Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-inftyexpitaudisj Structured version   Visualization version   GIF version

Theorem bj-inftyexpitaudisj 34620
Description: An element of the circle at infinity is not a complex number. (Contributed by BJ, 4-Feb-2023.)
Assertion
Ref Expression
bj-inftyexpitaudisj ¬ (+∞e𝐴) ∈ ℂ

Proof of Theorem bj-inftyexpitaudisj
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 2fveq3 6650 . . . . . 6 (𝑥 = 𝐴 → ({R‘(1st𝑥)) = ({R‘(1st𝐴)))
21opeq1d 4771 . . . . 5 (𝑥 = 𝐴 → ⟨({R‘(1st𝑥)), {R}⟩ = ⟨({R‘(1st𝐴)), {R}⟩)
3 df-bj-inftyexpitau 34614 . . . . 5 +∞e = (𝑥 ∈ ℝ ↦ ⟨({R‘(1st𝑥)), {R}⟩)
4 opex 5321 . . . . 5 ⟨({R‘(1st𝐴)), {R}⟩ ∈ V
52, 3, 4fvmpt 6745 . . . 4 (𝐴 ∈ ℝ → (+∞e𝐴) = ⟨({R‘(1st𝐴)), {R}⟩)
6 opex 5321 . . . . 5 ⟨({R‘(1st𝑦)), {R}⟩ ∈ V
7 df-bj-inftyexpitau 34614 . . . . 5 +∞e = (𝑦 ∈ ℝ ↦ ⟨({R‘(1st𝑦)), {R}⟩)
86, 7dmmpti 6464 . . . 4 dom +∞e = ℝ
95, 8eleq2s 2908 . . 3 (𝐴 ∈ dom +∞e → (+∞e𝐴) = ⟨({R‘(1st𝐴)), {R}⟩)
10 nrex1 10475 . . . . . . . 8 R ∈ V
11 bj-nsnid 34486 . . . . . . . 8 (R ∈ V → ¬ {R} ∈ R)
1210, 11ax-mp 5 . . . . . . 7 ¬ {R} ∈ R
1312intnan 490 . . . . . 6 ¬ (({R‘(1st𝐴)) ∈ R ∧ {R} ∈ R)
14 opelxp 5555 . . . . . 6 (⟨({R‘(1st𝐴)), {R}⟩ ∈ (R × R) ↔ (({R‘(1st𝐴)) ∈ R ∧ {R} ∈ R))
1513, 14mtbir 326 . . . . 5 ¬ ⟨({R‘(1st𝐴)), {R}⟩ ∈ (R × R)
16 df-c 10532 . . . . . 6 ℂ = (R × R)
1716eleq2i 2881 . . . . 5 (⟨({R‘(1st𝐴)), {R}⟩ ∈ ℂ ↔ ⟨({R‘(1st𝐴)), {R}⟩ ∈ (R × R))
1815, 17mtbir 326 . . . 4 ¬ ⟨({R‘(1st𝐴)), {R}⟩ ∈ ℂ
19 eqcom 2805 . . . . . 6 ((+∞e𝐴) = ⟨({R‘(1st𝐴)), {R}⟩ ↔ ⟨({R‘(1st𝐴)), {R}⟩ = (+∞e𝐴))
2019biimpi 219 . . . . 5 ((+∞e𝐴) = ⟨({R‘(1st𝐴)), {R}⟩ → ⟨({R‘(1st𝐴)), {R}⟩ = (+∞e𝐴))
2120eleq1d 2874 . . . 4 ((+∞e𝐴) = ⟨({R‘(1st𝐴)), {R}⟩ → (⟨({R‘(1st𝐴)), {R}⟩ ∈ ℂ ↔ (+∞e𝐴) ∈ ℂ))
2218, 21mtbii 329 . . 3 ((+∞e𝐴) = ⟨({R‘(1st𝐴)), {R}⟩ → ¬ (+∞e𝐴) ∈ ℂ)
239, 22syl 17 . 2 (𝐴 ∈ dom +∞e → ¬ (+∞e𝐴) ∈ ℂ)
24 0ncn 10544 . . 3 ¬ ∅ ∈ ℂ
25 ndmfv 6675 . . . 4 𝐴 ∈ dom +∞e → (+∞e𝐴) = ∅)
2625eleq1d 2874 . . 3 𝐴 ∈ dom +∞e → ((+∞e𝐴) ∈ ℂ ↔ ∅ ∈ ℂ))
2724, 26mtbiri 330 . 2 𝐴 ∈ dom +∞e → ¬ (+∞e𝐴) ∈ ℂ)
2823, 27pm2.61i 185 1 ¬ (+∞e𝐴) ∈ ℂ
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 399   = wceq 1538  wcel 2111  Vcvv 3441  c0 4243  {csn 4525  cop 4531   × cxp 5517  dom cdm 5519  cfv 6324  1st c1st 7669  Rcnr 10276  cc 10524  cr 10525  {Rcfractemp 34611  +∞ecinftyexpitau 34613
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-reg 9040  ax-inf2 9088
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-omul 8090  df-er 8272  df-ec 8274  df-qs 8278  df-ni 10283  df-pli 10284  df-mi 10285  df-lti 10286  df-plpq 10319  df-mpq 10320  df-ltpq 10321  df-enq 10322  df-nq 10323  df-erq 10324  df-plq 10325  df-mq 10326  df-1nq 10327  df-rq 10328  df-ltnq 10329  df-np 10392  df-plp 10394  df-ltp 10396  df-enr 10466  df-nr 10467  df-c 10532  df-bj-inftyexpitau 34614
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator