Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-inftyexpitaudisj Structured version   Visualization version   GIF version

Theorem bj-inftyexpitaudisj 37228
Description: An element of the circle at infinity is not a complex number. (Contributed by BJ, 4-Feb-2023.)
Assertion
Ref Expression
bj-inftyexpitaudisj ¬ (+∞e𝐴) ∈ ℂ

Proof of Theorem bj-inftyexpitaudisj
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 2fveq3 6886 . . . . . 6 (𝑥 = 𝐴 → ({R‘(1st𝑥)) = ({R‘(1st𝐴)))
21opeq1d 4860 . . . . 5 (𝑥 = 𝐴 → ⟨({R‘(1st𝑥)), {R}⟩ = ⟨({R‘(1st𝐴)), {R}⟩)
3 df-bj-inftyexpitau 37222 . . . . 5 +∞e = (𝑥 ∈ ℝ ↦ ⟨({R‘(1st𝑥)), {R}⟩)
4 opex 5444 . . . . 5 ⟨({R‘(1st𝐴)), {R}⟩ ∈ V
52, 3, 4fvmpt 6991 . . . 4 (𝐴 ∈ ℝ → (+∞e𝐴) = ⟨({R‘(1st𝐴)), {R}⟩)
6 opex 5444 . . . . 5 ⟨({R‘(1st𝑦)), {R}⟩ ∈ V
7 df-bj-inftyexpitau 37222 . . . . 5 +∞e = (𝑦 ∈ ℝ ↦ ⟨({R‘(1st𝑦)), {R}⟩)
86, 7dmmpti 6687 . . . 4 dom +∞e = ℝ
95, 8eleq2s 2853 . . 3 (𝐴 ∈ dom +∞e → (+∞e𝐴) = ⟨({R‘(1st𝐴)), {R}⟩)
10 nrex1 11083 . . . . . . . 8 R ∈ V
11 bj-nsnid 37093 . . . . . . . 8 (R ∈ V → ¬ {R} ∈ R)
1210, 11ax-mp 5 . . . . . . 7 ¬ {R} ∈ R
1312intnan 486 . . . . . 6 ¬ (({R‘(1st𝐴)) ∈ R ∧ {R} ∈ R)
14 opelxp 5695 . . . . . 6 (⟨({R‘(1st𝐴)), {R}⟩ ∈ (R × R) ↔ (({R‘(1st𝐴)) ∈ R ∧ {R} ∈ R))
1513, 14mtbir 323 . . . . 5 ¬ ⟨({R‘(1st𝐴)), {R}⟩ ∈ (R × R)
16 df-c 11140 . . . . . 6 ℂ = (R × R)
1716eleq2i 2827 . . . . 5 (⟨({R‘(1st𝐴)), {R}⟩ ∈ ℂ ↔ ⟨({R‘(1st𝐴)), {R}⟩ ∈ (R × R))
1815, 17mtbir 323 . . . 4 ¬ ⟨({R‘(1st𝐴)), {R}⟩ ∈ ℂ
19 eqcom 2743 . . . . . 6 ((+∞e𝐴) = ⟨({R‘(1st𝐴)), {R}⟩ ↔ ⟨({R‘(1st𝐴)), {R}⟩ = (+∞e𝐴))
2019biimpi 216 . . . . 5 ((+∞e𝐴) = ⟨({R‘(1st𝐴)), {R}⟩ → ⟨({R‘(1st𝐴)), {R}⟩ = (+∞e𝐴))
2120eleq1d 2820 . . . 4 ((+∞e𝐴) = ⟨({R‘(1st𝐴)), {R}⟩ → (⟨({R‘(1st𝐴)), {R}⟩ ∈ ℂ ↔ (+∞e𝐴) ∈ ℂ))
2218, 21mtbii 326 . . 3 ((+∞e𝐴) = ⟨({R‘(1st𝐴)), {R}⟩ → ¬ (+∞e𝐴) ∈ ℂ)
239, 22syl 17 . 2 (𝐴 ∈ dom +∞e → ¬ (+∞e𝐴) ∈ ℂ)
24 0ncn 11152 . . 3 ¬ ∅ ∈ ℂ
25 ndmfv 6916 . . . 4 𝐴 ∈ dom +∞e → (+∞e𝐴) = ∅)
2625eleq1d 2820 . . 3 𝐴 ∈ dom +∞e → ((+∞e𝐴) ∈ ℂ ↔ ∅ ∈ ℂ))
2724, 26mtbiri 327 . 2 𝐴 ∈ dom +∞e → ¬ (+∞e𝐴) ∈ ℂ)
2823, 27pm2.61i 182 1 ¬ (+∞e𝐴) ∈ ℂ
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1540  wcel 2109  Vcvv 3464  c0 4313  {csn 4606  cop 4612   × cxp 5657  dom cdm 5659  cfv 6536  1st c1st 7991  Rcnr 10884  cc 11132  cr 11133  {Rcfractemp 37219  +∞ecinftyexpitau 37221
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-reg 9611  ax-inf2 9660
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-oadd 8489  df-omul 8490  df-er 8724  df-ec 8726  df-qs 8730  df-ni 10891  df-pli 10892  df-mi 10893  df-lti 10894  df-plpq 10927  df-mpq 10928  df-ltpq 10929  df-enq 10930  df-nq 10931  df-erq 10932  df-plq 10933  df-mq 10934  df-1nq 10935  df-rq 10936  df-ltnq 10937  df-np 11000  df-plp 11002  df-ltp 11004  df-enr 11074  df-nr 11075  df-c 11140  df-bj-inftyexpitau 37222
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator