Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-inftyexpitaudisj | Structured version Visualization version GIF version |
Description: An element of the circle at infinity is not a complex number. (Contributed by BJ, 4-Feb-2023.) |
Ref | Expression |
---|---|
bj-inftyexpitaudisj | ⊢ ¬ (+∞eiτ‘𝐴) ∈ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2fveq3 6779 | . . . . . 6 ⊢ (𝑥 = 𝐴 → ({R‘(1st ‘𝑥)) = ({R‘(1st ‘𝐴))) | |
2 | 1 | opeq1d 4810 | . . . . 5 ⊢ (𝑥 = 𝐴 → 〈({R‘(1st ‘𝑥)), {R}〉 = 〈({R‘(1st ‘𝐴)), {R}〉) |
3 | df-bj-inftyexpitau 35370 | . . . . 5 ⊢ +∞eiτ = (𝑥 ∈ ℝ ↦ 〈({R‘(1st ‘𝑥)), {R}〉) | |
4 | opex 5379 | . . . . 5 ⊢ 〈({R‘(1st ‘𝐴)), {R}〉 ∈ V | |
5 | 2, 3, 4 | fvmpt 6875 | . . . 4 ⊢ (𝐴 ∈ ℝ → (+∞eiτ‘𝐴) = 〈({R‘(1st ‘𝐴)), {R}〉) |
6 | opex 5379 | . . . . 5 ⊢ 〈({R‘(1st ‘𝑦)), {R}〉 ∈ V | |
7 | df-bj-inftyexpitau 35370 | . . . . 5 ⊢ +∞eiτ = (𝑦 ∈ ℝ ↦ 〈({R‘(1st ‘𝑦)), {R}〉) | |
8 | 6, 7 | dmmpti 6577 | . . . 4 ⊢ dom +∞eiτ = ℝ |
9 | 5, 8 | eleq2s 2857 | . . 3 ⊢ (𝐴 ∈ dom +∞eiτ → (+∞eiτ‘𝐴) = 〈({R‘(1st ‘𝐴)), {R}〉) |
10 | nrex1 10820 | . . . . . . . 8 ⊢ R ∈ V | |
11 | bj-nsnid 35241 | . . . . . . . 8 ⊢ (R ∈ V → ¬ {R} ∈ R) | |
12 | 10, 11 | ax-mp 5 | . . . . . . 7 ⊢ ¬ {R} ∈ R |
13 | 12 | intnan 487 | . . . . . 6 ⊢ ¬ (({R‘(1st ‘𝐴)) ∈ R ∧ {R} ∈ R) |
14 | opelxp 5625 | . . . . . 6 ⊢ (〈({R‘(1st ‘𝐴)), {R}〉 ∈ (R × R) ↔ (({R‘(1st ‘𝐴)) ∈ R ∧ {R} ∈ R)) | |
15 | 13, 14 | mtbir 323 | . . . . 5 ⊢ ¬ 〈({R‘(1st ‘𝐴)), {R}〉 ∈ (R × R) |
16 | df-c 10877 | . . . . . 6 ⊢ ℂ = (R × R) | |
17 | 16 | eleq2i 2830 | . . . . 5 ⊢ (〈({R‘(1st ‘𝐴)), {R}〉 ∈ ℂ ↔ 〈({R‘(1st ‘𝐴)), {R}〉 ∈ (R × R)) |
18 | 15, 17 | mtbir 323 | . . . 4 ⊢ ¬ 〈({R‘(1st ‘𝐴)), {R}〉 ∈ ℂ |
19 | eqcom 2745 | . . . . . 6 ⊢ ((+∞eiτ‘𝐴) = 〈({R‘(1st ‘𝐴)), {R}〉 ↔ 〈({R‘(1st ‘𝐴)), {R}〉 = (+∞eiτ‘𝐴)) | |
20 | 19 | biimpi 215 | . . . . 5 ⊢ ((+∞eiτ‘𝐴) = 〈({R‘(1st ‘𝐴)), {R}〉 → 〈({R‘(1st ‘𝐴)), {R}〉 = (+∞eiτ‘𝐴)) |
21 | 20 | eleq1d 2823 | . . . 4 ⊢ ((+∞eiτ‘𝐴) = 〈({R‘(1st ‘𝐴)), {R}〉 → (〈({R‘(1st ‘𝐴)), {R}〉 ∈ ℂ ↔ (+∞eiτ‘𝐴) ∈ ℂ)) |
22 | 18, 21 | mtbii 326 | . . 3 ⊢ ((+∞eiτ‘𝐴) = 〈({R‘(1st ‘𝐴)), {R}〉 → ¬ (+∞eiτ‘𝐴) ∈ ℂ) |
23 | 9, 22 | syl 17 | . 2 ⊢ (𝐴 ∈ dom +∞eiτ → ¬ (+∞eiτ‘𝐴) ∈ ℂ) |
24 | 0ncn 10889 | . . 3 ⊢ ¬ ∅ ∈ ℂ | |
25 | ndmfv 6804 | . . . 4 ⊢ (¬ 𝐴 ∈ dom +∞eiτ → (+∞eiτ‘𝐴) = ∅) | |
26 | 25 | eleq1d 2823 | . . 3 ⊢ (¬ 𝐴 ∈ dom +∞eiτ → ((+∞eiτ‘𝐴) ∈ ℂ ↔ ∅ ∈ ℂ)) |
27 | 24, 26 | mtbiri 327 | . 2 ⊢ (¬ 𝐴 ∈ dom +∞eiτ → ¬ (+∞eiτ‘𝐴) ∈ ℂ) |
28 | 23, 27 | pm2.61i 182 | 1 ⊢ ¬ (+∞eiτ‘𝐴) ∈ ℂ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 396 = wceq 1539 ∈ wcel 2106 Vcvv 3432 ∅c0 4256 {csn 4561 〈cop 4567 × cxp 5587 dom cdm 5589 ‘cfv 6433 1st c1st 7829 Rcnr 10621 ℂcc 10869 ℝcr 10870 {Rcfractemp 35367 +∞eiτcinftyexpitau 35369 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-reg 9351 ax-inf2 9399 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-oadd 8301 df-omul 8302 df-er 8498 df-ec 8500 df-qs 8504 df-ni 10628 df-pli 10629 df-mi 10630 df-lti 10631 df-plpq 10664 df-mpq 10665 df-ltpq 10666 df-enq 10667 df-nq 10668 df-erq 10669 df-plq 10670 df-mq 10671 df-1nq 10672 df-rq 10673 df-ltnq 10674 df-np 10737 df-plp 10739 df-ltp 10741 df-enr 10811 df-nr 10812 df-c 10877 df-bj-inftyexpitau 35370 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |