![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-inftyexpitaudisj | Structured version Visualization version GIF version |
Description: An element of the circle at infinity is not a complex number. (Contributed by BJ, 4-Feb-2023.) |
Ref | Expression |
---|---|
bj-inftyexpitaudisj | ⊢ ¬ (+∞eiτ‘𝐴) ∈ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2fveq3 6896 | . . . . . 6 ⊢ (𝑥 = 𝐴 → ({R‘(1st ‘𝑥)) = ({R‘(1st ‘𝐴))) | |
2 | 1 | opeq1d 4879 | . . . . 5 ⊢ (𝑥 = 𝐴 → ⟨({R‘(1st ‘𝑥)), {R}⟩ = ⟨({R‘(1st ‘𝐴)), {R}⟩) |
3 | df-bj-inftyexpitau 36384 | . . . . 5 ⊢ +∞eiτ = (𝑥 ∈ ℝ ↦ ⟨({R‘(1st ‘𝑥)), {R}⟩) | |
4 | opex 5464 | . . . . 5 ⊢ ⟨({R‘(1st ‘𝐴)), {R}⟩ ∈ V | |
5 | 2, 3, 4 | fvmpt 6998 | . . . 4 ⊢ (𝐴 ∈ ℝ → (+∞eiτ‘𝐴) = ⟨({R‘(1st ‘𝐴)), {R}⟩) |
6 | opex 5464 | . . . . 5 ⊢ ⟨({R‘(1st ‘𝑦)), {R}⟩ ∈ V | |
7 | df-bj-inftyexpitau 36384 | . . . . 5 ⊢ +∞eiτ = (𝑦 ∈ ℝ ↦ ⟨({R‘(1st ‘𝑦)), {R}⟩) | |
8 | 6, 7 | dmmpti 6694 | . . . 4 ⊢ dom +∞eiτ = ℝ |
9 | 5, 8 | eleq2s 2850 | . . 3 ⊢ (𝐴 ∈ dom +∞eiτ → (+∞eiτ‘𝐴) = ⟨({R‘(1st ‘𝐴)), {R}⟩) |
10 | nrex1 11063 | . . . . . . . 8 ⊢ R ∈ V | |
11 | bj-nsnid 36255 | . . . . . . . 8 ⊢ (R ∈ V → ¬ {R} ∈ R) | |
12 | 10, 11 | ax-mp 5 | . . . . . . 7 ⊢ ¬ {R} ∈ R |
13 | 12 | intnan 486 | . . . . . 6 ⊢ ¬ (({R‘(1st ‘𝐴)) ∈ R ∧ {R} ∈ R) |
14 | opelxp 5712 | . . . . . 6 ⊢ (⟨({R‘(1st ‘𝐴)), {R}⟩ ∈ (R × R) ↔ (({R‘(1st ‘𝐴)) ∈ R ∧ {R} ∈ R)) | |
15 | 13, 14 | mtbir 323 | . . . . 5 ⊢ ¬ ⟨({R‘(1st ‘𝐴)), {R}⟩ ∈ (R × R) |
16 | df-c 11120 | . . . . . 6 ⊢ ℂ = (R × R) | |
17 | 16 | eleq2i 2824 | . . . . 5 ⊢ (⟨({R‘(1st ‘𝐴)), {R}⟩ ∈ ℂ ↔ ⟨({R‘(1st ‘𝐴)), {R}⟩ ∈ (R × R)) |
18 | 15, 17 | mtbir 323 | . . . 4 ⊢ ¬ ⟨({R‘(1st ‘𝐴)), {R}⟩ ∈ ℂ |
19 | eqcom 2738 | . . . . . 6 ⊢ ((+∞eiτ‘𝐴) = ⟨({R‘(1st ‘𝐴)), {R}⟩ ↔ ⟨({R‘(1st ‘𝐴)), {R}⟩ = (+∞eiτ‘𝐴)) | |
20 | 19 | biimpi 215 | . . . . 5 ⊢ ((+∞eiτ‘𝐴) = ⟨({R‘(1st ‘𝐴)), {R}⟩ → ⟨({R‘(1st ‘𝐴)), {R}⟩ = (+∞eiτ‘𝐴)) |
21 | 20 | eleq1d 2817 | . . . 4 ⊢ ((+∞eiτ‘𝐴) = ⟨({R‘(1st ‘𝐴)), {R}⟩ → (⟨({R‘(1st ‘𝐴)), {R}⟩ ∈ ℂ ↔ (+∞eiτ‘𝐴) ∈ ℂ)) |
22 | 18, 21 | mtbii 326 | . . 3 ⊢ ((+∞eiτ‘𝐴) = ⟨({R‘(1st ‘𝐴)), {R}⟩ → ¬ (+∞eiτ‘𝐴) ∈ ℂ) |
23 | 9, 22 | syl 17 | . 2 ⊢ (𝐴 ∈ dom +∞eiτ → ¬ (+∞eiτ‘𝐴) ∈ ℂ) |
24 | 0ncn 11132 | . . 3 ⊢ ¬ ∅ ∈ ℂ | |
25 | ndmfv 6926 | . . . 4 ⊢ (¬ 𝐴 ∈ dom +∞eiτ → (+∞eiτ‘𝐴) = ∅) | |
26 | 25 | eleq1d 2817 | . . 3 ⊢ (¬ 𝐴 ∈ dom +∞eiτ → ((+∞eiτ‘𝐴) ∈ ℂ ↔ ∅ ∈ ℂ)) |
27 | 24, 26 | mtbiri 327 | . 2 ⊢ (¬ 𝐴 ∈ dom +∞eiτ → ¬ (+∞eiτ‘𝐴) ∈ ℂ) |
28 | 23, 27 | pm2.61i 182 | 1 ⊢ ¬ (+∞eiτ‘𝐴) ∈ ℂ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1540 ∈ wcel 2105 Vcvv 3473 ∅c0 4322 {csn 4628 ⟨cop 4634 × cxp 5674 dom cdm 5676 ‘cfv 6543 1st c1st 7977 Rcnr 10864 ℂcc 11112 ℝcr 11113 {Rcfractemp 36381 +∞eiτcinftyexpitau 36383 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-reg 9591 ax-inf2 9640 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-1st 7979 df-2nd 7980 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-1o 8470 df-oadd 8474 df-omul 8475 df-er 8707 df-ec 8709 df-qs 8713 df-ni 10871 df-pli 10872 df-mi 10873 df-lti 10874 df-plpq 10907 df-mpq 10908 df-ltpq 10909 df-enq 10910 df-nq 10911 df-erq 10912 df-plq 10913 df-mq 10914 df-1nq 10915 df-rq 10916 df-ltnq 10917 df-np 10980 df-plp 10982 df-ltp 10984 df-enr 11054 df-nr 11055 df-c 11120 df-bj-inftyexpitau 36384 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |