Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-inftyexpitaudisj Structured version   Visualization version   GIF version

Theorem bj-inftyexpitaudisj 34481
Description: An element of the circle at infinity is not a complex number. (Contributed by BJ, 4-Feb-2023.)
Assertion
Ref Expression
bj-inftyexpitaudisj ¬ (+∞e𝐴) ∈ ℂ

Proof of Theorem bj-inftyexpitaudisj
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 2fveq3 6669 . . . . . 6 (𝑥 = 𝐴 → ({R‘(1st𝑥)) = ({R‘(1st𝐴)))
21opeq1d 4802 . . . . 5 (𝑥 = 𝐴 → ⟨({R‘(1st𝑥)), {R}⟩ = ⟨({R‘(1st𝐴)), {R}⟩)
3 df-bj-inftyexpitau 34475 . . . . 5 +∞e = (𝑥 ∈ ℝ ↦ ⟨({R‘(1st𝑥)), {R}⟩)
4 opex 5348 . . . . 5 ⟨({R‘(1st𝐴)), {R}⟩ ∈ V
52, 3, 4fvmpt 6762 . . . 4 (𝐴 ∈ ℝ → (+∞e𝐴) = ⟨({R‘(1st𝐴)), {R}⟩)
6 opex 5348 . . . . 5 ⟨({R‘(1st𝑦)), {R}⟩ ∈ V
7 df-bj-inftyexpitau 34475 . . . . 5 +∞e = (𝑦 ∈ ℝ ↦ ⟨({R‘(1st𝑦)), {R}⟩)
86, 7dmmpti 6486 . . . 4 dom +∞e = ℝ
95, 8eleq2s 2931 . . 3 (𝐴 ∈ dom +∞e → (+∞e𝐴) = ⟨({R‘(1st𝐴)), {R}⟩)
10 nrex1 10480 . . . . . . . 8 R ∈ V
11 bj-nsnid 34356 . . . . . . . 8 (R ∈ V → ¬ {R} ∈ R)
1210, 11ax-mp 5 . . . . . . 7 ¬ {R} ∈ R
1312intnan 489 . . . . . 6 ¬ (({R‘(1st𝐴)) ∈ R ∧ {R} ∈ R)
14 opelxp 5585 . . . . . 6 (⟨({R‘(1st𝐴)), {R}⟩ ∈ (R × R) ↔ (({R‘(1st𝐴)) ∈ R ∧ {R} ∈ R))
1513, 14mtbir 325 . . . . 5 ¬ ⟨({R‘(1st𝐴)), {R}⟩ ∈ (R × R)
16 df-c 10537 . . . . . 6 ℂ = (R × R)
1716eleq2i 2904 . . . . 5 (⟨({R‘(1st𝐴)), {R}⟩ ∈ ℂ ↔ ⟨({R‘(1st𝐴)), {R}⟩ ∈ (R × R))
1815, 17mtbir 325 . . . 4 ¬ ⟨({R‘(1st𝐴)), {R}⟩ ∈ ℂ
19 eqcom 2828 . . . . . 6 ((+∞e𝐴) = ⟨({R‘(1st𝐴)), {R}⟩ ↔ ⟨({R‘(1st𝐴)), {R}⟩ = (+∞e𝐴))
2019biimpi 218 . . . . 5 ((+∞e𝐴) = ⟨({R‘(1st𝐴)), {R}⟩ → ⟨({R‘(1st𝐴)), {R}⟩ = (+∞e𝐴))
2120eleq1d 2897 . . . 4 ((+∞e𝐴) = ⟨({R‘(1st𝐴)), {R}⟩ → (⟨({R‘(1st𝐴)), {R}⟩ ∈ ℂ ↔ (+∞e𝐴) ∈ ℂ))
2218, 21mtbii 328 . . 3 ((+∞e𝐴) = ⟨({R‘(1st𝐴)), {R}⟩ → ¬ (+∞e𝐴) ∈ ℂ)
239, 22syl 17 . 2 (𝐴 ∈ dom +∞e → ¬ (+∞e𝐴) ∈ ℂ)
24 0ncn 10549 . . 3 ¬ ∅ ∈ ℂ
25 ndmfv 6694 . . . 4 𝐴 ∈ dom +∞e → (+∞e𝐴) = ∅)
2625eleq1d 2897 . . 3 𝐴 ∈ dom +∞e → ((+∞e𝐴) ∈ ℂ ↔ ∅ ∈ ℂ))
2724, 26mtbiri 329 . 2 𝐴 ∈ dom +∞e → ¬ (+∞e𝐴) ∈ ℂ)
2823, 27pm2.61i 184 1 ¬ (+∞e𝐴) ∈ ℂ
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 398   = wceq 1533  wcel 2110  Vcvv 3494  c0 4290  {csn 4560  cop 4566   × cxp 5547  dom cdm 5549  cfv 6349  1st c1st 7681  Rcnr 10281  cc 10529  cr 10530  {Rcfractemp 34472  +∞ecinftyexpitau 34474
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-reg 9050  ax-inf2 9098
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-omul 8101  df-er 8283  df-ec 8285  df-qs 8289  df-ni 10288  df-pli 10289  df-mi 10290  df-lti 10291  df-plpq 10324  df-mpq 10325  df-ltpq 10326  df-enq 10327  df-nq 10328  df-erq 10329  df-plq 10330  df-mq 10331  df-1nq 10332  df-rq 10333  df-ltnq 10334  df-np 10397  df-plp 10399  df-ltp 10401  df-enr 10471  df-nr 10472  df-c 10537  df-bj-inftyexpitau 34475
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator