| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-inftyexpitaudisj | Structured version Visualization version GIF version | ||
| Description: An element of the circle at infinity is not a complex number. (Contributed by BJ, 4-Feb-2023.) |
| Ref | Expression |
|---|---|
| bj-inftyexpitaudisj | ⊢ ¬ (+∞eiτ‘𝐴) ∈ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2fveq3 6863 | . . . . . 6 ⊢ (𝑥 = 𝐴 → ({R‘(1st ‘𝑥)) = ({R‘(1st ‘𝐴))) | |
| 2 | 1 | opeq1d 4843 | . . . . 5 ⊢ (𝑥 = 𝐴 → 〈({R‘(1st ‘𝑥)), {R}〉 = 〈({R‘(1st ‘𝐴)), {R}〉) |
| 3 | df-bj-inftyexpitau 37187 | . . . . 5 ⊢ +∞eiτ = (𝑥 ∈ ℝ ↦ 〈({R‘(1st ‘𝑥)), {R}〉) | |
| 4 | opex 5424 | . . . . 5 ⊢ 〈({R‘(1st ‘𝐴)), {R}〉 ∈ V | |
| 5 | 2, 3, 4 | fvmpt 6968 | . . . 4 ⊢ (𝐴 ∈ ℝ → (+∞eiτ‘𝐴) = 〈({R‘(1st ‘𝐴)), {R}〉) |
| 6 | opex 5424 | . . . . 5 ⊢ 〈({R‘(1st ‘𝑦)), {R}〉 ∈ V | |
| 7 | df-bj-inftyexpitau 37187 | . . . . 5 ⊢ +∞eiτ = (𝑦 ∈ ℝ ↦ 〈({R‘(1st ‘𝑦)), {R}〉) | |
| 8 | 6, 7 | dmmpti 6662 | . . . 4 ⊢ dom +∞eiτ = ℝ |
| 9 | 5, 8 | eleq2s 2846 | . . 3 ⊢ (𝐴 ∈ dom +∞eiτ → (+∞eiτ‘𝐴) = 〈({R‘(1st ‘𝐴)), {R}〉) |
| 10 | nrex1 11017 | . . . . . . . 8 ⊢ R ∈ V | |
| 11 | bj-nsnid 37058 | . . . . . . . 8 ⊢ (R ∈ V → ¬ {R} ∈ R) | |
| 12 | 10, 11 | ax-mp 5 | . . . . . . 7 ⊢ ¬ {R} ∈ R |
| 13 | 12 | intnan 486 | . . . . . 6 ⊢ ¬ (({R‘(1st ‘𝐴)) ∈ R ∧ {R} ∈ R) |
| 14 | opelxp 5674 | . . . . . 6 ⊢ (〈({R‘(1st ‘𝐴)), {R}〉 ∈ (R × R) ↔ (({R‘(1st ‘𝐴)) ∈ R ∧ {R} ∈ R)) | |
| 15 | 13, 14 | mtbir 323 | . . . . 5 ⊢ ¬ 〈({R‘(1st ‘𝐴)), {R}〉 ∈ (R × R) |
| 16 | df-c 11074 | . . . . . 6 ⊢ ℂ = (R × R) | |
| 17 | 16 | eleq2i 2820 | . . . . 5 ⊢ (〈({R‘(1st ‘𝐴)), {R}〉 ∈ ℂ ↔ 〈({R‘(1st ‘𝐴)), {R}〉 ∈ (R × R)) |
| 18 | 15, 17 | mtbir 323 | . . . 4 ⊢ ¬ 〈({R‘(1st ‘𝐴)), {R}〉 ∈ ℂ |
| 19 | eqcom 2736 | . . . . . 6 ⊢ ((+∞eiτ‘𝐴) = 〈({R‘(1st ‘𝐴)), {R}〉 ↔ 〈({R‘(1st ‘𝐴)), {R}〉 = (+∞eiτ‘𝐴)) | |
| 20 | 19 | biimpi 216 | . . . . 5 ⊢ ((+∞eiτ‘𝐴) = 〈({R‘(1st ‘𝐴)), {R}〉 → 〈({R‘(1st ‘𝐴)), {R}〉 = (+∞eiτ‘𝐴)) |
| 21 | 20 | eleq1d 2813 | . . . 4 ⊢ ((+∞eiτ‘𝐴) = 〈({R‘(1st ‘𝐴)), {R}〉 → (〈({R‘(1st ‘𝐴)), {R}〉 ∈ ℂ ↔ (+∞eiτ‘𝐴) ∈ ℂ)) |
| 22 | 18, 21 | mtbii 326 | . . 3 ⊢ ((+∞eiτ‘𝐴) = 〈({R‘(1st ‘𝐴)), {R}〉 → ¬ (+∞eiτ‘𝐴) ∈ ℂ) |
| 23 | 9, 22 | syl 17 | . 2 ⊢ (𝐴 ∈ dom +∞eiτ → ¬ (+∞eiτ‘𝐴) ∈ ℂ) |
| 24 | 0ncn 11086 | . . 3 ⊢ ¬ ∅ ∈ ℂ | |
| 25 | ndmfv 6893 | . . . 4 ⊢ (¬ 𝐴 ∈ dom +∞eiτ → (+∞eiτ‘𝐴) = ∅) | |
| 26 | 25 | eleq1d 2813 | . . 3 ⊢ (¬ 𝐴 ∈ dom +∞eiτ → ((+∞eiτ‘𝐴) ∈ ℂ ↔ ∅ ∈ ℂ)) |
| 27 | 24, 26 | mtbiri 327 | . 2 ⊢ (¬ 𝐴 ∈ dom +∞eiτ → ¬ (+∞eiτ‘𝐴) ∈ ℂ) |
| 28 | 23, 27 | pm2.61i 182 | 1 ⊢ ¬ (+∞eiτ‘𝐴) ∈ ℂ |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3447 ∅c0 4296 {csn 4589 〈cop 4595 × cxp 5636 dom cdm 5638 ‘cfv 6511 1st c1st 7966 Rcnr 10818 ℂcc 11066 ℝcr 11067 {Rcfractemp 37184 +∞eiτcinftyexpitau 37186 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-reg 9545 ax-inf2 9594 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-oadd 8438 df-omul 8439 df-er 8671 df-ec 8673 df-qs 8677 df-ni 10825 df-pli 10826 df-mi 10827 df-lti 10828 df-plpq 10861 df-mpq 10862 df-ltpq 10863 df-enq 10864 df-nq 10865 df-erq 10866 df-plq 10867 df-mq 10868 df-1nq 10869 df-rq 10870 df-ltnq 10871 df-np 10934 df-plp 10936 df-ltp 10938 df-enr 11008 df-nr 11009 df-c 11074 df-bj-inftyexpitau 37187 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |