Step | Hyp | Ref
| Expression |
1 | | df-ov 7153 |
. 2
⊢ (𝐴 FinSum 𝐵) = ( FinSum ‘〈𝐴, 𝐵〉) |
2 | | df-bj-finsum 34979 |
. . 3
⊢ FinSum =
(𝑥 ∈ {〈𝑦, 𝑧〉 ∣ (𝑦 ∈ CMnd ∧ ∃𝑡 ∈ Fin 𝑧:𝑡⟶(Base‘𝑦))} ↦ (℩𝑠∃𝑚 ∈ ℕ0 ∃𝑓(𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
∧ 𝑠 =
(seq1((+g‘(1st ‘𝑥)), (𝑛 ∈ ℕ ↦ ((2nd
‘𝑥)‘(𝑓‘𝑛))))‘𝑚)))) |
3 | | simpr 488 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 = 〈𝐴, 𝐵〉) → 𝑥 = 〈𝐴, 𝐵〉) |
4 | 3 | fveq2d 6662 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 = 〈𝐴, 𝐵〉) → (1st ‘𝑥) = (1st
‘〈𝐴, 𝐵〉)) |
5 | | bj-finsumval0.1 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐴 ∈ CMnd) |
6 | 5 | adantr 484 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 = 〈𝐴, 𝐵〉) → 𝐴 ∈ CMnd) |
7 | | bj-finsumval0.3 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐵:𝐼⟶(Base‘𝐴)) |
8 | | bj-finsumval0.2 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐼 ∈ Fin) |
9 | | fex 6980 |
. . . . . . . . . . . 12
⊢ ((𝐵:𝐼⟶(Base‘𝐴) ∧ 𝐼 ∈ Fin) → 𝐵 ∈ V) |
10 | 7, 8, 9 | syl2anc 587 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐵 ∈ V) |
11 | 10 | adantr 484 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 = 〈𝐴, 𝐵〉) → 𝐵 ∈ V) |
12 | | op1stg 7705 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ CMnd ∧ 𝐵 ∈ V) →
(1st ‘〈𝐴, 𝐵〉) = 𝐴) |
13 | 6, 11, 12 | syl2anc 587 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 = 〈𝐴, 𝐵〉) → (1st
‘〈𝐴, 𝐵〉) = 𝐴) |
14 | 4, 13 | eqtrd 2793 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 = 〈𝐴, 𝐵〉) → (1st ‘𝑥) = 𝐴) |
15 | 3 | fveq2d 6662 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 = 〈𝐴, 𝐵〉) → (2nd ‘𝑥) = (2nd
‘〈𝐴, 𝐵〉)) |
16 | | op2ndg 7706 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ CMnd ∧ 𝐵 ∈ V) →
(2nd ‘〈𝐴, 𝐵〉) = 𝐵) |
17 | 6, 11, 16 | syl2anc 587 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 = 〈𝐴, 𝐵〉) → (2nd
‘〈𝐴, 𝐵〉) = 𝐵) |
18 | 15, 17 | eqtrd 2793 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 = 〈𝐴, 𝐵〉) → (2nd ‘𝑥) = 𝐵) |
19 | 18 | dmeqd 5745 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 = 〈𝐴, 𝐵〉) → dom (2nd
‘𝑥) = dom 𝐵) |
20 | 7 | fdmd 6508 |
. . . . . . . . . 10
⊢ (𝜑 → dom 𝐵 = 𝐼) |
21 | 20 | adantr 484 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 = 〈𝐴, 𝐵〉) → dom 𝐵 = 𝐼) |
22 | 19, 21 | eqtrd 2793 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 = 〈𝐴, 𝐵〉) → dom (2nd
‘𝑥) = 𝐼) |
23 | | f1oeq3 6592 |
. . . . . . . . . . . . . . 15
⊢ (dom
(2nd ‘𝑥) =
𝐼 → (𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
↔ 𝑓:(1...𝑚)–1-1-onto→𝐼)) |
24 | 23 | biimpd 232 |
. . . . . . . . . . . . . 14
⊢ (dom
(2nd ‘𝑥) =
𝐼 → (𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
→ 𝑓:(1...𝑚)–1-1-onto→𝐼)) |
25 | 24 | ad2antll 728 |
. . . . . . . . . . . . 13
⊢
(((1st ‘𝑥) = 𝐴 ∧ ((2nd ‘𝑥) = 𝐵 ∧ dom (2nd ‘𝑥) = 𝐼)) → (𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
→ 𝑓:(1...𝑚)–1-1-onto→𝐼)) |
26 | 25 | adantrd 495 |
. . . . . . . . . . . 12
⊢
(((1st ‘𝑥) = 𝐴 ∧ ((2nd ‘𝑥) = 𝐵 ∧ dom (2nd ‘𝑥) = 𝐼)) → ((𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
∧ 𝑠 =
(seq1((+g‘(1st ‘𝑥)), (𝑛 ∈ ℕ ↦ ((2nd
‘𝑥)‘(𝑓‘𝑛))))‘𝑚)) → 𝑓:(1...𝑚)–1-1-onto→𝐼)) |
27 | 26 | adantr 484 |
. . . . . . . . . . 11
⊢
((((1st ‘𝑥) = 𝐴 ∧ ((2nd ‘𝑥) = 𝐵 ∧ dom (2nd ‘𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0) → ((𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
∧ 𝑠 =
(seq1((+g‘(1st ‘𝑥)), (𝑛 ∈ ℕ ↦ ((2nd
‘𝑥)‘(𝑓‘𝑛))))‘𝑚)) → 𝑓:(1...𝑚)–1-1-onto→𝐼)) |
28 | | eqidd 2759 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
∧ (((1st ‘𝑥) = 𝐴 ∧ ((2nd ‘𝑥) = 𝐵 ∧ dom (2nd ‘𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) → 1 =
1) |
29 | | simprl 770 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
∧ ((1st ‘𝑥) = 𝐴 ∧ ((2nd ‘𝑥) = 𝐵 ∧ dom (2nd ‘𝑥) = 𝐼))) → (1st ‘𝑥) = 𝐴) |
30 | 29 | fveq2d 6662 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
∧ ((1st ‘𝑥) = 𝐴 ∧ ((2nd ‘𝑥) = 𝐵 ∧ dom (2nd ‘𝑥) = 𝐼))) →
(+g‘(1st ‘𝑥)) = (+g‘𝐴)) |
31 | 30 | adantrr 716 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
∧ (((1st ‘𝑥) = 𝐴 ∧ ((2nd ‘𝑥) = 𝐵 ∧ dom (2nd ‘𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) →
(+g‘(1st ‘𝑥)) = (+g‘𝐴)) |
32 | | simprrl 780 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
∧ ((1st ‘𝑥) = 𝐴 ∧ ((2nd ‘𝑥) = 𝐵 ∧ dom (2nd ‘𝑥) = 𝐼))) → (2nd ‘𝑥) = 𝐵) |
33 | 32 | adantr 484 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
∧ ((1st ‘𝑥) = 𝐴 ∧ ((2nd ‘𝑥) = 𝐵 ∧ dom (2nd ‘𝑥) = 𝐼))) ∧ 𝑛 ∈ ℕ) → (2nd
‘𝑥) = 𝐵) |
34 | 33 | fveq1d 6660 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
∧ ((1st ‘𝑥) = 𝐴 ∧ ((2nd ‘𝑥) = 𝐵 ∧ dom (2nd ‘𝑥) = 𝐼))) ∧ 𝑛 ∈ ℕ) → ((2nd
‘𝑥)‘(𝑓‘𝑛)) = (𝐵‘(𝑓‘𝑛))) |
35 | 34 | mpteq2dva 5127 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
∧ ((1st ‘𝑥) = 𝐴 ∧ ((2nd ‘𝑥) = 𝐵 ∧ dom (2nd ‘𝑥) = 𝐼))) → (𝑛 ∈ ℕ ↦ ((2nd
‘𝑥)‘(𝑓‘𝑛))) = (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓‘𝑛)))) |
36 | 35 | adantrr 716 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
∧ (((1st ‘𝑥) = 𝐴 ∧ ((2nd ‘𝑥) = 𝐵 ∧ dom (2nd ‘𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) → (𝑛 ∈ ℕ ↦
((2nd ‘𝑥)‘(𝑓‘𝑛))) = (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓‘𝑛)))) |
37 | 28, 31, 36 | seqeq123d 13427 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
∧ (((1st ‘𝑥) = 𝐴 ∧ ((2nd ‘𝑥) = 𝐵 ∧ dom (2nd ‘𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) →
seq1((+g‘(1st ‘𝑥)), (𝑛 ∈ ℕ ↦ ((2nd
‘𝑥)‘(𝑓‘𝑛)))) = seq1((+g‘𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓‘𝑛))))) |
38 | | simprr 772 |
. . . . . . . . . . . . . . . . . 18
⊢
(((1st ‘𝑥) = 𝐴 ∧ ((2nd ‘𝑥) = 𝐵 ∧ dom (2nd ‘𝑥) = 𝐼)) → dom (2nd ‘𝑥) = 𝐼) |
39 | 38 | anim1ci 618 |
. . . . . . . . . . . . . . . . 17
⊢
((((1st ‘𝑥) = 𝐴 ∧ ((2nd ‘𝑥) = 𝐵 ∧ dom (2nd ‘𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0) → (𝑚 ∈ ℕ0
∧ dom (2nd ‘𝑥) = 𝐼)) |
40 | | hashfz1 13756 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑚 ∈ ℕ0
→ (♯‘(1...𝑚)) = 𝑚) |
41 | 40 | eqcomd 2764 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑚 ∈ ℕ0
→ 𝑚 =
(♯‘(1...𝑚))) |
42 | 41 | ad2antrl 727 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
∧ (𝑚 ∈
ℕ0 ∧ dom (2nd ‘𝑥) = 𝐼)) → 𝑚 = (♯‘(1...𝑚))) |
43 | | fzfid 13390 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
∧ (𝑚 ∈
ℕ0 ∧ dom (2nd ‘𝑥) = 𝐼)) → (1...𝑚) ∈ Fin) |
44 | | 19.8a 2178 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
→ ∃𝑓 𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)) |
45 | 44 | adantr 484 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
∧ (𝑚 ∈
ℕ0 ∧ dom (2nd ‘𝑥) = 𝐼)) → ∃𝑓 𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)) |
46 | | hasheqf1oi 13762 |
. . . . . . . . . . . . . . . . . . 19
⊢
((1...𝑚) ∈ Fin
→ (∃𝑓 𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
→ (♯‘(1...𝑚)) = (♯‘dom (2nd
‘𝑥)))) |
47 | 43, 45, 46 | sylc 65 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
∧ (𝑚 ∈
ℕ0 ∧ dom (2nd ‘𝑥) = 𝐼)) → (♯‘(1...𝑚)) = (♯‘dom
(2nd ‘𝑥))) |
48 | | simprr 772 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
∧ (𝑚 ∈
ℕ0 ∧ dom (2nd ‘𝑥) = 𝐼)) → dom (2nd ‘𝑥) = 𝐼) |
49 | 48 | fveq2d 6662 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
∧ (𝑚 ∈
ℕ0 ∧ dom (2nd ‘𝑥) = 𝐼)) → (♯‘dom (2nd
‘𝑥)) =
(♯‘𝐼)) |
50 | 42, 47, 49 | 3eqtrd 2797 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
∧ (𝑚 ∈
ℕ0 ∧ dom (2nd ‘𝑥) = 𝐼)) → 𝑚 = (♯‘𝐼)) |
51 | 39, 50 | sylan2 595 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
∧ (((1st ‘𝑥) = 𝐴 ∧ ((2nd ‘𝑥) = 𝐵 ∧ dom (2nd ‘𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) → 𝑚 = (♯‘𝐼)) |
52 | 37, 51 | fveq12d 6665 |
. . . . . . . . . . . . . . 15
⊢ ((𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
∧ (((1st ‘𝑥) = 𝐴 ∧ ((2nd ‘𝑥) = 𝐵 ∧ dom (2nd ‘𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) →
(seq1((+g‘(1st ‘𝑥)), (𝑛 ∈ ℕ ↦ ((2nd
‘𝑥)‘(𝑓‘𝑛))))‘𝑚) = (seq1((+g‘𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓‘𝑛))))‘(♯‘𝐼))) |
53 | 52 | eqeq2d 2769 |
. . . . . . . . . . . . . 14
⊢ ((𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
∧ (((1st ‘𝑥) = 𝐴 ∧ ((2nd ‘𝑥) = 𝐵 ∧ dom (2nd ‘𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) → (𝑠 =
(seq1((+g‘(1st ‘𝑥)), (𝑛 ∈ ℕ ↦ ((2nd
‘𝑥)‘(𝑓‘𝑛))))‘𝑚) ↔ 𝑠 = (seq1((+g‘𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓‘𝑛))))‘(♯‘𝐼)))) |
54 | 53 | biimpd 232 |
. . . . . . . . . . . . 13
⊢ ((𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
∧ (((1st ‘𝑥) = 𝐴 ∧ ((2nd ‘𝑥) = 𝐵 ∧ dom (2nd ‘𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) → (𝑠 =
(seq1((+g‘(1st ‘𝑥)), (𝑛 ∈ ℕ ↦ ((2nd
‘𝑥)‘(𝑓‘𝑛))))‘𝑚) → 𝑠 = (seq1((+g‘𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓‘𝑛))))‘(♯‘𝐼)))) |
55 | 54 | impancom 455 |
. . . . . . . . . . . 12
⊢ ((𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
∧ 𝑠 =
(seq1((+g‘(1st ‘𝑥)), (𝑛 ∈ ℕ ↦ ((2nd
‘𝑥)‘(𝑓‘𝑛))))‘𝑚)) → ((((1st ‘𝑥) = 𝐴 ∧ ((2nd ‘𝑥) = 𝐵 ∧ dom (2nd ‘𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0) → 𝑠 =
(seq1((+g‘𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓‘𝑛))))‘(♯‘𝐼)))) |
56 | 55 | com12 32 |
. . . . . . . . . . 11
⊢
((((1st ‘𝑥) = 𝐴 ∧ ((2nd ‘𝑥) = 𝐵 ∧ dom (2nd ‘𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0) → ((𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
∧ 𝑠 =
(seq1((+g‘(1st ‘𝑥)), (𝑛 ∈ ℕ ↦ ((2nd
‘𝑥)‘(𝑓‘𝑛))))‘𝑚)) → 𝑠 = (seq1((+g‘𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓‘𝑛))))‘(♯‘𝐼)))) |
57 | 27, 56 | jcad 516 |
. . . . . . . . . 10
⊢
((((1st ‘𝑥) = 𝐴 ∧ ((2nd ‘𝑥) = 𝐵 ∧ dom (2nd ‘𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0) → ((𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
∧ 𝑠 =
(seq1((+g‘(1st ‘𝑥)), (𝑛 ∈ ℕ ↦ ((2nd
‘𝑥)‘(𝑓‘𝑛))))‘𝑚)) → (𝑓:(1...𝑚)–1-1-onto→𝐼 ∧ 𝑠 = (seq1((+g‘𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓‘𝑛))))‘(♯‘𝐼))))) |
58 | 23 | biimprd 251 |
. . . . . . . . . . . . . 14
⊢ (dom
(2nd ‘𝑥) =
𝐼 → (𝑓:(1...𝑚)–1-1-onto→𝐼 → 𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥))) |
59 | 58 | ad2antll 728 |
. . . . . . . . . . . . 13
⊢
(((1st ‘𝑥) = 𝐴 ∧ ((2nd ‘𝑥) = 𝐵 ∧ dom (2nd ‘𝑥) = 𝐼)) → (𝑓:(1...𝑚)–1-1-onto→𝐼 → 𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥))) |
60 | 59 | adantr 484 |
. . . . . . . . . . . 12
⊢
((((1st ‘𝑥) = 𝐴 ∧ ((2nd ‘𝑥) = 𝐵 ∧ dom (2nd ‘𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0) → (𝑓:(1...𝑚)–1-1-onto→𝐼 → 𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥))) |
61 | 60 | adantrd 495 |
. . . . . . . . . . 11
⊢
((((1st ‘𝑥) = 𝐴 ∧ ((2nd ‘𝑥) = 𝐵 ∧ dom (2nd ‘𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0) → ((𝑓:(1...𝑚)–1-1-onto→𝐼 ∧ 𝑠 = (seq1((+g‘𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓‘𝑛))))‘(♯‘𝐼))) → 𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥))) |
62 | | eqidd 2759 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑓:(1...𝑚)–1-1-onto→𝐼 ∧ (((1st
‘𝑥) = 𝐴 ∧ ((2nd
‘𝑥) = 𝐵 ∧ dom (2nd
‘𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) → 1 =
1) |
63 | | simpl 486 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((1st ‘𝑥) = 𝐴 ∧ ((2nd ‘𝑥) = 𝐵 ∧ dom (2nd ‘𝑥) = 𝐼)) → (1st ‘𝑥) = 𝐴) |
64 | | tru 1542 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
⊤ |
65 | 63, 64 | jctir 524 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((1st ‘𝑥) = 𝐴 ∧ ((2nd ‘𝑥) = 𝐵 ∧ dom (2nd ‘𝑥) = 𝐼)) → ((1st ‘𝑥) = 𝐴 ∧ ⊤)) |
66 | 65 | ad2antrl 727 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑓:(1...𝑚)–1-1-onto→𝐼 ∧ (((1st
‘𝑥) = 𝐴 ∧ ((2nd
‘𝑥) = 𝐵 ∧ dom (2nd
‘𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) →
((1st ‘𝑥)
= 𝐴 ∧
⊤)) |
67 | | simpl 486 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((1st ‘𝑥) = 𝐴 ∧ ⊤) → (1st
‘𝑥) = 𝐴) |
68 | 67 | eqcomd 2764 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((1st ‘𝑥) = 𝐴 ∧ ⊤) → 𝐴 = (1st ‘𝑥)) |
69 | 66, 68 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑓:(1...𝑚)–1-1-onto→𝐼 ∧ (((1st
‘𝑥) = 𝐴 ∧ ((2nd
‘𝑥) = 𝐵 ∧ dom (2nd
‘𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) → 𝐴 = (1st ‘𝑥)) |
70 | 69 | fveq2d 6662 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑓:(1...𝑚)–1-1-onto→𝐼 ∧ (((1st
‘𝑥) = 𝐴 ∧ ((2nd
‘𝑥) = 𝐵 ∧ dom (2nd
‘𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) →
(+g‘𝐴) =
(+g‘(1st ‘𝑥))) |
71 | | simpl 486 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((2nd ‘𝑥) = 𝐵 ∧ dom (2nd ‘𝑥) = 𝐼) → (2nd ‘𝑥) = 𝐵) |
72 | 71 | eqcomd 2764 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((2nd ‘𝑥) = 𝐵 ∧ dom (2nd ‘𝑥) = 𝐼) → 𝐵 = (2nd ‘𝑥)) |
73 | 72 | ad2antll 728 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑓:(1...𝑚)–1-1-onto→𝐼 ∧ ((1st
‘𝑥) = 𝐴 ∧ ((2nd
‘𝑥) = 𝐵 ∧ dom (2nd
‘𝑥) = 𝐼))) → 𝐵 = (2nd ‘𝑥)) |
74 | 73 | adantr 484 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑓:(1...𝑚)–1-1-onto→𝐼 ∧ ((1st
‘𝑥) = 𝐴 ∧ ((2nd
‘𝑥) = 𝐵 ∧ dom (2nd
‘𝑥) = 𝐼))) ∧ 𝑛 ∈ ℕ) → 𝐵 = (2nd ‘𝑥)) |
75 | 74 | fveq1d 6660 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑓:(1...𝑚)–1-1-onto→𝐼 ∧ ((1st
‘𝑥) = 𝐴 ∧ ((2nd
‘𝑥) = 𝐵 ∧ dom (2nd
‘𝑥) = 𝐼))) ∧ 𝑛 ∈ ℕ) → (𝐵‘(𝑓‘𝑛)) = ((2nd ‘𝑥)‘(𝑓‘𝑛))) |
76 | 75 | adantlrr 720 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑓:(1...𝑚)–1-1-onto→𝐼 ∧ (((1st
‘𝑥) = 𝐴 ∧ ((2nd
‘𝑥) = 𝐵 ∧ dom (2nd
‘𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) ∧ 𝑛 ∈ ℕ) → (𝐵‘(𝑓‘𝑛)) = ((2nd ‘𝑥)‘(𝑓‘𝑛))) |
77 | 76 | mpteq2dva 5127 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑓:(1...𝑚)–1-1-onto→𝐼 ∧ (((1st
‘𝑥) = 𝐴 ∧ ((2nd
‘𝑥) = 𝐵 ∧ dom (2nd
‘𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) → (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓‘𝑛))) = (𝑛 ∈ ℕ ↦ ((2nd
‘𝑥)‘(𝑓‘𝑛)))) |
78 | 62, 70, 77 | seqeq123d 13427 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑓:(1...𝑚)–1-1-onto→𝐼 ∧ (((1st
‘𝑥) = 𝐴 ∧ ((2nd
‘𝑥) = 𝐵 ∧ dom (2nd
‘𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) →
seq1((+g‘𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓‘𝑛)))) =
seq1((+g‘(1st ‘𝑥)), (𝑛 ∈ ℕ ↦ ((2nd
‘𝑥)‘(𝑓‘𝑛))))) |
79 | 60 | impcom 411 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑓:(1...𝑚)–1-1-onto→𝐼 ∧ (((1st
‘𝑥) = 𝐴 ∧ ((2nd
‘𝑥) = 𝐵 ∧ dom (2nd
‘𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) → 𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)) |
80 | | simprr 772 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑓:(1...𝑚)–1-1-onto→𝐼 ∧ (((1st
‘𝑥) = 𝐴 ∧ ((2nd
‘𝑥) = 𝐵 ∧ dom (2nd
‘𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) → 𝑚 ∈
ℕ0) |
81 | 38 | ad2antrl 727 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑓:(1...𝑚)–1-1-onto→𝐼 ∧ (((1st
‘𝑥) = 𝐴 ∧ ((2nd
‘𝑥) = 𝐵 ∧ dom (2nd
‘𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) → dom
(2nd ‘𝑥) =
𝐼) |
82 | 79, 80, 81, 50 | syl12anc 835 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑓:(1...𝑚)–1-1-onto→𝐼 ∧ (((1st
‘𝑥) = 𝐴 ∧ ((2nd
‘𝑥) = 𝐵 ∧ dom (2nd
‘𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) → 𝑚 = (♯‘𝐼)) |
83 | 82 | eqcomd 2764 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑓:(1...𝑚)–1-1-onto→𝐼 ∧ (((1st
‘𝑥) = 𝐴 ∧ ((2nd
‘𝑥) = 𝐵 ∧ dom (2nd
‘𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) →
(♯‘𝐼) = 𝑚) |
84 | 78, 83 | fveq12d 6665 |
. . . . . . . . . . . . . . 15
⊢ ((𝑓:(1...𝑚)–1-1-onto→𝐼 ∧ (((1st
‘𝑥) = 𝐴 ∧ ((2nd
‘𝑥) = 𝐵 ∧ dom (2nd
‘𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) →
(seq1((+g‘𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓‘𝑛))))‘(♯‘𝐼)) =
(seq1((+g‘(1st ‘𝑥)), (𝑛 ∈ ℕ ↦ ((2nd
‘𝑥)‘(𝑓‘𝑛))))‘𝑚)) |
85 | 84 | eqeq2d 2769 |
. . . . . . . . . . . . . 14
⊢ ((𝑓:(1...𝑚)–1-1-onto→𝐼 ∧ (((1st
‘𝑥) = 𝐴 ∧ ((2nd
‘𝑥) = 𝐵 ∧ dom (2nd
‘𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) → (𝑠 =
(seq1((+g‘𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓‘𝑛))))‘(♯‘𝐼)) ↔ 𝑠 = (seq1((+g‘(1st
‘𝑥)), (𝑛 ∈ ℕ ↦
((2nd ‘𝑥)‘(𝑓‘𝑛))))‘𝑚))) |
86 | 85 | biimpd 232 |
. . . . . . . . . . . . 13
⊢ ((𝑓:(1...𝑚)–1-1-onto→𝐼 ∧ (((1st
‘𝑥) = 𝐴 ∧ ((2nd
‘𝑥) = 𝐵 ∧ dom (2nd
‘𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) → (𝑠 =
(seq1((+g‘𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓‘𝑛))))‘(♯‘𝐼)) → 𝑠 = (seq1((+g‘(1st
‘𝑥)), (𝑛 ∈ ℕ ↦
((2nd ‘𝑥)‘(𝑓‘𝑛))))‘𝑚))) |
87 | 86 | impancom 455 |
. . . . . . . . . . . 12
⊢ ((𝑓:(1...𝑚)–1-1-onto→𝐼 ∧ 𝑠 = (seq1((+g‘𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓‘𝑛))))‘(♯‘𝐼))) → ((((1st ‘𝑥) = 𝐴 ∧ ((2nd ‘𝑥) = 𝐵 ∧ dom (2nd ‘𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0) → 𝑠 =
(seq1((+g‘(1st ‘𝑥)), (𝑛 ∈ ℕ ↦ ((2nd
‘𝑥)‘(𝑓‘𝑛))))‘𝑚))) |
88 | 87 | com12 32 |
. . . . . . . . . . 11
⊢
((((1st ‘𝑥) = 𝐴 ∧ ((2nd ‘𝑥) = 𝐵 ∧ dom (2nd ‘𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0) → ((𝑓:(1...𝑚)–1-1-onto→𝐼 ∧ 𝑠 = (seq1((+g‘𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓‘𝑛))))‘(♯‘𝐼))) → 𝑠 = (seq1((+g‘(1st
‘𝑥)), (𝑛 ∈ ℕ ↦
((2nd ‘𝑥)‘(𝑓‘𝑛))))‘𝑚))) |
89 | 61, 88 | jcad 516 |
. . . . . . . . . 10
⊢
((((1st ‘𝑥) = 𝐴 ∧ ((2nd ‘𝑥) = 𝐵 ∧ dom (2nd ‘𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0) → ((𝑓:(1...𝑚)–1-1-onto→𝐼 ∧ 𝑠 = (seq1((+g‘𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓‘𝑛))))‘(♯‘𝐼))) → (𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
∧ 𝑠 =
(seq1((+g‘(1st ‘𝑥)), (𝑛 ∈ ℕ ↦ ((2nd
‘𝑥)‘(𝑓‘𝑛))))‘𝑚)))) |
90 | 57, 89 | impbid 215 |
. . . . . . . . 9
⊢
((((1st ‘𝑥) = 𝐴 ∧ ((2nd ‘𝑥) = 𝐵 ∧ dom (2nd ‘𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0) → ((𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
∧ 𝑠 =
(seq1((+g‘(1st ‘𝑥)), (𝑛 ∈ ℕ ↦ ((2nd
‘𝑥)‘(𝑓‘𝑛))))‘𝑚)) ↔ (𝑓:(1...𝑚)–1-1-onto→𝐼 ∧ 𝑠 = (seq1((+g‘𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓‘𝑛))))‘(♯‘𝐼))))) |
91 | 90 | ex 416 |
. . . . . . . 8
⊢
(((1st ‘𝑥) = 𝐴 ∧ ((2nd ‘𝑥) = 𝐵 ∧ dom (2nd ‘𝑥) = 𝐼)) → (𝑚 ∈ ℕ0 → ((𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
∧ 𝑠 =
(seq1((+g‘(1st ‘𝑥)), (𝑛 ∈ ℕ ↦ ((2nd
‘𝑥)‘(𝑓‘𝑛))))‘𝑚)) ↔ (𝑓:(1...𝑚)–1-1-onto→𝐼 ∧ 𝑠 = (seq1((+g‘𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓‘𝑛))))‘(♯‘𝐼)))))) |
92 | 14, 18, 22, 91 | syl12anc 835 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 = 〈𝐴, 𝐵〉) → (𝑚 ∈ ℕ0 → ((𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
∧ 𝑠 =
(seq1((+g‘(1st ‘𝑥)), (𝑛 ∈ ℕ ↦ ((2nd
‘𝑥)‘(𝑓‘𝑛))))‘𝑚)) ↔ (𝑓:(1...𝑚)–1-1-onto→𝐼 ∧ 𝑠 = (seq1((+g‘𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓‘𝑛))))‘(♯‘𝐼)))))) |
93 | 92 | imp 410 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 = 〈𝐴, 𝐵〉) ∧ 𝑚 ∈ ℕ0) → ((𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
∧ 𝑠 =
(seq1((+g‘(1st ‘𝑥)), (𝑛 ∈ ℕ ↦ ((2nd
‘𝑥)‘(𝑓‘𝑛))))‘𝑚)) ↔ (𝑓:(1...𝑚)–1-1-onto→𝐼 ∧ 𝑠 = (seq1((+g‘𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓‘𝑛))))‘(♯‘𝐼))))) |
94 | 93 | exbidv 1922 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 = 〈𝐴, 𝐵〉) ∧ 𝑚 ∈ ℕ0) →
(∃𝑓(𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
∧ 𝑠 =
(seq1((+g‘(1st ‘𝑥)), (𝑛 ∈ ℕ ↦ ((2nd
‘𝑥)‘(𝑓‘𝑛))))‘𝑚)) ↔ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐼 ∧ 𝑠 = (seq1((+g‘𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓‘𝑛))))‘(♯‘𝐼))))) |
95 | 94 | rexbidva 3220 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 = 〈𝐴, 𝐵〉) → (∃𝑚 ∈ ℕ0 ∃𝑓(𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
∧ 𝑠 =
(seq1((+g‘(1st ‘𝑥)), (𝑛 ∈ ℕ ↦ ((2nd
‘𝑥)‘(𝑓‘𝑛))))‘𝑚)) ↔ ∃𝑚 ∈ ℕ0 ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐼 ∧ 𝑠 = (seq1((+g‘𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓‘𝑛))))‘(♯‘𝐼))))) |
96 | 95 | iotabidv 6319 |
. . 3
⊢ ((𝜑 ∧ 𝑥 = 〈𝐴, 𝐵〉) → (℩𝑠∃𝑚 ∈ ℕ0 ∃𝑓(𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
∧ 𝑠 =
(seq1((+g‘(1st ‘𝑥)), (𝑛 ∈ ℕ ↦ ((2nd
‘𝑥)‘(𝑓‘𝑛))))‘𝑚))) = (℩𝑠∃𝑚 ∈ ℕ0 ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐼 ∧ 𝑠 = (seq1((+g‘𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓‘𝑛))))‘(♯‘𝐼))))) |
97 | | eleq1 2839 |
. . . . . . . . . 10
⊢ (𝑡 = 𝐼 → (𝑡 ∈ Fin ↔ 𝐼 ∈ Fin)) |
98 | | feq2 6480 |
. . . . . . . . . 10
⊢ (𝑡 = 𝐼 → (𝐵:𝑡⟶(Base‘𝐴) ↔ 𝐵:𝐼⟶(Base‘𝐴))) |
99 | 97, 98 | anbi12d 633 |
. . . . . . . . 9
⊢ (𝑡 = 𝐼 → ((𝑡 ∈ Fin ∧ 𝐵:𝑡⟶(Base‘𝐴)) ↔ (𝐼 ∈ Fin ∧ 𝐵:𝐼⟶(Base‘𝐴)))) |
100 | 99 | ceqsexgv 3565 |
. . . . . . . 8
⊢ (𝐼 ∈ Fin → (∃𝑡(𝑡 = 𝐼 ∧ (𝑡 ∈ Fin ∧ 𝐵:𝑡⟶(Base‘𝐴))) ↔ (𝐼 ∈ Fin ∧ 𝐵:𝐼⟶(Base‘𝐴)))) |
101 | 8, 100 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (∃𝑡(𝑡 = 𝐼 ∧ (𝑡 ∈ Fin ∧ 𝐵:𝑡⟶(Base‘𝐴))) ↔ (𝐼 ∈ Fin ∧ 𝐵:𝐼⟶(Base‘𝐴)))) |
102 | 8, 7, 101 | mpbir2and 712 |
. . . . . 6
⊢ (𝜑 → ∃𝑡(𝑡 = 𝐼 ∧ (𝑡 ∈ Fin ∧ 𝐵:𝑡⟶(Base‘𝐴)))) |
103 | | exsimpr 1870 |
. . . . . 6
⊢
(∃𝑡(𝑡 = 𝐼 ∧ (𝑡 ∈ Fin ∧ 𝐵:𝑡⟶(Base‘𝐴))) → ∃𝑡(𝑡 ∈ Fin ∧ 𝐵:𝑡⟶(Base‘𝐴))) |
104 | 102, 103 | syl 17 |
. . . . 5
⊢ (𝜑 → ∃𝑡(𝑡 ∈ Fin ∧ 𝐵:𝑡⟶(Base‘𝐴))) |
105 | | df-rex 3076 |
. . . . 5
⊢
(∃𝑡 ∈ Fin
𝐵:𝑡⟶(Base‘𝐴) ↔ ∃𝑡(𝑡 ∈ Fin ∧ 𝐵:𝑡⟶(Base‘𝐴))) |
106 | 104, 105 | sylibr 237 |
. . . 4
⊢ (𝜑 → ∃𝑡 ∈ Fin 𝐵:𝑡⟶(Base‘𝐴)) |
107 | | eleq1 2839 |
. . . . . . 7
⊢ (𝑦 = 𝐴 → (𝑦 ∈ CMnd ↔ 𝐴 ∈ CMnd)) |
108 | | fveq2 6658 |
. . . . . . . . 9
⊢ (𝑦 = 𝐴 → (Base‘𝑦) = (Base‘𝐴)) |
109 | 108 | feq3d 6485 |
. . . . . . . 8
⊢ (𝑦 = 𝐴 → (𝑧:𝑡⟶(Base‘𝑦) ↔ 𝑧:𝑡⟶(Base‘𝐴))) |
110 | 109 | rexbidv 3221 |
. . . . . . 7
⊢ (𝑦 = 𝐴 → (∃𝑡 ∈ Fin 𝑧:𝑡⟶(Base‘𝑦) ↔ ∃𝑡 ∈ Fin 𝑧:𝑡⟶(Base‘𝐴))) |
111 | 107, 110 | anbi12d 633 |
. . . . . 6
⊢ (𝑦 = 𝐴 → ((𝑦 ∈ CMnd ∧ ∃𝑡 ∈ Fin 𝑧:𝑡⟶(Base‘𝑦)) ↔ (𝐴 ∈ CMnd ∧ ∃𝑡 ∈ Fin 𝑧:𝑡⟶(Base‘𝐴)))) |
112 | | feq1 6479 |
. . . . . . . 8
⊢ (𝑧 = 𝐵 → (𝑧:𝑡⟶(Base‘𝐴) ↔ 𝐵:𝑡⟶(Base‘𝐴))) |
113 | 112 | rexbidv 3221 |
. . . . . . 7
⊢ (𝑧 = 𝐵 → (∃𝑡 ∈ Fin 𝑧:𝑡⟶(Base‘𝐴) ↔ ∃𝑡 ∈ Fin 𝐵:𝑡⟶(Base‘𝐴))) |
114 | 113 | anbi2d 631 |
. . . . . 6
⊢ (𝑧 = 𝐵 → ((𝐴 ∈ CMnd ∧ ∃𝑡 ∈ Fin 𝑧:𝑡⟶(Base‘𝐴)) ↔ (𝐴 ∈ CMnd ∧ ∃𝑡 ∈ Fin 𝐵:𝑡⟶(Base‘𝐴)))) |
115 | 111, 114 | opelopabg 5395 |
. . . . 5
⊢ ((𝐴 ∈ CMnd ∧ 𝐵 ∈ V) → (〈𝐴, 𝐵〉 ∈ {〈𝑦, 𝑧〉 ∣ (𝑦 ∈ CMnd ∧ ∃𝑡 ∈ Fin 𝑧:𝑡⟶(Base‘𝑦))} ↔ (𝐴 ∈ CMnd ∧ ∃𝑡 ∈ Fin 𝐵:𝑡⟶(Base‘𝐴)))) |
116 | 5, 10, 115 | syl2anc 587 |
. . . 4
⊢ (𝜑 → (〈𝐴, 𝐵〉 ∈ {〈𝑦, 𝑧〉 ∣ (𝑦 ∈ CMnd ∧ ∃𝑡 ∈ Fin 𝑧:𝑡⟶(Base‘𝑦))} ↔ (𝐴 ∈ CMnd ∧ ∃𝑡 ∈ Fin 𝐵:𝑡⟶(Base‘𝐴)))) |
117 | 5, 106, 116 | mpbir2and 712 |
. . 3
⊢ (𝜑 → 〈𝐴, 𝐵〉 ∈ {〈𝑦, 𝑧〉 ∣ (𝑦 ∈ CMnd ∧ ∃𝑡 ∈ Fin 𝑧:𝑡⟶(Base‘𝑦))}) |
118 | | iotaex 6315 |
. . . 4
⊢
(℩𝑠∃𝑚 ∈ ℕ0 ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐼 ∧ 𝑠 = (seq1((+g‘𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓‘𝑛))))‘(♯‘𝐼)))) ∈ V |
119 | 118 | a1i 11 |
. . 3
⊢ (𝜑 → (℩𝑠∃𝑚 ∈ ℕ0 ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐼 ∧ 𝑠 = (seq1((+g‘𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓‘𝑛))))‘(♯‘𝐼)))) ∈ V) |
120 | 2, 96, 117, 119 | fvmptd2 6767 |
. 2
⊢ (𝜑 → ( FinSum
‘〈𝐴, 𝐵〉) = (℩𝑠∃𝑚 ∈ ℕ0 ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐼 ∧ 𝑠 = (seq1((+g‘𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓‘𝑛))))‘(♯‘𝐼))))) |
121 | 1, 120 | syl5eq 2805 |
1
⊢ (𝜑 → (𝐴 FinSum 𝐵) = (℩𝑠∃𝑚 ∈ ℕ0 ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐼 ∧ 𝑠 = (seq1((+g‘𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓‘𝑛))))‘(♯‘𝐼))))) |