![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-inftyexpitaudisj | Structured version Visualization version GIF version |
Description: An element of the circle at infinity is not a complex number. (Contributed by BJ, 4-Feb-2023.) |
Ref | Expression |
---|---|
bj-inftyexpitaudisj | ⊢ ¬ (+∞eiτ‘𝐴) ∈ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2fveq3 6442 | . . . . . 6 ⊢ (𝑥 = 𝐴 → ({R‘(1st ‘𝑥)) = ({R‘(1st ‘𝐴))) | |
2 | 1 | opeq1d 4631 | . . . . 5 ⊢ (𝑥 = 𝐴 → 〈({R‘(1st ‘𝑥)), {R}〉 = 〈({R‘(1st ‘𝐴)), {R}〉) |
3 | df-bj-inftyexpitau 33624 | . . . . 5 ⊢ +∞eiτ = (𝑥 ∈ ℝ ↦ 〈({R‘(1st ‘𝑥)), {R}〉) | |
4 | opex 5155 | . . . . 5 ⊢ 〈({R‘(1st ‘𝐴)), {R}〉 ∈ V | |
5 | 2, 3, 4 | fvmpt 6533 | . . . 4 ⊢ (𝐴 ∈ ℝ → (+∞eiτ‘𝐴) = 〈({R‘(1st ‘𝐴)), {R}〉) |
6 | opex 5155 | . . . . 5 ⊢ 〈({R‘(1st ‘𝑦)), {R}〉 ∈ V | |
7 | df-bj-inftyexpitau 33624 | . . . . 5 ⊢ +∞eiτ = (𝑦 ∈ ℝ ↦ 〈({R‘(1st ‘𝑦)), {R}〉) | |
8 | 6, 7 | dmmpti 6260 | . . . 4 ⊢ dom +∞eiτ = ℝ |
9 | 5, 8 | eleq2s 2924 | . . 3 ⊢ (𝐴 ∈ dom +∞eiτ → (+∞eiτ‘𝐴) = 〈({R‘(1st ‘𝐴)), {R}〉) |
10 | nrex1 10208 | . . . . . . . 8 ⊢ R ∈ V | |
11 | bj-nsnid 33630 | . . . . . . . 8 ⊢ (R ∈ V → ¬ {R} ∈ R) | |
12 | 10, 11 | ax-mp 5 | . . . . . . 7 ⊢ ¬ {R} ∈ R |
13 | 12 | intnan 482 | . . . . . 6 ⊢ ¬ (({R‘(1st ‘𝐴)) ∈ R ∧ {R} ∈ R) |
14 | opelxp 5382 | . . . . . 6 ⊢ (〈({R‘(1st ‘𝐴)), {R}〉 ∈ (R × R) ↔ (({R‘(1st ‘𝐴)) ∈ R ∧ {R} ∈ R)) | |
15 | 13, 14 | mtbir 315 | . . . . 5 ⊢ ¬ 〈({R‘(1st ‘𝐴)), {R}〉 ∈ (R × R) |
16 | df-c 10265 | . . . . . 6 ⊢ ℂ = (R × R) | |
17 | 16 | eleq2i 2898 | . . . . 5 ⊢ (〈({R‘(1st ‘𝐴)), {R}〉 ∈ ℂ ↔ 〈({R‘(1st ‘𝐴)), {R}〉 ∈ (R × R)) |
18 | 15, 17 | mtbir 315 | . . . 4 ⊢ ¬ 〈({R‘(1st ‘𝐴)), {R}〉 ∈ ℂ |
19 | eqcom 2832 | . . . . . 6 ⊢ ((+∞eiτ‘𝐴) = 〈({R‘(1st ‘𝐴)), {R}〉 ↔ 〈({R‘(1st ‘𝐴)), {R}〉 = (+∞eiτ‘𝐴)) | |
20 | 19 | biimpi 208 | . . . . 5 ⊢ ((+∞eiτ‘𝐴) = 〈({R‘(1st ‘𝐴)), {R}〉 → 〈({R‘(1st ‘𝐴)), {R}〉 = (+∞eiτ‘𝐴)) |
21 | 20 | eleq1d 2891 | . . . 4 ⊢ ((+∞eiτ‘𝐴) = 〈({R‘(1st ‘𝐴)), {R}〉 → (〈({R‘(1st ‘𝐴)), {R}〉 ∈ ℂ ↔ (+∞eiτ‘𝐴) ∈ ℂ)) |
22 | 18, 21 | mtbii 318 | . . 3 ⊢ ((+∞eiτ‘𝐴) = 〈({R‘(1st ‘𝐴)), {R}〉 → ¬ (+∞eiτ‘𝐴) ∈ ℂ) |
23 | 9, 22 | syl 17 | . 2 ⊢ (𝐴 ∈ dom +∞eiτ → ¬ (+∞eiτ‘𝐴) ∈ ℂ) |
24 | 0ncn 10277 | . . 3 ⊢ ¬ ∅ ∈ ℂ | |
25 | ndmfv 6467 | . . . 4 ⊢ (¬ 𝐴 ∈ dom +∞eiτ → (+∞eiτ‘𝐴) = ∅) | |
26 | 25 | eleq1d 2891 | . . 3 ⊢ (¬ 𝐴 ∈ dom +∞eiτ → ((+∞eiτ‘𝐴) ∈ ℂ ↔ ∅ ∈ ℂ)) |
27 | 24, 26 | mtbiri 319 | . 2 ⊢ (¬ 𝐴 ∈ dom +∞eiτ → ¬ (+∞eiτ‘𝐴) ∈ ℂ) |
28 | 23, 27 | pm2.61i 177 | 1 ⊢ ¬ (+∞eiτ‘𝐴) ∈ ℂ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 386 = wceq 1656 ∈ wcel 2164 Vcvv 3414 ∅c0 4146 {csn 4399 〈cop 4405 × cxp 5344 dom cdm 5346 ‘cfv 6127 1st c1st 7431 Rcnr 10009 ℂcc 10257 ℝcr 10258 {Rcfractemp 33621 +∞eiτcinftyexpitau 33623 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-sep 5007 ax-nul 5015 ax-pow 5067 ax-pr 5129 ax-un 7214 ax-reg 8773 ax-inf2 8822 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3or 1112 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-ral 3122 df-rex 3123 df-reu 3124 df-rmo 3125 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-pss 3814 df-nul 4147 df-if 4309 df-pw 4382 df-sn 4400 df-pr 4402 df-tp 4404 df-op 4406 df-uni 4661 df-int 4700 df-iun 4744 df-br 4876 df-opab 4938 df-mpt 4955 df-tr 4978 df-id 5252 df-eprel 5257 df-po 5265 df-so 5266 df-fr 5305 df-we 5307 df-xp 5352 df-rel 5353 df-cnv 5354 df-co 5355 df-dm 5356 df-rn 5357 df-res 5358 df-ima 5359 df-pred 5924 df-ord 5970 df-on 5971 df-lim 5972 df-suc 5973 df-iota 6090 df-fun 6129 df-fn 6130 df-f 6131 df-f1 6132 df-fo 6133 df-f1o 6134 df-fv 6135 df-ov 6913 df-oprab 6914 df-mpt2 6915 df-om 7332 df-1st 7433 df-2nd 7434 df-wrecs 7677 df-recs 7739 df-rdg 7777 df-1o 7831 df-oadd 7835 df-omul 7836 df-er 8014 df-ec 8016 df-qs 8020 df-ni 10016 df-pli 10017 df-mi 10018 df-lti 10019 df-plpq 10052 df-mpq 10053 df-ltpq 10054 df-enq 10055 df-nq 10056 df-erq 10057 df-plq 10058 df-mq 10059 df-1nq 10060 df-rq 10061 df-ltnq 10062 df-np 10125 df-plp 10127 df-ltp 10129 df-enr 10199 df-nr 10200 df-c 10265 df-bj-inftyexpitau 33624 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |