), (𝑛 ∈ ℕ ↦ ((2nd𝑥)‘(𝑓𝑛))))‘𝑚))))
3 simpr 484 . . . . . . . . . 10 ((𝜑𝑥 = ⟨𝐴, 𝐵⟩) → 𝑥 = ⟨𝐴, 𝐵⟩)
43fveq2d 6826 . . . . . . . . 9 ((𝜑𝑥 = ⟨𝐴, 𝐵⟩) → (1st𝑥) = (1st ‘⟨𝐴, 𝐵⟩))
5 bj-finsumval0.1 . . . . . . . . . . 11 (𝜑𝐴 ∈ CMnd)
65adantr 480 . . . . . . . . . 10 ((𝜑𝑥 = ⟨𝐴, 𝐵⟩) → 𝐴 ∈ CMnd)
7 bj-finsumval0.3 . . . . . . . . . . . 12 (𝜑𝐵:𝐼⟶(Base‘𝐴))
8 bj-finsumval0.2 . . . . . . . . . . . 12 (𝜑𝐼 ∈ Fin)
97, 8fexd 7161 . . . . . . . . . . 11 (𝜑𝐵 ∈ V)
109adantr 480 . . . . . . . . . 10 ((𝜑𝑥 = ⟨𝐴, 𝐵⟩) → 𝐵 ∈ V)
11 op1stg 7933 . . . . . . . . . 10 ((𝐴 ∈ CMnd ∧ 𝐵 ∈ V) → (1st ‘⟨𝐴, 𝐵⟩) = 𝐴)
126, 10, 11syl2anc 584 . . . . . . . . 9 ((𝜑𝑥 = ⟨𝐴, 𝐵⟩) → (1st ‘⟨𝐴, 𝐵⟩) = 𝐴)
134, 12eqtrd 2766 . . . . . . . 8 ((𝜑𝑥 = ⟨𝐴, 𝐵⟩) → (1st𝑥) = 𝐴)
143fveq2d 6826 . . . . . . . . 9 ((𝜑𝑥 = ⟨𝐴, 𝐵⟩) → (2nd𝑥) = (2nd ‘⟨𝐴, 𝐵⟩))
15 op2ndg 7934 . . . . . . . . . 10 ((𝐴 ∈ CMnd ∧ 𝐵 ∈ V) → (2nd ‘⟨𝐴, 𝐵⟩) = 𝐵)
166, 10, 15syl2anc 584 . . . . . . . . 9 ((𝜑𝑥 = ⟨𝐴, 𝐵⟩) → (2nd ‘⟨𝐴, 𝐵⟩) = 𝐵)
1714, 16eqtrd 2766 . . . . . . . 8 ((𝜑𝑥 = ⟨𝐴, 𝐵⟩) → (2nd𝑥) = 𝐵)
1817dmeqd 5844 . . . . . . . . 9 ((𝜑𝑥 = ⟨𝐴, 𝐵⟩) → dom (2nd𝑥) = dom 𝐵)
197fdmd 6661 . . . . . . . . . 10 (𝜑 → dom 𝐵 = 𝐼)
2019adantr 480 . . . . . . . . 9 ((𝜑𝑥 = ⟨𝐴, 𝐵⟩) → dom 𝐵 = 𝐼)
2118, 20eqtrd 2766 . . . . . . . 8 ((𝜑𝑥 = ⟨𝐴, 𝐵⟩) → dom (2nd𝑥) = 𝐼)
22 f1oeq3 6753 . . . . . . . . . . . . . . 15 (dom (2nd𝑥) = 𝐼 → (𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥) ↔ 𝑓:(1...𝑚)–1-1-onto𝐼))
2322biimpd 229 . . . . . . . . . . . . . 14 (dom (2nd𝑥) = 𝐼 → (𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥) → 𝑓:(1...𝑚)–1-1-onto𝐼))
2423ad2antll 729 . . . . . . . . . . . . 13 (((1st𝑥) = 𝐴 ∧ ((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼)) → (𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥) → 𝑓:(1...𝑚)–1-1-onto𝐼))
2524adantrd 491 . . . . . . . . . . . 12 (((1st𝑥) = 𝐴 ∧ ((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼)) → ((𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥) ∧ 𝑠 = (seq1((+g‘(1st𝑥)), (𝑛 ∈ ℕ ↦ ((2nd𝑥)‘(𝑓𝑛))))‘𝑚)) → 𝑓:(1...𝑚)–1-1-onto𝐼))
2625adantr 480 . . . . . . . . . . 11 ((((1st𝑥) = 𝐴 ∧ ((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0) → ((𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥) ∧ 𝑠 = (seq1((+g‘(1st𝑥)), (𝑛 ∈ ℕ ↦ ((2nd𝑥)‘(𝑓𝑛))))‘𝑚)) → 𝑓:(1...𝑚)–1-1-onto𝐼))
27 eqidd 2732 . . . . . . . . . . . . . . . . 17 ((𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥) ∧ (((1st𝑥) = 𝐴 ∧ ((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) → 1 = 1)
28 simprl 770 . . . . . . . . . . . . . . . . . . 19 ((𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥) ∧ ((1st𝑥) = 𝐴 ∧ ((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼))) → (1st𝑥) = 𝐴)
2928fveq2d 6826 . . . . . . . . . . . . . . . . . 18 ((𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥) ∧ ((1st𝑥) = 𝐴 ∧ ((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼))) → (+g‘(1st𝑥)) = (+g𝐴))
3029adantrr 717 . . . . . . . . . . . . . . . . 17 ((𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥) ∧ (((1st𝑥) = 𝐴 ∧ ((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) → (+g‘(1st𝑥)) = (+g𝐴))
31 simprrl 780 . . . . . . . . . . . . . . . . . . . . 21 ((𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥) ∧ ((1st𝑥) = 𝐴 ∧ ((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼))) → (2nd𝑥) = 𝐵)
3231adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥) ∧ ((1st𝑥) = 𝐴 ∧ ((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼))) ∧ 𝑛 ∈ ℕ) → (2nd𝑥) = 𝐵)
3332fveq1d 6824 . . . . . . . . . . . . . . . . . . 19 (((𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥) ∧ ((1st𝑥) = 𝐴 ∧ ((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼))) ∧ 𝑛 ∈ ℕ) → ((2nd𝑥)‘(𝑓𝑛)) = (𝐵‘(𝑓𝑛)))
3433mpteq2dva 5182 . . . . . . . . . . . . . . . . . 18 ((𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥) ∧ ((1st𝑥) = 𝐴 ∧ ((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼))) → (𝑛 ∈ ℕ ↦ ((2nd𝑥)‘(𝑓𝑛))) = (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓𝑛))))
3534adantrr 717 . . . . . . . . . . . . . . . . 17 ((𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥) ∧ (((1st𝑥) = 𝐴 ∧ ((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) → (𝑛 ∈ ℕ ↦ ((2nd𝑥)‘(𝑓𝑛))) = (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓𝑛))))
3627, 30, 35seqeq123d 13917 . . . . . . . . . . . . . . . 16 ((𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥) ∧ (((1st𝑥) = 𝐴 ∧ ((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) → seq1((+g‘(1st𝑥)), (𝑛 ∈ ℕ ↦ ((2nd𝑥)‘(𝑓𝑛)))) = seq1((+g𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓𝑛)))))
37 simprr 772 . . . . . . . . . . . . . . . . . 18 (((1st𝑥) = 𝐴 ∧ ((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼)) → dom (2nd𝑥) = 𝐼)
3837anim1ci 616 . . . . . . . . . . . . . . . . 17 ((((1st𝑥) = 𝐴 ∧ ((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0) → (𝑚 ∈ ℕ0 ∧ dom (2nd𝑥) = 𝐼))
39 hashfz1 14253 . . . . . . . . . . . . . . . . . . . 20 (𝑚 ∈ ℕ0 → (♯‘(1...𝑚)) = 𝑚)
4039eqcomd 2737 . . . . . . . . . . . . . . . . . . 19 (𝑚 ∈ ℕ0𝑚 = (♯‘(1...𝑚)))
4140ad2antrl 728 . . . . . . . . . . . . . . . . . 18 ((𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥) ∧ (𝑚 ∈ ℕ0 ∧ dom (2nd𝑥) = 𝐼)) → 𝑚 = (♯‘(1...𝑚)))
42 fzfid 13880 . . . . . . . . . . . . . . . . . . 19 ((𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥) ∧ (𝑚 ∈ ℕ0 ∧ dom (2nd𝑥) = 𝐼)) → (1...𝑚) ∈ Fin)
43 19.8a 2184 . . . . . . . . . . . . . . . . . . . 20 (𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥) → ∃𝑓 𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥))
4443adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥) ∧ (𝑚 ∈ ℕ0 ∧ dom (2nd𝑥) = 𝐼)) → ∃𝑓 𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥))
45 hasheqf1oi 14258 . . . . . . . . . . . . . . . . . . 19 ((1...𝑚) ∈ Fin → (∃𝑓 𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥) → (♯‘(1...𝑚)) = (♯‘dom (2nd𝑥))))
4642, 44, 45sylc 65 . . . . . . . . . . . . . . . . . 18 ((𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥) ∧ (𝑚 ∈ ℕ0 ∧ dom (2nd𝑥) = 𝐼)) → (♯‘(1...𝑚)) = (♯‘dom (2nd𝑥)))
47 simprr 772 . . . . . . . . . . . . . . . . . . 19 ((𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥) ∧ (𝑚 ∈ ℕ0 ∧ dom (2nd𝑥) = 𝐼)) → dom (2nd𝑥) = 𝐼)
4847fveq2d 6826 . . . . . . . . . . . . . . . . . 18 ((𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥) ∧ (𝑚 ∈ ℕ0 ∧ dom (2nd𝑥) = 𝐼)) → (♯‘dom (2nd𝑥)) = (♯‘𝐼))
4941, 46, 483eqtrd 2770 . . . . . . . . . . . . . . . . 17 ((𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥) ∧ (𝑚 ∈ ℕ0 ∧ dom (2nd𝑥) = 𝐼)) → 𝑚 = (♯‘𝐼))
5038, 49sylan2 593 . . . . . . . . . . . . . . . 16 ((𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥) ∧ (((1st𝑥) = 𝐴 ∧ ((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) → 𝑚 = (♯‘𝐼))
5136, 50fveq12d 6829 . . . . . . . . . . . . . . 15 ((𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥) ∧ (((1st𝑥) = 𝐴 ∧ ((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) → (seq1((+g‘(1st𝑥)), (𝑛 ∈ ℕ ↦ ((2nd𝑥)‘(𝑓𝑛))))‘𝑚) = (seq1((+g𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓𝑛))))‘(♯‘𝐼)))
5251eqeq2d 2742 . . . . . . . . . . . . . 14 ((𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥) ∧ (((1st𝑥) = 𝐴 ∧ ((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) → (𝑠 = (seq1((+g‘(1st𝑥)), (𝑛 ∈ ℕ ↦ ((2nd𝑥)‘(𝑓𝑛))))‘𝑚) ↔ 𝑠 = (seq1((+g𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓𝑛))))‘(♯‘𝐼))))
5352biimpd 229 . . . . . . . . . . . . 13 ((𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥) ∧ (((1st𝑥) = 𝐴 ∧ ((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) → (𝑠 = (seq1((+g‘(1st𝑥)), (𝑛 ∈ ℕ ↦ ((2nd𝑥)‘(𝑓𝑛))))‘𝑚) → 𝑠 = (seq1((+g𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓𝑛))))‘(♯‘𝐼))))
5453impancom 451 . . . . . . . . . . . 12 ((𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥) ∧ 𝑠 = (seq1((+g‘(1st𝑥)), (𝑛 ∈ ℕ ↦ ((2nd𝑥)‘(𝑓𝑛))))‘𝑚)) → ((((1st𝑥) = 𝐴 ∧ ((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0) → 𝑠 = (seq1((+g𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓𝑛))))‘(♯‘𝐼))))
5554com12 32 . . . . . . . . . . 11 ((((1st𝑥) = 𝐴 ∧ ((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0) → ((𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥) ∧ 𝑠 = (seq1((+g‘(1st𝑥)), (𝑛 ∈ ℕ ↦ ((2nd𝑥)‘(𝑓𝑛))))‘𝑚)) → 𝑠 = (seq1((+g𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓𝑛))))‘(♯‘𝐼))))
5626, 55jcad 512 . . . . . . . . . 10 ((((1st𝑥) = 𝐴 ∧ ((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0) → ((𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥) ∧ 𝑠 = (seq1((+g‘(1st𝑥)), (𝑛 ∈ ℕ ↦ ((2nd𝑥)‘(𝑓𝑛))))‘𝑚)) → (𝑓:(1...𝑚)–1-1-onto𝐼𝑠 = (seq1((+g𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓𝑛))))‘(♯‘𝐼)))))
5722biimprd 248 . . . . . . . . . . . . . 14 (dom (2nd𝑥) = 𝐼 → (𝑓:(1...𝑚)–1-1-onto𝐼𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥)))
5857ad2antll 729 . . . . . . . . . . . . 13 (((1st𝑥) = 𝐴 ∧ ((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼)) → (𝑓:(1...𝑚)–1-1-onto𝐼𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥)))
5958adantr 480 . . . . . . . . . . . 12 ((((1st𝑥) = 𝐴 ∧ ((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0) → (𝑓:(1...𝑚)–1-1-onto𝐼𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥)))
6059adantrd 491 . . . . . . . . . . 11 ((((1st𝑥) = 𝐴 ∧ ((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0) → ((𝑓:(1...𝑚)–1-1-onto𝐼𝑠 = (seq1((+g𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓𝑛))))‘(♯‘𝐼))) → 𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥)))
61 eqidd 2732 . . . . . . . . . . . . . . . . 17 ((𝑓:(1...𝑚)–1-1-onto𝐼 ∧ (((1st𝑥) = 𝐴 ∧ ((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) → 1 = 1)
62 simpl 482 . . . . . . . . . . . . . . . . . . . . 21 (((1st𝑥) = 𝐴 ∧ ((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼)) → (1st𝑥) = 𝐴)
63 tru 1545 . . . . . . . . . . . . . . . . . . . . 21
6462, 63jctir 520 . . . . . . . . . . . . . . . . . . . 20 (((1st𝑥) = 𝐴 ∧ ((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼)) → ((1st𝑥) = 𝐴 ∧ ⊤))
6564ad2antrl 728 . . . . . . . . . . . . . . . . . . 19 ((𝑓:(1...𝑚)–1-1-onto𝐼 ∧ (((1st𝑥) = 𝐴 ∧ ((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) → ((1st𝑥) = 𝐴 ∧ ⊤))
66 simpl 482 . . . . . . . . . . . . . . . . . . . 20 (((1st𝑥) = 𝐴 ∧ ⊤) → (1st𝑥) = 𝐴)
6766eqcomd 2737 . . . . . . . . . . . . . . . . . . 19 (((1st𝑥) = 𝐴 ∧ ⊤) → 𝐴 = (1st𝑥))
6865, 67syl 17 . . . . . . . . . . . . . . . . . 18 ((𝑓:(1...𝑚)–1-1-onto𝐼 ∧ (((1st𝑥) = 𝐴 ∧ ((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) → 𝐴 = (1st𝑥))
6968fveq2d 6826 . . . . . . . . . . . . . . . . 17 ((𝑓:(1...𝑚)–1-1-onto𝐼 ∧ (((1st𝑥) = 𝐴 ∧ ((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) → (+g𝐴) = (+g‘(1st𝑥)))
70 simpl 482 . . . . . . . . . . . . . . . . . . . . . . 23 (((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼) → (2nd𝑥) = 𝐵)
7170eqcomd 2737 . . . . . . . . . . . . . . . . . . . . . 22 (((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼) → 𝐵 = (2nd𝑥))
7271ad2antll 729 . . . . . . . . . . . . . . . . . . . . 21 ((𝑓:(1...𝑚)–1-1-onto𝐼 ∧ ((1st𝑥) = 𝐴 ∧ ((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼))) → 𝐵 = (2nd𝑥))
7372adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((𝑓:(1...𝑚)–1-1-onto𝐼 ∧ ((1st𝑥) = 𝐴 ∧ ((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼))) ∧ 𝑛 ∈ ℕ) → 𝐵 = (2nd𝑥))
7473fveq1d 6824 . . . . . . . . . . . . . . . . . . 19 (((𝑓:(1...𝑚)–1-1-onto𝐼 ∧ ((1st𝑥) = 𝐴 ∧ ((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼))) ∧ 𝑛 ∈ ℕ) → (𝐵‘(𝑓𝑛)) = ((2nd𝑥)‘(𝑓𝑛)))
7574adantlrr 721 . . . . . . . . . . . . . . . . . 18 (((𝑓:(1...𝑚)–1-1-onto𝐼 ∧ (((1st𝑥) = 𝐴 ∧ ((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) ∧ 𝑛 ∈ ℕ) → (𝐵‘(𝑓𝑛)) = ((2nd𝑥)‘(𝑓𝑛)))
7675mpteq2dva 5182 . . . . . . . . . . . . . . . . 17 ((𝑓:(1...𝑚)–1-1-onto𝐼 ∧ (((1st𝑥) = 𝐴 ∧ ((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) → (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓𝑛))) = (𝑛 ∈ ℕ ↦ ((2nd𝑥)‘(𝑓𝑛))))
7761, 69, 76seqeq123d 13917 . . . . . . . . . . . . . . . 16 ((𝑓:(1...𝑚)–1-1-onto𝐼 ∧ (((1st𝑥) = 𝐴 ∧ ((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) → seq1((+g𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓𝑛)))) = seq1((+g‘(1st𝑥)), (𝑛 ∈ ℕ ↦ ((2nd𝑥)‘(𝑓𝑛)))))
7859impcom 407 . . . . . . . . . . . . . . . . . 18 ((𝑓:(1...𝑚)–1-1-onto𝐼 ∧ (((1st𝑥) = 𝐴 ∧ ((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) → 𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥))
79 simprr 772 . . . . . . . . . . . . . . . . . 18 ((𝑓:(1...𝑚)–1-1-onto𝐼 ∧ (((1st𝑥) = 𝐴 ∧ ((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) → 𝑚 ∈ ℕ0)
8037ad2antrl 728 . . . . . . . . . . . . . . . . . 18 ((𝑓:(1...𝑚)–1-1-onto𝐼 ∧ (((1st𝑥) = 𝐴 ∧ ((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) → dom (2nd𝑥) = 𝐼)
8178, 79, 80, 49syl12anc 836 . . . . . . . . . . . . . . . . 17 ((𝑓:(1...𝑚)–1-1-onto𝐼 ∧ (((1st𝑥) = 𝐴 ∧ ((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) → 𝑚 = (♯‘𝐼))
8281eqcomd 2737 . . . . . . . . . . . . . . . 16 ((𝑓:(1...𝑚)–1-1-onto𝐼 ∧ (((1st𝑥) = 𝐴 ∧ ((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) → (♯‘𝐼) = 𝑚)
8377, 82fveq12d 6829 . . . . . . . . . . . . . . 15 ((𝑓:(1...𝑚)–1-1-onto𝐼 ∧ (((1st𝑥) = 𝐴 ∧ ((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) → (seq1((+g𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓𝑛))))‘(♯‘𝐼)) = (seq1((+g‘(1st𝑥)), (𝑛 ∈ ℕ ↦ ((2nd𝑥)‘(𝑓𝑛))))‘𝑚))
8483eqeq2d 2742 . . . . . . . . . . . . . 14 ((𝑓:(1...𝑚)–1-1-onto𝐼 ∧ (((1st𝑥) = 𝐴 ∧ ((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) → (𝑠 = (seq1((+g𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓𝑛))))‘(♯‘𝐼)) ↔ 𝑠 = (seq1((+g‘(1st𝑥)), (𝑛 ∈ ℕ ↦ ((2nd𝑥)‘(𝑓𝑛))))‘𝑚)))
8584biimpd 229 . . . . . . . . . . . . 13 ((𝑓:(1...𝑚)–1-1-onto𝐼 ∧ (((1st𝑥) = 𝐴 ∧ ((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) → (𝑠 = (seq1((+g𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓𝑛))))‘(♯‘𝐼)) → 𝑠 = (seq1((+g‘(1st𝑥)), (𝑛 ∈ ℕ ↦ ((2nd𝑥)‘(𝑓𝑛))))‘𝑚)))
8685impancom 451 . . . . . . . . . . . 12 ((𝑓:(1...𝑚)–1-1-onto𝐼𝑠 = (seq1((+g𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓𝑛))))‘(♯‘𝐼))) → ((((1st𝑥) = 𝐴 ∧ ((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0) → 𝑠 = (seq1((+g‘(1st𝑥)), (𝑛 ∈ ℕ ↦ ((2nd𝑥)‘(𝑓𝑛))))‘𝑚)))
8786com12 32 . . . . . . . . . . 11 ((((1st𝑥) = 𝐴 ∧ ((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0) → ((𝑓:(1...𝑚)–1-1-onto𝐼𝑠 = (seq1((+g𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓𝑛))))‘(♯‘𝐼))) → 𝑠 = (seq1((+g‘(1st𝑥)), (𝑛 ∈ ℕ ↦ ((2nd𝑥)‘(𝑓𝑛))))‘𝑚)))
8860, 87jcad 512 . . . . . . . . . 10 ((((1st𝑥) = 𝐴 ∧ ((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0) → ((𝑓:(1...𝑚)–1-1-onto𝐼𝑠 = (seq1((+g𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓𝑛))))‘(♯‘𝐼))) → (𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥) ∧ 𝑠 = (seq1((+g‘(1st𝑥)), (𝑛 ∈ ℕ ↦ ((2nd𝑥)‘(𝑓𝑛))))‘𝑚))))
8956, 88impbid 212 . . . . . . . . 9 ((((1st𝑥) = 𝐴 ∧ ((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0) → ((𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥) ∧ 𝑠 = (seq1((+g‘(1st𝑥)), (𝑛 ∈ ℕ ↦ ((2nd𝑥)‘(𝑓𝑛))))‘𝑚)) ↔ (𝑓:(1...𝑚)–1-1-onto𝐼𝑠 = (seq1((+g𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓𝑛))))‘(♯‘𝐼)))))
9089ex 412 . . . . . . . 8 (((1st𝑥) = 𝐴 ∧ ((2nd𝑥) = 𝐵 ∧ dom (2nd𝑥) = 𝐼)) → (𝑚 ∈ ℕ0 → ((𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥) ∧ 𝑠 = (seq1((+g‘(1st𝑥)), (𝑛 ∈ ℕ ↦ ((2nd𝑥)‘(𝑓𝑛))))‘𝑚)) ↔ (𝑓:(1...𝑚)–1-1-onto𝐼𝑠 = (seq1((+g𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓𝑛))))‘(♯‘𝐼))))))
9113, 17, 21, 90syl12anc 836 . . . . . . 7 ((𝜑𝑥 = ⟨𝐴, 𝐵⟩) → (𝑚 ∈ ℕ0 → ((𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥) ∧ 𝑠 = (seq1((+g‘(1st𝑥)), (𝑛 ∈ ℕ ↦ ((2nd𝑥)‘(𝑓𝑛))))‘𝑚)) ↔ (𝑓:(1...𝑚)–1-1-onto𝐼𝑠 = (seq1((+g𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓𝑛))))‘(♯‘𝐼))))))
9291imp 406 . . . . . 6 (((𝜑𝑥 = ⟨𝐴, 𝐵⟩) ∧ 𝑚 ∈ ℕ0) → ((𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥) ∧ 𝑠 = (seq1((+g‘(1st𝑥)), (𝑛 ∈ ℕ ↦ ((2nd𝑥)‘(𝑓𝑛))))‘𝑚)) ↔ (𝑓:(1...𝑚)–1-1-onto𝐼𝑠 = (seq1((+g𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓𝑛))))‘(♯‘𝐼)))))
9392exbidv 1922 . . . . 5 (((𝜑𝑥 = ⟨𝐴, 𝐵⟩) ∧ 𝑚 ∈ ℕ0) → (∃𝑓(𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥) ∧ 𝑠 = (seq1((+g‘(1st𝑥)), (𝑛 ∈ ℕ ↦ ((2nd𝑥)‘(𝑓𝑛))))‘𝑚)) ↔ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐼𝑠 = (seq1((+g𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓𝑛))))‘(♯‘𝐼)))))
9493rexbidva 3154 . . . 4 ((𝜑𝑥 = ⟨𝐴, 𝐵⟩) → (∃𝑚 ∈ ℕ0𝑓(𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥) ∧ 𝑠 = (seq1((+g‘(1st𝑥)), (𝑛 ∈ ℕ ↦ ((2nd𝑥)‘(𝑓𝑛))))‘𝑚)) ↔ ∃𝑚 ∈ ℕ0𝑓(𝑓:(1...𝑚)–1-1-onto𝐼𝑠 = (seq1((+g𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓𝑛))))‘(♯‘𝐼)))))
9594iotabidv 6465 . . 3 ((𝜑𝑥 = ⟨𝐴, 𝐵⟩) → (℩𝑠𝑚 ∈ ℕ0𝑓(𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥) ∧ 𝑠 = (seq1((+g‘(1st𝑥)), (𝑛 ∈ ℕ ↦ ((2nd𝑥)‘(𝑓𝑛))))‘𝑚))) = (℩𝑠𝑚 ∈ ℕ0𝑓(𝑓:(1...𝑚)–1-1-onto𝐼𝑠 = (seq1((+g𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓𝑛))))‘(♯‘𝐼)))))
96 eleq1 2819 . . . . . . . . . 10 (𝑡 = 𝐼 → (𝑡 ∈ Fin ↔ 𝐼 ∈ Fin))
97 feq2 6630 . . . . . . . . . 10 (𝑡 = 𝐼 → (𝐵:𝑡⟶(Base‘𝐴) ↔ 𝐵:𝐼⟶(Base‘𝐴)))
9896, 97anbi12d 632 . . . . . . . . 9 (𝑡 = 𝐼 → ((𝑡 ∈ Fin ∧ 𝐵:𝑡⟶(Base‘𝐴)) ↔ (𝐼 ∈ Fin ∧ 𝐵:𝐼⟶(Base‘𝐴))))
9998ceqsexgv 3604 . . . . . . . 8 (𝐼 ∈ Fin → (∃𝑡(𝑡 = 𝐼 ∧ (𝑡 ∈ Fin ∧ 𝐵:𝑡⟶(Base‘𝐴))) ↔ (𝐼 ∈ Fin ∧ 𝐵:𝐼⟶(Base‘𝐴))))
1008, 99syl 17 . . . . . . 7 (𝜑 → (∃𝑡(𝑡 = 𝐼 ∧ (𝑡 ∈ Fin ∧ 𝐵:𝑡⟶(Base‘𝐴))) ↔ (𝐼 ∈ Fin ∧ 𝐵:𝐼⟶(Base‘𝐴))))
1018, 7, 100mpbir2and 713 . . . . . 6 (𝜑 → ∃𝑡(𝑡 = 𝐼 ∧ (𝑡 ∈ Fin ∧ 𝐵:𝑡⟶(Base‘𝐴))))
102 exsimpr 1870 . . . . . 6 (∃𝑡(𝑡 = 𝐼 ∧ (𝑡 ∈ Fin ∧ 𝐵:𝑡⟶(Base‘𝐴))) → ∃𝑡(𝑡 ∈ Fin ∧ 𝐵:𝑡⟶(Base‘𝐴)))
103101, 102syl 17 . . . . 5 (𝜑 → ∃𝑡(𝑡 ∈ Fin ∧ 𝐵:𝑡⟶(Base‘𝐴)))
104 df-rex 3057 . . . . 5 (∃𝑡 ∈ Fin 𝐵:𝑡⟶(Base‘𝐴) ↔ ∃𝑡(𝑡 ∈ Fin ∧ 𝐵:𝑡⟶(Base‘𝐴)))
105103, 104sylibr 234 . . . 4 (𝜑 → ∃𝑡 ∈ Fin 𝐵:𝑡⟶(Base‘𝐴))
106 eleq1 2819 . . . . . . 7 (𝑦 = 𝐴 → (𝑦 ∈ CMnd ↔ 𝐴 ∈ CMnd))
107 fveq2 6822 . . . . . . . . 9 (𝑦 = 𝐴 → (Base‘𝑦) = (Base‘𝐴))
108107feq3d 6636 . . . . . . . 8 (𝑦 = 𝐴 → (𝑧:𝑡⟶(Base‘𝑦) ↔ 𝑧:𝑡⟶(Base‘𝐴)))
109108rexbidv 3156 . . . . . . 7 (𝑦 = 𝐴 → (∃𝑡 ∈ Fin 𝑧:𝑡⟶(Base‘𝑦) ↔ ∃𝑡 ∈ Fin 𝑧:𝑡⟶(Base‘𝐴)))
110106, 109anbi12d 632 . . . . . 6 (𝑦 = 𝐴 → ((𝑦 ∈ CMnd ∧ ∃𝑡 ∈ Fin 𝑧:𝑡⟶(Base‘𝑦)) ↔ (𝐴 ∈ CMnd ∧ ∃𝑡 ∈ Fin 𝑧:𝑡⟶(Base‘𝐴))))
111 feq1 6629 . . . . . . . 8 (𝑧 = 𝐵 → (𝑧:𝑡⟶(Base‘𝐴) ↔ 𝐵:𝑡⟶(Base‘𝐴)))
112111rexbidv 3156 . . . . . . 7 (𝑧 = 𝐵 → (∃𝑡 ∈ Fin 𝑧:𝑡⟶(Base‘𝐴) ↔ ∃𝑡 ∈ Fin 𝐵:𝑡⟶(Base‘𝐴)))
113112anbi2d 630 . . . . . 6 (𝑧 = 𝐵 → ((𝐴 ∈ CMnd ∧ ∃𝑡 ∈ Fin 𝑧:𝑡⟶(Base‘𝐴)) ↔ (𝐴 ∈ CMnd ∧ ∃𝑡 ∈ Fin 𝐵:𝑡⟶(Base‘𝐴))))
114110, 113opelopabg 5476 . . . . 5 ((𝐴 ∈ CMnd ∧ 𝐵 ∈ V) → (⟨𝐴, 𝐵⟩ ∈ {⟨𝑦, 𝑧⟩ ∣ (𝑦 ∈ CMnd ∧ ∃𝑡 ∈ Fin 𝑧:𝑡⟶(Base‘𝑦))} ↔ (𝐴 ∈ CMnd ∧ ∃𝑡 ∈ Fin 𝐵:𝑡⟶(Base‘𝐴))))
1155, 9, 114syl2anc 584 . . . 4 (𝜑 → (⟨𝐴, 𝐵⟩ ∈ {⟨𝑦, 𝑧⟩ ∣ (𝑦 ∈ CMnd ∧ ∃𝑡 ∈ Fin 𝑧:𝑡⟶(Base‘𝑦))} ↔ (𝐴 ∈ CMnd ∧ ∃𝑡 ∈ Fin 𝐵:𝑡⟶(Base‘𝐴))))
1165, 105, 115mpbir2and 713 . . 3 (𝜑 → ⟨𝐴, 𝐵⟩ ∈ {⟨𝑦, 𝑧⟩ ∣ (𝑦 ∈ CMnd ∧ ∃𝑡 ∈ Fin 𝑧:𝑡⟶(Base‘𝑦))})
117 iotaex 6457 . . . 4 (℩𝑠𝑚 ∈ ℕ0𝑓(𝑓:(1...𝑚)–1-1-onto𝐼𝑠 = (seq1((+g𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓𝑛))))‘(♯‘𝐼)))) ∈ V
118117a1i 11 . . 3 (𝜑 → (℩𝑠𝑚 ∈ ℕ0𝑓(𝑓:(1...𝑚)–1-1-onto𝐼𝑠 = (seq1((+g𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓𝑛))))‘(♯‘𝐼)))) ∈ V)
1192, 95, 116, 118fvmptd2 6937 . 2 (𝜑 → ( FinSum ‘⟨𝐴, 𝐵⟩) = (℩𝑠𝑚 ∈ ℕ0𝑓(𝑓:(1...𝑚)–1-1-onto𝐼𝑠 = (seq1((+g𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓𝑛))))‘(♯‘𝐼)))))
1201, 119eqtrid 2778 1 (𝜑 → (𝐴 FinSum 𝐵) = (℩𝑠𝑚 ∈ ℕ0𝑓(𝑓:(1...𝑚)–1-1-onto𝐼𝑠 = (seq1((+g𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓𝑛))))‘(♯‘𝐼)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wtru 1542  wex 1780  wcel 2111  wrex 3056  Vcvv 3436  cop 4579  {copab 5151  cmpt 5170  dom cdm 5614  cio 6435  wf 6477  1-1-ontowf1o 6480  cfv 6481  (class class class)co 7346  1st c1st 7919  2nd c2nd 7920  Fincfn 8869  1c1 11007  cn 12125  0cn0 12381  ...cfz 13407  seqcseq 13908  chash 14237  Basecbs 17120  +gcplusg 17161  CMndccmn 19692   FinSum cfinsum 37327
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-n0 12382  df-z 12469  df-uz 12733  df-fz 13408  df-seq 13909  df-hash 14238  df-bj-finsum 37328
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator