| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-inftyexpitaudisj | Structured version Visualization version GIF version | ||
| Description: An element of the circle at infinity is not a complex number. (Contributed by BJ, 4-Feb-2023.) |
| Ref | Expression |
|---|---|
| bj-inftyexpitaudisj | ⊢ ¬ (+∞eiτ‘𝐴) ∈ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2fveq3 6833 | . . . . . 6 ⊢ (𝑥 = 𝐴 → ({R‘(1st ‘𝑥)) = ({R‘(1st ‘𝐴))) | |
| 2 | 1 | opeq1d 4830 | . . . . 5 ⊢ (𝑥 = 𝐴 → 〈({R‘(1st ‘𝑥)), {R}〉 = 〈({R‘(1st ‘𝐴)), {R}〉) |
| 3 | df-bj-inftyexpitau 37264 | . . . . 5 ⊢ +∞eiτ = (𝑥 ∈ ℝ ↦ 〈({R‘(1st ‘𝑥)), {R}〉) | |
| 4 | opex 5407 | . . . . 5 ⊢ 〈({R‘(1st ‘𝐴)), {R}〉 ∈ V | |
| 5 | 2, 3, 4 | fvmpt 6935 | . . . 4 ⊢ (𝐴 ∈ ℝ → (+∞eiτ‘𝐴) = 〈({R‘(1st ‘𝐴)), {R}〉) |
| 6 | opex 5407 | . . . . 5 ⊢ 〈({R‘(1st ‘𝑦)), {R}〉 ∈ V | |
| 7 | df-bj-inftyexpitau 37264 | . . . . 5 ⊢ +∞eiτ = (𝑦 ∈ ℝ ↦ 〈({R‘(1st ‘𝑦)), {R}〉) | |
| 8 | 6, 7 | dmmpti 6630 | . . . 4 ⊢ dom +∞eiτ = ℝ |
| 9 | 5, 8 | eleq2s 2851 | . . 3 ⊢ (𝐴 ∈ dom +∞eiτ → (+∞eiτ‘𝐴) = 〈({R‘(1st ‘𝐴)), {R}〉) |
| 10 | nrex1 10962 | . . . . . . . 8 ⊢ R ∈ V | |
| 11 | bj-nsnid 37135 | . . . . . . . 8 ⊢ (R ∈ V → ¬ {R} ∈ R) | |
| 12 | 10, 11 | ax-mp 5 | . . . . . . 7 ⊢ ¬ {R} ∈ R |
| 13 | 12 | intnan 486 | . . . . . 6 ⊢ ¬ (({R‘(1st ‘𝐴)) ∈ R ∧ {R} ∈ R) |
| 14 | opelxp 5655 | . . . . . 6 ⊢ (〈({R‘(1st ‘𝐴)), {R}〉 ∈ (R × R) ↔ (({R‘(1st ‘𝐴)) ∈ R ∧ {R} ∈ R)) | |
| 15 | 13, 14 | mtbir 323 | . . . . 5 ⊢ ¬ 〈({R‘(1st ‘𝐴)), {R}〉 ∈ (R × R) |
| 16 | df-c 11019 | . . . . . 6 ⊢ ℂ = (R × R) | |
| 17 | 16 | eleq2i 2825 | . . . . 5 ⊢ (〈({R‘(1st ‘𝐴)), {R}〉 ∈ ℂ ↔ 〈({R‘(1st ‘𝐴)), {R}〉 ∈ (R × R)) |
| 18 | 15, 17 | mtbir 323 | . . . 4 ⊢ ¬ 〈({R‘(1st ‘𝐴)), {R}〉 ∈ ℂ |
| 19 | eqcom 2740 | . . . . . 6 ⊢ ((+∞eiτ‘𝐴) = 〈({R‘(1st ‘𝐴)), {R}〉 ↔ 〈({R‘(1st ‘𝐴)), {R}〉 = (+∞eiτ‘𝐴)) | |
| 20 | 19 | biimpi 216 | . . . . 5 ⊢ ((+∞eiτ‘𝐴) = 〈({R‘(1st ‘𝐴)), {R}〉 → 〈({R‘(1st ‘𝐴)), {R}〉 = (+∞eiτ‘𝐴)) |
| 21 | 20 | eleq1d 2818 | . . . 4 ⊢ ((+∞eiτ‘𝐴) = 〈({R‘(1st ‘𝐴)), {R}〉 → (〈({R‘(1st ‘𝐴)), {R}〉 ∈ ℂ ↔ (+∞eiτ‘𝐴) ∈ ℂ)) |
| 22 | 18, 21 | mtbii 326 | . . 3 ⊢ ((+∞eiτ‘𝐴) = 〈({R‘(1st ‘𝐴)), {R}〉 → ¬ (+∞eiτ‘𝐴) ∈ ℂ) |
| 23 | 9, 22 | syl 17 | . 2 ⊢ (𝐴 ∈ dom +∞eiτ → ¬ (+∞eiτ‘𝐴) ∈ ℂ) |
| 24 | 0ncn 11031 | . . 3 ⊢ ¬ ∅ ∈ ℂ | |
| 25 | ndmfv 6860 | . . . 4 ⊢ (¬ 𝐴 ∈ dom +∞eiτ → (+∞eiτ‘𝐴) = ∅) | |
| 26 | 25 | eleq1d 2818 | . . 3 ⊢ (¬ 𝐴 ∈ dom +∞eiτ → ((+∞eiτ‘𝐴) ∈ ℂ ↔ ∅ ∈ ℂ)) |
| 27 | 24, 26 | mtbiri 327 | . 2 ⊢ (¬ 𝐴 ∈ dom +∞eiτ → ¬ (+∞eiτ‘𝐴) ∈ ℂ) |
| 28 | 23, 27 | pm2.61i 182 | 1 ⊢ ¬ (+∞eiτ‘𝐴) ∈ ℂ |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1541 ∈ wcel 2113 Vcvv 3437 ∅c0 4282 {csn 4575 〈cop 4581 × cxp 5617 dom cdm 5619 ‘cfv 6486 1st c1st 7925 Rcnr 10763 ℂcc 11011 ℝcr 11012 {Rcfractemp 37261 +∞eiτcinftyexpitau 37263 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-reg 9485 ax-inf2 9538 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-oadd 8395 df-omul 8396 df-er 8628 df-ec 8630 df-qs 8634 df-ni 10770 df-pli 10771 df-mi 10772 df-lti 10773 df-plpq 10806 df-mpq 10807 df-ltpq 10808 df-enq 10809 df-nq 10810 df-erq 10811 df-plq 10812 df-mq 10813 df-1nq 10814 df-rq 10815 df-ltnq 10816 df-np 10879 df-plp 10881 df-ltp 10883 df-enr 10953 df-nr 10954 df-c 11019 df-bj-inftyexpitau 37264 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |