Step | Hyp | Ref
| Expression |
1 | | df-ov 7278 |
. 2
⊢ (𝐴 FinSum 𝐵) = ( FinSum ‘〈𝐴, 𝐵〉) |
2 | | df-bj-finsum 35455 |
. . 3
⊢ FinSum =
(𝑥 ∈ {〈𝑦, 𝑧〉 ∣ (𝑦 ∈ CMnd ∧ ∃𝑡 ∈ Fin 𝑧:𝑡⟶(Base‘𝑦))} ↦ (℩𝑠∃𝑚 ∈ ℕ0 ∃𝑓(𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
∧ 𝑠 =
(seq1((+g‘(1st ‘𝑥)), (𝑛 ∈ ℕ ↦ ((2nd
‘𝑥)‘(𝑓‘𝑛))))‘𝑚)))) |
3 | | simpr 485 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 = 〈𝐴, 𝐵〉) → 𝑥 = 〈𝐴, 𝐵〉) |
4 | 3 | fveq2d 6778 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 = 〈𝐴, 𝐵〉) → (1st ‘𝑥) = (1st
‘〈𝐴, 𝐵〉)) |
5 | | bj-finsumval0.1 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐴 ∈ CMnd) |
6 | 5 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 = 〈𝐴, 𝐵〉) → 𝐴 ∈ CMnd) |
7 | | bj-finsumval0.3 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐵:𝐼⟶(Base‘𝐴)) |
8 | | bj-finsumval0.2 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐼 ∈ Fin) |
9 | 7, 8 | fexd 7103 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐵 ∈ V) |
10 | 9 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 = 〈𝐴, 𝐵〉) → 𝐵 ∈ V) |
11 | | op1stg 7843 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ CMnd ∧ 𝐵 ∈ V) →
(1st ‘〈𝐴, 𝐵〉) = 𝐴) |
12 | 6, 10, 11 | syl2anc 584 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 = 〈𝐴, 𝐵〉) → (1st
‘〈𝐴, 𝐵〉) = 𝐴) |
13 | 4, 12 | eqtrd 2778 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 = 〈𝐴, 𝐵〉) → (1st ‘𝑥) = 𝐴) |
14 | 3 | fveq2d 6778 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 = 〈𝐴, 𝐵〉) → (2nd ‘𝑥) = (2nd
‘〈𝐴, 𝐵〉)) |
15 | | op2ndg 7844 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ CMnd ∧ 𝐵 ∈ V) →
(2nd ‘〈𝐴, 𝐵〉) = 𝐵) |
16 | 6, 10, 15 | syl2anc 584 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 = 〈𝐴, 𝐵〉) → (2nd
‘〈𝐴, 𝐵〉) = 𝐵) |
17 | 14, 16 | eqtrd 2778 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 = 〈𝐴, 𝐵〉) → (2nd ‘𝑥) = 𝐵) |
18 | 17 | dmeqd 5814 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 = 〈𝐴, 𝐵〉) → dom (2nd
‘𝑥) = dom 𝐵) |
19 | 7 | fdmd 6611 |
. . . . . . . . . 10
⊢ (𝜑 → dom 𝐵 = 𝐼) |
20 | 19 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 = 〈𝐴, 𝐵〉) → dom 𝐵 = 𝐼) |
21 | 18, 20 | eqtrd 2778 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 = 〈𝐴, 𝐵〉) → dom (2nd
‘𝑥) = 𝐼) |
22 | | f1oeq3 6706 |
. . . . . . . . . . . . . . 15
⊢ (dom
(2nd ‘𝑥) =
𝐼 → (𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
↔ 𝑓:(1...𝑚)–1-1-onto→𝐼)) |
23 | 22 | biimpd 228 |
. . . . . . . . . . . . . 14
⊢ (dom
(2nd ‘𝑥) =
𝐼 → (𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
→ 𝑓:(1...𝑚)–1-1-onto→𝐼)) |
24 | 23 | ad2antll 726 |
. . . . . . . . . . . . 13
⊢
(((1st ‘𝑥) = 𝐴 ∧ ((2nd ‘𝑥) = 𝐵 ∧ dom (2nd ‘𝑥) = 𝐼)) → (𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
→ 𝑓:(1...𝑚)–1-1-onto→𝐼)) |
25 | 24 | adantrd 492 |
. . . . . . . . . . . 12
⊢
(((1st ‘𝑥) = 𝐴 ∧ ((2nd ‘𝑥) = 𝐵 ∧ dom (2nd ‘𝑥) = 𝐼)) → ((𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
∧ 𝑠 =
(seq1((+g‘(1st ‘𝑥)), (𝑛 ∈ ℕ ↦ ((2nd
‘𝑥)‘(𝑓‘𝑛))))‘𝑚)) → 𝑓:(1...𝑚)–1-1-onto→𝐼)) |
26 | 25 | adantr 481 |
. . . . . . . . . . 11
⊢
((((1st ‘𝑥) = 𝐴 ∧ ((2nd ‘𝑥) = 𝐵 ∧ dom (2nd ‘𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0) → ((𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
∧ 𝑠 =
(seq1((+g‘(1st ‘𝑥)), (𝑛 ∈ ℕ ↦ ((2nd
‘𝑥)‘(𝑓‘𝑛))))‘𝑚)) → 𝑓:(1...𝑚)–1-1-onto→𝐼)) |
27 | | eqidd 2739 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
∧ (((1st ‘𝑥) = 𝐴 ∧ ((2nd ‘𝑥) = 𝐵 ∧ dom (2nd ‘𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) → 1 =
1) |
28 | | simprl 768 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
∧ ((1st ‘𝑥) = 𝐴 ∧ ((2nd ‘𝑥) = 𝐵 ∧ dom (2nd ‘𝑥) = 𝐼))) → (1st ‘𝑥) = 𝐴) |
29 | 28 | fveq2d 6778 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
∧ ((1st ‘𝑥) = 𝐴 ∧ ((2nd ‘𝑥) = 𝐵 ∧ dom (2nd ‘𝑥) = 𝐼))) →
(+g‘(1st ‘𝑥)) = (+g‘𝐴)) |
30 | 29 | adantrr 714 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
∧ (((1st ‘𝑥) = 𝐴 ∧ ((2nd ‘𝑥) = 𝐵 ∧ dom (2nd ‘𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) →
(+g‘(1st ‘𝑥)) = (+g‘𝐴)) |
31 | | simprrl 778 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
∧ ((1st ‘𝑥) = 𝐴 ∧ ((2nd ‘𝑥) = 𝐵 ∧ dom (2nd ‘𝑥) = 𝐼))) → (2nd ‘𝑥) = 𝐵) |
32 | 31 | adantr 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
∧ ((1st ‘𝑥) = 𝐴 ∧ ((2nd ‘𝑥) = 𝐵 ∧ dom (2nd ‘𝑥) = 𝐼))) ∧ 𝑛 ∈ ℕ) → (2nd
‘𝑥) = 𝐵) |
33 | 32 | fveq1d 6776 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
∧ ((1st ‘𝑥) = 𝐴 ∧ ((2nd ‘𝑥) = 𝐵 ∧ dom (2nd ‘𝑥) = 𝐼))) ∧ 𝑛 ∈ ℕ) → ((2nd
‘𝑥)‘(𝑓‘𝑛)) = (𝐵‘(𝑓‘𝑛))) |
34 | 33 | mpteq2dva 5174 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
∧ ((1st ‘𝑥) = 𝐴 ∧ ((2nd ‘𝑥) = 𝐵 ∧ dom (2nd ‘𝑥) = 𝐼))) → (𝑛 ∈ ℕ ↦ ((2nd
‘𝑥)‘(𝑓‘𝑛))) = (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓‘𝑛)))) |
35 | 34 | adantrr 714 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
∧ (((1st ‘𝑥) = 𝐴 ∧ ((2nd ‘𝑥) = 𝐵 ∧ dom (2nd ‘𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) → (𝑛 ∈ ℕ ↦
((2nd ‘𝑥)‘(𝑓‘𝑛))) = (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓‘𝑛)))) |
36 | 27, 30, 35 | seqeq123d 13730 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
∧ (((1st ‘𝑥) = 𝐴 ∧ ((2nd ‘𝑥) = 𝐵 ∧ dom (2nd ‘𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) →
seq1((+g‘(1st ‘𝑥)), (𝑛 ∈ ℕ ↦ ((2nd
‘𝑥)‘(𝑓‘𝑛)))) = seq1((+g‘𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓‘𝑛))))) |
37 | | simprr 770 |
. . . . . . . . . . . . . . . . . 18
⊢
(((1st ‘𝑥) = 𝐴 ∧ ((2nd ‘𝑥) = 𝐵 ∧ dom (2nd ‘𝑥) = 𝐼)) → dom (2nd ‘𝑥) = 𝐼) |
38 | 37 | anim1ci 616 |
. . . . . . . . . . . . . . . . 17
⊢
((((1st ‘𝑥) = 𝐴 ∧ ((2nd ‘𝑥) = 𝐵 ∧ dom (2nd ‘𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0) → (𝑚 ∈ ℕ0
∧ dom (2nd ‘𝑥) = 𝐼)) |
39 | | hashfz1 14060 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑚 ∈ ℕ0
→ (♯‘(1...𝑚)) = 𝑚) |
40 | 39 | eqcomd 2744 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑚 ∈ ℕ0
→ 𝑚 =
(♯‘(1...𝑚))) |
41 | 40 | ad2antrl 725 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
∧ (𝑚 ∈
ℕ0 ∧ dom (2nd ‘𝑥) = 𝐼)) → 𝑚 = (♯‘(1...𝑚))) |
42 | | fzfid 13693 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
∧ (𝑚 ∈
ℕ0 ∧ dom (2nd ‘𝑥) = 𝐼)) → (1...𝑚) ∈ Fin) |
43 | | 19.8a 2174 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
→ ∃𝑓 𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)) |
44 | 43 | adantr 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
∧ (𝑚 ∈
ℕ0 ∧ dom (2nd ‘𝑥) = 𝐼)) → ∃𝑓 𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)) |
45 | | hasheqf1oi 14066 |
. . . . . . . . . . . . . . . . . . 19
⊢
((1...𝑚) ∈ Fin
→ (∃𝑓 𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
→ (♯‘(1...𝑚)) = (♯‘dom (2nd
‘𝑥)))) |
46 | 42, 44, 45 | sylc 65 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
∧ (𝑚 ∈
ℕ0 ∧ dom (2nd ‘𝑥) = 𝐼)) → (♯‘(1...𝑚)) = (♯‘dom
(2nd ‘𝑥))) |
47 | | simprr 770 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
∧ (𝑚 ∈
ℕ0 ∧ dom (2nd ‘𝑥) = 𝐼)) → dom (2nd ‘𝑥) = 𝐼) |
48 | 47 | fveq2d 6778 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
∧ (𝑚 ∈
ℕ0 ∧ dom (2nd ‘𝑥) = 𝐼)) → (♯‘dom (2nd
‘𝑥)) =
(♯‘𝐼)) |
49 | 41, 46, 48 | 3eqtrd 2782 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
∧ (𝑚 ∈
ℕ0 ∧ dom (2nd ‘𝑥) = 𝐼)) → 𝑚 = (♯‘𝐼)) |
50 | 38, 49 | sylan2 593 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
∧ (((1st ‘𝑥) = 𝐴 ∧ ((2nd ‘𝑥) = 𝐵 ∧ dom (2nd ‘𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) → 𝑚 = (♯‘𝐼)) |
51 | 36, 50 | fveq12d 6781 |
. . . . . . . . . . . . . . 15
⊢ ((𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
∧ (((1st ‘𝑥) = 𝐴 ∧ ((2nd ‘𝑥) = 𝐵 ∧ dom (2nd ‘𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) →
(seq1((+g‘(1st ‘𝑥)), (𝑛 ∈ ℕ ↦ ((2nd
‘𝑥)‘(𝑓‘𝑛))))‘𝑚) = (seq1((+g‘𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓‘𝑛))))‘(♯‘𝐼))) |
52 | 51 | eqeq2d 2749 |
. . . . . . . . . . . . . 14
⊢ ((𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
∧ (((1st ‘𝑥) = 𝐴 ∧ ((2nd ‘𝑥) = 𝐵 ∧ dom (2nd ‘𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) → (𝑠 =
(seq1((+g‘(1st ‘𝑥)), (𝑛 ∈ ℕ ↦ ((2nd
‘𝑥)‘(𝑓‘𝑛))))‘𝑚) ↔ 𝑠 = (seq1((+g‘𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓‘𝑛))))‘(♯‘𝐼)))) |
53 | 52 | biimpd 228 |
. . . . . . . . . . . . 13
⊢ ((𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
∧ (((1st ‘𝑥) = 𝐴 ∧ ((2nd ‘𝑥) = 𝐵 ∧ dom (2nd ‘𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) → (𝑠 =
(seq1((+g‘(1st ‘𝑥)), (𝑛 ∈ ℕ ↦ ((2nd
‘𝑥)‘(𝑓‘𝑛))))‘𝑚) → 𝑠 = (seq1((+g‘𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓‘𝑛))))‘(♯‘𝐼)))) |
54 | 53 | impancom 452 |
. . . . . . . . . . . 12
⊢ ((𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
∧ 𝑠 =
(seq1((+g‘(1st ‘𝑥)), (𝑛 ∈ ℕ ↦ ((2nd
‘𝑥)‘(𝑓‘𝑛))))‘𝑚)) → ((((1st ‘𝑥) = 𝐴 ∧ ((2nd ‘𝑥) = 𝐵 ∧ dom (2nd ‘𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0) → 𝑠 =
(seq1((+g‘𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓‘𝑛))))‘(♯‘𝐼)))) |
55 | 54 | com12 32 |
. . . . . . . . . . 11
⊢
((((1st ‘𝑥) = 𝐴 ∧ ((2nd ‘𝑥) = 𝐵 ∧ dom (2nd ‘𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0) → ((𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
∧ 𝑠 =
(seq1((+g‘(1st ‘𝑥)), (𝑛 ∈ ℕ ↦ ((2nd
‘𝑥)‘(𝑓‘𝑛))))‘𝑚)) → 𝑠 = (seq1((+g‘𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓‘𝑛))))‘(♯‘𝐼)))) |
56 | 26, 55 | jcad 513 |
. . . . . . . . . 10
⊢
((((1st ‘𝑥) = 𝐴 ∧ ((2nd ‘𝑥) = 𝐵 ∧ dom (2nd ‘𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0) → ((𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
∧ 𝑠 =
(seq1((+g‘(1st ‘𝑥)), (𝑛 ∈ ℕ ↦ ((2nd
‘𝑥)‘(𝑓‘𝑛))))‘𝑚)) → (𝑓:(1...𝑚)–1-1-onto→𝐼 ∧ 𝑠 = (seq1((+g‘𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓‘𝑛))))‘(♯‘𝐼))))) |
57 | 22 | biimprd 247 |
. . . . . . . . . . . . . 14
⊢ (dom
(2nd ‘𝑥) =
𝐼 → (𝑓:(1...𝑚)–1-1-onto→𝐼 → 𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥))) |
58 | 57 | ad2antll 726 |
. . . . . . . . . . . . 13
⊢
(((1st ‘𝑥) = 𝐴 ∧ ((2nd ‘𝑥) = 𝐵 ∧ dom (2nd ‘𝑥) = 𝐼)) → (𝑓:(1...𝑚)–1-1-onto→𝐼 → 𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥))) |
59 | 58 | adantr 481 |
. . . . . . . . . . . 12
⊢
((((1st ‘𝑥) = 𝐴 ∧ ((2nd ‘𝑥) = 𝐵 ∧ dom (2nd ‘𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0) → (𝑓:(1...𝑚)–1-1-onto→𝐼 → 𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥))) |
60 | 59 | adantrd 492 |
. . . . . . . . . . 11
⊢
((((1st ‘𝑥) = 𝐴 ∧ ((2nd ‘𝑥) = 𝐵 ∧ dom (2nd ‘𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0) → ((𝑓:(1...𝑚)–1-1-onto→𝐼 ∧ 𝑠 = (seq1((+g‘𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓‘𝑛))))‘(♯‘𝐼))) → 𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥))) |
61 | | eqidd 2739 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑓:(1...𝑚)–1-1-onto→𝐼 ∧ (((1st
‘𝑥) = 𝐴 ∧ ((2nd
‘𝑥) = 𝐵 ∧ dom (2nd
‘𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) → 1 =
1) |
62 | | simpl 483 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((1st ‘𝑥) = 𝐴 ∧ ((2nd ‘𝑥) = 𝐵 ∧ dom (2nd ‘𝑥) = 𝐼)) → (1st ‘𝑥) = 𝐴) |
63 | | tru 1543 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
⊤ |
64 | 62, 63 | jctir 521 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((1st ‘𝑥) = 𝐴 ∧ ((2nd ‘𝑥) = 𝐵 ∧ dom (2nd ‘𝑥) = 𝐼)) → ((1st ‘𝑥) = 𝐴 ∧ ⊤)) |
65 | 64 | ad2antrl 725 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑓:(1...𝑚)–1-1-onto→𝐼 ∧ (((1st
‘𝑥) = 𝐴 ∧ ((2nd
‘𝑥) = 𝐵 ∧ dom (2nd
‘𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) →
((1st ‘𝑥)
= 𝐴 ∧
⊤)) |
66 | | simpl 483 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((1st ‘𝑥) = 𝐴 ∧ ⊤) → (1st
‘𝑥) = 𝐴) |
67 | 66 | eqcomd 2744 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((1st ‘𝑥) = 𝐴 ∧ ⊤) → 𝐴 = (1st ‘𝑥)) |
68 | 65, 67 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑓:(1...𝑚)–1-1-onto→𝐼 ∧ (((1st
‘𝑥) = 𝐴 ∧ ((2nd
‘𝑥) = 𝐵 ∧ dom (2nd
‘𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) → 𝐴 = (1st ‘𝑥)) |
69 | 68 | fveq2d 6778 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑓:(1...𝑚)–1-1-onto→𝐼 ∧ (((1st
‘𝑥) = 𝐴 ∧ ((2nd
‘𝑥) = 𝐵 ∧ dom (2nd
‘𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) →
(+g‘𝐴) =
(+g‘(1st ‘𝑥))) |
70 | | simpl 483 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((2nd ‘𝑥) = 𝐵 ∧ dom (2nd ‘𝑥) = 𝐼) → (2nd ‘𝑥) = 𝐵) |
71 | 70 | eqcomd 2744 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((2nd ‘𝑥) = 𝐵 ∧ dom (2nd ‘𝑥) = 𝐼) → 𝐵 = (2nd ‘𝑥)) |
72 | 71 | ad2antll 726 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑓:(1...𝑚)–1-1-onto→𝐼 ∧ ((1st
‘𝑥) = 𝐴 ∧ ((2nd
‘𝑥) = 𝐵 ∧ dom (2nd
‘𝑥) = 𝐼))) → 𝐵 = (2nd ‘𝑥)) |
73 | 72 | adantr 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑓:(1...𝑚)–1-1-onto→𝐼 ∧ ((1st
‘𝑥) = 𝐴 ∧ ((2nd
‘𝑥) = 𝐵 ∧ dom (2nd
‘𝑥) = 𝐼))) ∧ 𝑛 ∈ ℕ) → 𝐵 = (2nd ‘𝑥)) |
74 | 73 | fveq1d 6776 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑓:(1...𝑚)–1-1-onto→𝐼 ∧ ((1st
‘𝑥) = 𝐴 ∧ ((2nd
‘𝑥) = 𝐵 ∧ dom (2nd
‘𝑥) = 𝐼))) ∧ 𝑛 ∈ ℕ) → (𝐵‘(𝑓‘𝑛)) = ((2nd ‘𝑥)‘(𝑓‘𝑛))) |
75 | 74 | adantlrr 718 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑓:(1...𝑚)–1-1-onto→𝐼 ∧ (((1st
‘𝑥) = 𝐴 ∧ ((2nd
‘𝑥) = 𝐵 ∧ dom (2nd
‘𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) ∧ 𝑛 ∈ ℕ) → (𝐵‘(𝑓‘𝑛)) = ((2nd ‘𝑥)‘(𝑓‘𝑛))) |
76 | 75 | mpteq2dva 5174 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑓:(1...𝑚)–1-1-onto→𝐼 ∧ (((1st
‘𝑥) = 𝐴 ∧ ((2nd
‘𝑥) = 𝐵 ∧ dom (2nd
‘𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) → (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓‘𝑛))) = (𝑛 ∈ ℕ ↦ ((2nd
‘𝑥)‘(𝑓‘𝑛)))) |
77 | 61, 69, 76 | seqeq123d 13730 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑓:(1...𝑚)–1-1-onto→𝐼 ∧ (((1st
‘𝑥) = 𝐴 ∧ ((2nd
‘𝑥) = 𝐵 ∧ dom (2nd
‘𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) →
seq1((+g‘𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓‘𝑛)))) =
seq1((+g‘(1st ‘𝑥)), (𝑛 ∈ ℕ ↦ ((2nd
‘𝑥)‘(𝑓‘𝑛))))) |
78 | 59 | impcom 408 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑓:(1...𝑚)–1-1-onto→𝐼 ∧ (((1st
‘𝑥) = 𝐴 ∧ ((2nd
‘𝑥) = 𝐵 ∧ dom (2nd
‘𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) → 𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)) |
79 | | simprr 770 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑓:(1...𝑚)–1-1-onto→𝐼 ∧ (((1st
‘𝑥) = 𝐴 ∧ ((2nd
‘𝑥) = 𝐵 ∧ dom (2nd
‘𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) → 𝑚 ∈
ℕ0) |
80 | 37 | ad2antrl 725 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑓:(1...𝑚)–1-1-onto→𝐼 ∧ (((1st
‘𝑥) = 𝐴 ∧ ((2nd
‘𝑥) = 𝐵 ∧ dom (2nd
‘𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) → dom
(2nd ‘𝑥) =
𝐼) |
81 | 78, 79, 80, 49 | syl12anc 834 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑓:(1...𝑚)–1-1-onto→𝐼 ∧ (((1st
‘𝑥) = 𝐴 ∧ ((2nd
‘𝑥) = 𝐵 ∧ dom (2nd
‘𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) → 𝑚 = (♯‘𝐼)) |
82 | 81 | eqcomd 2744 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑓:(1...𝑚)–1-1-onto→𝐼 ∧ (((1st
‘𝑥) = 𝐴 ∧ ((2nd
‘𝑥) = 𝐵 ∧ dom (2nd
‘𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) →
(♯‘𝐼) = 𝑚) |
83 | 77, 82 | fveq12d 6781 |
. . . . . . . . . . . . . . 15
⊢ ((𝑓:(1...𝑚)–1-1-onto→𝐼 ∧ (((1st
‘𝑥) = 𝐴 ∧ ((2nd
‘𝑥) = 𝐵 ∧ dom (2nd
‘𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) →
(seq1((+g‘𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓‘𝑛))))‘(♯‘𝐼)) =
(seq1((+g‘(1st ‘𝑥)), (𝑛 ∈ ℕ ↦ ((2nd
‘𝑥)‘(𝑓‘𝑛))))‘𝑚)) |
84 | 83 | eqeq2d 2749 |
. . . . . . . . . . . . . 14
⊢ ((𝑓:(1...𝑚)–1-1-onto→𝐼 ∧ (((1st
‘𝑥) = 𝐴 ∧ ((2nd
‘𝑥) = 𝐵 ∧ dom (2nd
‘𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) → (𝑠 =
(seq1((+g‘𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓‘𝑛))))‘(♯‘𝐼)) ↔ 𝑠 = (seq1((+g‘(1st
‘𝑥)), (𝑛 ∈ ℕ ↦
((2nd ‘𝑥)‘(𝑓‘𝑛))))‘𝑚))) |
85 | 84 | biimpd 228 |
. . . . . . . . . . . . 13
⊢ ((𝑓:(1...𝑚)–1-1-onto→𝐼 ∧ (((1st
‘𝑥) = 𝐴 ∧ ((2nd
‘𝑥) = 𝐵 ∧ dom (2nd
‘𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0)) → (𝑠 =
(seq1((+g‘𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓‘𝑛))))‘(♯‘𝐼)) → 𝑠 = (seq1((+g‘(1st
‘𝑥)), (𝑛 ∈ ℕ ↦
((2nd ‘𝑥)‘(𝑓‘𝑛))))‘𝑚))) |
86 | 85 | impancom 452 |
. . . . . . . . . . . 12
⊢ ((𝑓:(1...𝑚)–1-1-onto→𝐼 ∧ 𝑠 = (seq1((+g‘𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓‘𝑛))))‘(♯‘𝐼))) → ((((1st ‘𝑥) = 𝐴 ∧ ((2nd ‘𝑥) = 𝐵 ∧ dom (2nd ‘𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0) → 𝑠 =
(seq1((+g‘(1st ‘𝑥)), (𝑛 ∈ ℕ ↦ ((2nd
‘𝑥)‘(𝑓‘𝑛))))‘𝑚))) |
87 | 86 | com12 32 |
. . . . . . . . . . 11
⊢
((((1st ‘𝑥) = 𝐴 ∧ ((2nd ‘𝑥) = 𝐵 ∧ dom (2nd ‘𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0) → ((𝑓:(1...𝑚)–1-1-onto→𝐼 ∧ 𝑠 = (seq1((+g‘𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓‘𝑛))))‘(♯‘𝐼))) → 𝑠 = (seq1((+g‘(1st
‘𝑥)), (𝑛 ∈ ℕ ↦
((2nd ‘𝑥)‘(𝑓‘𝑛))))‘𝑚))) |
88 | 60, 87 | jcad 513 |
. . . . . . . . . 10
⊢
((((1st ‘𝑥) = 𝐴 ∧ ((2nd ‘𝑥) = 𝐵 ∧ dom (2nd ‘𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0) → ((𝑓:(1...𝑚)–1-1-onto→𝐼 ∧ 𝑠 = (seq1((+g‘𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓‘𝑛))))‘(♯‘𝐼))) → (𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
∧ 𝑠 =
(seq1((+g‘(1st ‘𝑥)), (𝑛 ∈ ℕ ↦ ((2nd
‘𝑥)‘(𝑓‘𝑛))))‘𝑚)))) |
89 | 56, 88 | impbid 211 |
. . . . . . . . 9
⊢
((((1st ‘𝑥) = 𝐴 ∧ ((2nd ‘𝑥) = 𝐵 ∧ dom (2nd ‘𝑥) = 𝐼)) ∧ 𝑚 ∈ ℕ0) → ((𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
∧ 𝑠 =
(seq1((+g‘(1st ‘𝑥)), (𝑛 ∈ ℕ ↦ ((2nd
‘𝑥)‘(𝑓‘𝑛))))‘𝑚)) ↔ (𝑓:(1...𝑚)–1-1-onto→𝐼 ∧ 𝑠 = (seq1((+g‘𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓‘𝑛))))‘(♯‘𝐼))))) |
90 | 89 | ex 413 |
. . . . . . . 8
⊢
(((1st ‘𝑥) = 𝐴 ∧ ((2nd ‘𝑥) = 𝐵 ∧ dom (2nd ‘𝑥) = 𝐼)) → (𝑚 ∈ ℕ0 → ((𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
∧ 𝑠 =
(seq1((+g‘(1st ‘𝑥)), (𝑛 ∈ ℕ ↦ ((2nd
‘𝑥)‘(𝑓‘𝑛))))‘𝑚)) ↔ (𝑓:(1...𝑚)–1-1-onto→𝐼 ∧ 𝑠 = (seq1((+g‘𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓‘𝑛))))‘(♯‘𝐼)))))) |
91 | 13, 17, 21, 90 | syl12anc 834 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 = 〈𝐴, 𝐵〉) → (𝑚 ∈ ℕ0 → ((𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
∧ 𝑠 =
(seq1((+g‘(1st ‘𝑥)), (𝑛 ∈ ℕ ↦ ((2nd
‘𝑥)‘(𝑓‘𝑛))))‘𝑚)) ↔ (𝑓:(1...𝑚)–1-1-onto→𝐼 ∧ 𝑠 = (seq1((+g‘𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓‘𝑛))))‘(♯‘𝐼)))))) |
92 | 91 | imp 407 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 = 〈𝐴, 𝐵〉) ∧ 𝑚 ∈ ℕ0) → ((𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
∧ 𝑠 =
(seq1((+g‘(1st ‘𝑥)), (𝑛 ∈ ℕ ↦ ((2nd
‘𝑥)‘(𝑓‘𝑛))))‘𝑚)) ↔ (𝑓:(1...𝑚)–1-1-onto→𝐼 ∧ 𝑠 = (seq1((+g‘𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓‘𝑛))))‘(♯‘𝐼))))) |
93 | 92 | exbidv 1924 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 = 〈𝐴, 𝐵〉) ∧ 𝑚 ∈ ℕ0) →
(∃𝑓(𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
∧ 𝑠 =
(seq1((+g‘(1st ‘𝑥)), (𝑛 ∈ ℕ ↦ ((2nd
‘𝑥)‘(𝑓‘𝑛))))‘𝑚)) ↔ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐼 ∧ 𝑠 = (seq1((+g‘𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓‘𝑛))))‘(♯‘𝐼))))) |
94 | 93 | rexbidva 3225 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 = 〈𝐴, 𝐵〉) → (∃𝑚 ∈ ℕ0 ∃𝑓(𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
∧ 𝑠 =
(seq1((+g‘(1st ‘𝑥)), (𝑛 ∈ ℕ ↦ ((2nd
‘𝑥)‘(𝑓‘𝑛))))‘𝑚)) ↔ ∃𝑚 ∈ ℕ0 ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐼 ∧ 𝑠 = (seq1((+g‘𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓‘𝑛))))‘(♯‘𝐼))))) |
95 | 94 | iotabidv 6417 |
. . 3
⊢ ((𝜑 ∧ 𝑥 = 〈𝐴, 𝐵〉) → (℩𝑠∃𝑚 ∈ ℕ0 ∃𝑓(𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
∧ 𝑠 =
(seq1((+g‘(1st ‘𝑥)), (𝑛 ∈ ℕ ↦ ((2nd
‘𝑥)‘(𝑓‘𝑛))))‘𝑚))) = (℩𝑠∃𝑚 ∈ ℕ0 ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐼 ∧ 𝑠 = (seq1((+g‘𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓‘𝑛))))‘(♯‘𝐼))))) |
96 | | eleq1 2826 |
. . . . . . . . . 10
⊢ (𝑡 = 𝐼 → (𝑡 ∈ Fin ↔ 𝐼 ∈ Fin)) |
97 | | feq2 6582 |
. . . . . . . . . 10
⊢ (𝑡 = 𝐼 → (𝐵:𝑡⟶(Base‘𝐴) ↔ 𝐵:𝐼⟶(Base‘𝐴))) |
98 | 96, 97 | anbi12d 631 |
. . . . . . . . 9
⊢ (𝑡 = 𝐼 → ((𝑡 ∈ Fin ∧ 𝐵:𝑡⟶(Base‘𝐴)) ↔ (𝐼 ∈ Fin ∧ 𝐵:𝐼⟶(Base‘𝐴)))) |
99 | 98 | ceqsexgv 3584 |
. . . . . . . 8
⊢ (𝐼 ∈ Fin → (∃𝑡(𝑡 = 𝐼 ∧ (𝑡 ∈ Fin ∧ 𝐵:𝑡⟶(Base‘𝐴))) ↔ (𝐼 ∈ Fin ∧ 𝐵:𝐼⟶(Base‘𝐴)))) |
100 | 8, 99 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (∃𝑡(𝑡 = 𝐼 ∧ (𝑡 ∈ Fin ∧ 𝐵:𝑡⟶(Base‘𝐴))) ↔ (𝐼 ∈ Fin ∧ 𝐵:𝐼⟶(Base‘𝐴)))) |
101 | 8, 7, 100 | mpbir2and 710 |
. . . . . 6
⊢ (𝜑 → ∃𝑡(𝑡 = 𝐼 ∧ (𝑡 ∈ Fin ∧ 𝐵:𝑡⟶(Base‘𝐴)))) |
102 | | exsimpr 1872 |
. . . . . 6
⊢
(∃𝑡(𝑡 = 𝐼 ∧ (𝑡 ∈ Fin ∧ 𝐵:𝑡⟶(Base‘𝐴))) → ∃𝑡(𝑡 ∈ Fin ∧ 𝐵:𝑡⟶(Base‘𝐴))) |
103 | 101, 102 | syl 17 |
. . . . 5
⊢ (𝜑 → ∃𝑡(𝑡 ∈ Fin ∧ 𝐵:𝑡⟶(Base‘𝐴))) |
104 | | df-rex 3070 |
. . . . 5
⊢
(∃𝑡 ∈ Fin
𝐵:𝑡⟶(Base‘𝐴) ↔ ∃𝑡(𝑡 ∈ Fin ∧ 𝐵:𝑡⟶(Base‘𝐴))) |
105 | 103, 104 | sylibr 233 |
. . . 4
⊢ (𝜑 → ∃𝑡 ∈ Fin 𝐵:𝑡⟶(Base‘𝐴)) |
106 | | eleq1 2826 |
. . . . . . 7
⊢ (𝑦 = 𝐴 → (𝑦 ∈ CMnd ↔ 𝐴 ∈ CMnd)) |
107 | | fveq2 6774 |
. . . . . . . . 9
⊢ (𝑦 = 𝐴 → (Base‘𝑦) = (Base‘𝐴)) |
108 | 107 | feq3d 6587 |
. . . . . . . 8
⊢ (𝑦 = 𝐴 → (𝑧:𝑡⟶(Base‘𝑦) ↔ 𝑧:𝑡⟶(Base‘𝐴))) |
109 | 108 | rexbidv 3226 |
. . . . . . 7
⊢ (𝑦 = 𝐴 → (∃𝑡 ∈ Fin 𝑧:𝑡⟶(Base‘𝑦) ↔ ∃𝑡 ∈ Fin 𝑧:𝑡⟶(Base‘𝐴))) |
110 | 106, 109 | anbi12d 631 |
. . . . . 6
⊢ (𝑦 = 𝐴 → ((𝑦 ∈ CMnd ∧ ∃𝑡 ∈ Fin 𝑧:𝑡⟶(Base‘𝑦)) ↔ (𝐴 ∈ CMnd ∧ ∃𝑡 ∈ Fin 𝑧:𝑡⟶(Base‘𝐴)))) |
111 | | feq1 6581 |
. . . . . . . 8
⊢ (𝑧 = 𝐵 → (𝑧:𝑡⟶(Base‘𝐴) ↔ 𝐵:𝑡⟶(Base‘𝐴))) |
112 | 111 | rexbidv 3226 |
. . . . . . 7
⊢ (𝑧 = 𝐵 → (∃𝑡 ∈ Fin 𝑧:𝑡⟶(Base‘𝐴) ↔ ∃𝑡 ∈ Fin 𝐵:𝑡⟶(Base‘𝐴))) |
113 | 112 | anbi2d 629 |
. . . . . 6
⊢ (𝑧 = 𝐵 → ((𝐴 ∈ CMnd ∧ ∃𝑡 ∈ Fin 𝑧:𝑡⟶(Base‘𝐴)) ↔ (𝐴 ∈ CMnd ∧ ∃𝑡 ∈ Fin 𝐵:𝑡⟶(Base‘𝐴)))) |
114 | 110, 113 | opelopabg 5451 |
. . . . 5
⊢ ((𝐴 ∈ CMnd ∧ 𝐵 ∈ V) → (〈𝐴, 𝐵〉 ∈ {〈𝑦, 𝑧〉 ∣ (𝑦 ∈ CMnd ∧ ∃𝑡 ∈ Fin 𝑧:𝑡⟶(Base‘𝑦))} ↔ (𝐴 ∈ CMnd ∧ ∃𝑡 ∈ Fin 𝐵:𝑡⟶(Base‘𝐴)))) |
115 | 5, 9, 114 | syl2anc 584 |
. . . 4
⊢ (𝜑 → (〈𝐴, 𝐵〉 ∈ {〈𝑦, 𝑧〉 ∣ (𝑦 ∈ CMnd ∧ ∃𝑡 ∈ Fin 𝑧:𝑡⟶(Base‘𝑦))} ↔ (𝐴 ∈ CMnd ∧ ∃𝑡 ∈ Fin 𝐵:𝑡⟶(Base‘𝐴)))) |
116 | 5, 105, 115 | mpbir2and 710 |
. . 3
⊢ (𝜑 → 〈𝐴, 𝐵〉 ∈ {〈𝑦, 𝑧〉 ∣ (𝑦 ∈ CMnd ∧ ∃𝑡 ∈ Fin 𝑧:𝑡⟶(Base‘𝑦))}) |
117 | | iotaex 6413 |
. . . 4
⊢
(℩𝑠∃𝑚 ∈ ℕ0 ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐼 ∧ 𝑠 = (seq1((+g‘𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓‘𝑛))))‘(♯‘𝐼)))) ∈ V |
118 | 117 | a1i 11 |
. . 3
⊢ (𝜑 → (℩𝑠∃𝑚 ∈ ℕ0 ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐼 ∧ 𝑠 = (seq1((+g‘𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓‘𝑛))))‘(♯‘𝐼)))) ∈ V) |
119 | 2, 95, 116, 118 | fvmptd2 6883 |
. 2
⊢ (𝜑 → ( FinSum
‘〈𝐴, 𝐵〉) = (℩𝑠∃𝑚 ∈ ℕ0 ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐼 ∧ 𝑠 = (seq1((+g‘𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓‘𝑛))))‘(♯‘𝐼))))) |
120 | 1, 119 | eqtrid 2790 |
1
⊢ (𝜑 → (𝐴 FinSum 𝐵) = (℩𝑠∃𝑚 ∈ ℕ0 ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐼 ∧ 𝑠 = (seq1((+g‘𝐴), (𝑛 ∈ ℕ ↦ (𝐵‘(𝑓‘𝑛))))‘(♯‘𝐼))))) |