Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-inftyexpitaudisj Structured version   Visualization version   GIF version

Theorem bj-inftyexpitaudisj 35303
Description: An element of the circle at infinity is not a complex number. (Contributed by BJ, 4-Feb-2023.)
Assertion
Ref Expression
bj-inftyexpitaudisj ¬ (+∞e𝐴) ∈ ℂ

Proof of Theorem bj-inftyexpitaudisj
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 2fveq3 6761 . . . . . 6 (𝑥 = 𝐴 → ({R‘(1st𝑥)) = ({R‘(1st𝐴)))
21opeq1d 4807 . . . . 5 (𝑥 = 𝐴 → ⟨({R‘(1st𝑥)), {R}⟩ = ⟨({R‘(1st𝐴)), {R}⟩)
3 df-bj-inftyexpitau 35297 . . . . 5 +∞e = (𝑥 ∈ ℝ ↦ ⟨({R‘(1st𝑥)), {R}⟩)
4 opex 5373 . . . . 5 ⟨({R‘(1st𝐴)), {R}⟩ ∈ V
52, 3, 4fvmpt 6857 . . . 4 (𝐴 ∈ ℝ → (+∞e𝐴) = ⟨({R‘(1st𝐴)), {R}⟩)
6 opex 5373 . . . . 5 ⟨({R‘(1st𝑦)), {R}⟩ ∈ V
7 df-bj-inftyexpitau 35297 . . . . 5 +∞e = (𝑦 ∈ ℝ ↦ ⟨({R‘(1st𝑦)), {R}⟩)
86, 7dmmpti 6561 . . . 4 dom +∞e = ℝ
95, 8eleq2s 2857 . . 3 (𝐴 ∈ dom +∞e → (+∞e𝐴) = ⟨({R‘(1st𝐴)), {R}⟩)
10 nrex1 10751 . . . . . . . 8 R ∈ V
11 bj-nsnid 35168 . . . . . . . 8 (R ∈ V → ¬ {R} ∈ R)
1210, 11ax-mp 5 . . . . . . 7 ¬ {R} ∈ R
1312intnan 486 . . . . . 6 ¬ (({R‘(1st𝐴)) ∈ R ∧ {R} ∈ R)
14 opelxp 5616 . . . . . 6 (⟨({R‘(1st𝐴)), {R}⟩ ∈ (R × R) ↔ (({R‘(1st𝐴)) ∈ R ∧ {R} ∈ R))
1513, 14mtbir 322 . . . . 5 ¬ ⟨({R‘(1st𝐴)), {R}⟩ ∈ (R × R)
16 df-c 10808 . . . . . 6 ℂ = (R × R)
1716eleq2i 2830 . . . . 5 (⟨({R‘(1st𝐴)), {R}⟩ ∈ ℂ ↔ ⟨({R‘(1st𝐴)), {R}⟩ ∈ (R × R))
1815, 17mtbir 322 . . . 4 ¬ ⟨({R‘(1st𝐴)), {R}⟩ ∈ ℂ
19 eqcom 2745 . . . . . 6 ((+∞e𝐴) = ⟨({R‘(1st𝐴)), {R}⟩ ↔ ⟨({R‘(1st𝐴)), {R}⟩ = (+∞e𝐴))
2019biimpi 215 . . . . 5 ((+∞e𝐴) = ⟨({R‘(1st𝐴)), {R}⟩ → ⟨({R‘(1st𝐴)), {R}⟩ = (+∞e𝐴))
2120eleq1d 2823 . . . 4 ((+∞e𝐴) = ⟨({R‘(1st𝐴)), {R}⟩ → (⟨({R‘(1st𝐴)), {R}⟩ ∈ ℂ ↔ (+∞e𝐴) ∈ ℂ))
2218, 21mtbii 325 . . 3 ((+∞e𝐴) = ⟨({R‘(1st𝐴)), {R}⟩ → ¬ (+∞e𝐴) ∈ ℂ)
239, 22syl 17 . 2 (𝐴 ∈ dom +∞e → ¬ (+∞e𝐴) ∈ ℂ)
24 0ncn 10820 . . 3 ¬ ∅ ∈ ℂ
25 ndmfv 6786 . . . 4 𝐴 ∈ dom +∞e → (+∞e𝐴) = ∅)
2625eleq1d 2823 . . 3 𝐴 ∈ dom +∞e → ((+∞e𝐴) ∈ ℂ ↔ ∅ ∈ ℂ))
2724, 26mtbiri 326 . 2 𝐴 ∈ dom +∞e → ¬ (+∞e𝐴) ∈ ℂ)
2823, 27pm2.61i 182 1 ¬ (+∞e𝐴) ∈ ℂ
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1539  wcel 2108  Vcvv 3422  c0 4253  {csn 4558  cop 4564   × cxp 5578  dom cdm 5580  cfv 6418  1st c1st 7802  Rcnr 10552  cc 10800  cr 10801  {Rcfractemp 35294  +∞ecinftyexpitau 35296
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-reg 9281  ax-inf2 9329
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-oadd 8271  df-omul 8272  df-er 8456  df-ec 8458  df-qs 8462  df-ni 10559  df-pli 10560  df-mi 10561  df-lti 10562  df-plpq 10595  df-mpq 10596  df-ltpq 10597  df-enq 10598  df-nq 10599  df-erq 10600  df-plq 10601  df-mq 10602  df-1nq 10603  df-rq 10604  df-ltnq 10605  df-np 10668  df-plp 10670  df-ltp 10672  df-enr 10742  df-nr 10743  df-c 10808  df-bj-inftyexpitau 35297
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator