| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > df-bj-inftyexpitau | Structured version Visualization version GIF version | ||
| Description: Definition of the auxiliary function +∞eiτ parameterizing the circle at infinity ℂ∞ in ℂ̅. We use coupling with {R} to simplify the proof of bj-inftyexpitaudisj 37199. (Contributed by BJ, 22-Jan-2023.) The precise definition is irrelevant and should generally not be used. TODO: prove only the necessary lemmas to prove ⊢ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((+∞eiτ‘𝐴) = (+∞eiτ‘𝐵) ↔ (𝐴 − 𝐵) ∈ ℤ)). (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| df-bj-inftyexpitau | ⊢ +∞eiτ = (𝑥 ∈ ℝ ↦ 〈({R‘(1st ‘𝑥)), {R}〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cinftyexpitau 37192 | . 2 class +∞eiτ | |
| 2 | vx | . . 3 setvar 𝑥 | |
| 3 | cr 11150 | . . 3 class ℝ | |
| 4 | 2 | cv 1539 | . . . . . 6 class 𝑥 |
| 5 | c1st 8008 | . . . . . 6 class 1st | |
| 6 | 4, 5 | cfv 6559 | . . . . 5 class (1st ‘𝑥) |
| 7 | cfractemp 37190 | . . . . 5 class {R | |
| 8 | 6, 7 | cfv 6559 | . . . 4 class ({R‘(1st ‘𝑥)) |
| 9 | cnr 10901 | . . . . 5 class R | |
| 10 | 9 | csn 4624 | . . . 4 class {R} |
| 11 | 8, 10 | cop 4630 | . . 3 class 〈({R‘(1st ‘𝑥)), {R}〉 |
| 12 | 2, 3, 11 | cmpt 5223 | . 2 class (𝑥 ∈ ℝ ↦ 〈({R‘(1st ‘𝑥)), {R}〉) |
| 13 | 1, 12 | wceq 1540 | 1 wff +∞eiτ = (𝑥 ∈ ℝ ↦ 〈({R‘(1st ‘𝑥)), {R}〉) |
| Colors of variables: wff setvar class |
| This definition is referenced by: bj-inftyexpitaufo 37196 bj-inftyexpitaudisj 37199 |
| Copyright terms: Public domain | W3C validator |