Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-inftyexpitaudisj Structured version   Visualization version   GIF version

Theorem bj-inftyexpitaudisj 33631
Description: An element of the circle at infinity is not a complex number. (Contributed by BJ, 4-Feb-2023.)
Assertion
Ref Expression
bj-inftyexpitaudisj ¬ (+∞e𝐴) ∈ ℂ

Proof of Theorem bj-inftyexpitaudisj
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 2fveq3 6442 . . . . . 6 (𝑥 = 𝐴 → ({R‘(1st𝑥)) = ({R‘(1st𝐴)))
21opeq1d 4631 . . . . 5 (𝑥 = 𝐴 → ⟨({R‘(1st𝑥)), {R}⟩ = ⟨({R‘(1st𝐴)), {R}⟩)
3 df-bj-inftyexpitau 33624 . . . . 5 +∞e = (𝑥 ∈ ℝ ↦ ⟨({R‘(1st𝑥)), {R}⟩)
4 opex 5155 . . . . 5 ⟨({R‘(1st𝐴)), {R}⟩ ∈ V
52, 3, 4fvmpt 6533 . . . 4 (𝐴 ∈ ℝ → (+∞e𝐴) = ⟨({R‘(1st𝐴)), {R}⟩)
6 opex 5155 . . . . 5 ⟨({R‘(1st𝑦)), {R}⟩ ∈ V
7 df-bj-inftyexpitau 33624 . . . . 5 +∞e = (𝑦 ∈ ℝ ↦ ⟨({R‘(1st𝑦)), {R}⟩)
86, 7dmmpti 6260 . . . 4 dom +∞e = ℝ
95, 8eleq2s 2924 . . 3 (𝐴 ∈ dom +∞e → (+∞e𝐴) = ⟨({R‘(1st𝐴)), {R}⟩)
10 nrex1 10208 . . . . . . . 8 R ∈ V
11 bj-nsnid 33630 . . . . . . . 8 (R ∈ V → ¬ {R} ∈ R)
1210, 11ax-mp 5 . . . . . . 7 ¬ {R} ∈ R
1312intnan 482 . . . . . 6 ¬ (({R‘(1st𝐴)) ∈ R ∧ {R} ∈ R)
14 opelxp 5382 . . . . . 6 (⟨({R‘(1st𝐴)), {R}⟩ ∈ (R × R) ↔ (({R‘(1st𝐴)) ∈ R ∧ {R} ∈ R))
1513, 14mtbir 315 . . . . 5 ¬ ⟨({R‘(1st𝐴)), {R}⟩ ∈ (R × R)
16 df-c 10265 . . . . . 6 ℂ = (R × R)
1716eleq2i 2898 . . . . 5 (⟨({R‘(1st𝐴)), {R}⟩ ∈ ℂ ↔ ⟨({R‘(1st𝐴)), {R}⟩ ∈ (R × R))
1815, 17mtbir 315 . . . 4 ¬ ⟨({R‘(1st𝐴)), {R}⟩ ∈ ℂ
19 eqcom 2832 . . . . . 6 ((+∞e𝐴) = ⟨({R‘(1st𝐴)), {R}⟩ ↔ ⟨({R‘(1st𝐴)), {R}⟩ = (+∞e𝐴))
2019biimpi 208 . . . . 5 ((+∞e𝐴) = ⟨({R‘(1st𝐴)), {R}⟩ → ⟨({R‘(1st𝐴)), {R}⟩ = (+∞e𝐴))
2120eleq1d 2891 . . . 4 ((+∞e𝐴) = ⟨({R‘(1st𝐴)), {R}⟩ → (⟨({R‘(1st𝐴)), {R}⟩ ∈ ℂ ↔ (+∞e𝐴) ∈ ℂ))
2218, 21mtbii 318 . . 3 ((+∞e𝐴) = ⟨({R‘(1st𝐴)), {R}⟩ → ¬ (+∞e𝐴) ∈ ℂ)
239, 22syl 17 . 2 (𝐴 ∈ dom +∞e → ¬ (+∞e𝐴) ∈ ℂ)
24 0ncn 10277 . . 3 ¬ ∅ ∈ ℂ
25 ndmfv 6467 . . . 4 𝐴 ∈ dom +∞e → (+∞e𝐴) = ∅)
2625eleq1d 2891 . . 3 𝐴 ∈ dom +∞e → ((+∞e𝐴) ∈ ℂ ↔ ∅ ∈ ℂ))
2724, 26mtbiri 319 . 2 𝐴 ∈ dom +∞e → ¬ (+∞e𝐴) ∈ ℂ)
2823, 27pm2.61i 177 1 ¬ (+∞e𝐴) ∈ ℂ
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 386   = wceq 1656  wcel 2164  Vcvv 3414  c0 4146  {csn 4399  cop 4405   × cxp 5344  dom cdm 5346  cfv 6127  1st c1st 7431  Rcnr 10009  cc 10257  cr 10258  {Rcfractemp 33621  +∞ecinftyexpitau 33623
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214  ax-reg 8773  ax-inf2 8822
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-tp 4404  df-op 4406  df-uni 4661  df-int 4700  df-iun 4744  df-br 4876  df-opab 4938  df-mpt 4955  df-tr 4978  df-id 5252  df-eprel 5257  df-po 5265  df-so 5266  df-fr 5305  df-we 5307  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-pred 5924  df-ord 5970  df-on 5971  df-lim 5972  df-suc 5973  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-ov 6913  df-oprab 6914  df-mpt2 6915  df-om 7332  df-1st 7433  df-2nd 7434  df-wrecs 7677  df-recs 7739  df-rdg 7777  df-1o 7831  df-oadd 7835  df-omul 7836  df-er 8014  df-ec 8016  df-qs 8020  df-ni 10016  df-pli 10017  df-mi 10018  df-lti 10019  df-plpq 10052  df-mpq 10053  df-ltpq 10054  df-enq 10055  df-nq 10056  df-erq 10057  df-plq 10058  df-mq 10059  df-1nq 10060  df-rq 10061  df-ltnq 10062  df-np 10125  df-plp 10127  df-ltp 10129  df-enr 10199  df-nr 10200  df-c 10265  df-bj-inftyexpitau 33624
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator