| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-inftyexpitaudisj | Structured version Visualization version GIF version | ||
| Description: An element of the circle at infinity is not a complex number. (Contributed by BJ, 4-Feb-2023.) |
| Ref | Expression |
|---|---|
| bj-inftyexpitaudisj | ⊢ ¬ (+∞eiτ‘𝐴) ∈ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2fveq3 6827 | . . . . . 6 ⊢ (𝑥 = 𝐴 → ({R‘(1st ‘𝑥)) = ({R‘(1st ‘𝐴))) | |
| 2 | 1 | opeq1d 4831 | . . . . 5 ⊢ (𝑥 = 𝐴 → 〈({R‘(1st ‘𝑥)), {R}〉 = 〈({R‘(1st ‘𝐴)), {R}〉) |
| 3 | df-bj-inftyexpitau 37232 | . . . . 5 ⊢ +∞eiτ = (𝑥 ∈ ℝ ↦ 〈({R‘(1st ‘𝑥)), {R}〉) | |
| 4 | opex 5404 | . . . . 5 ⊢ 〈({R‘(1st ‘𝐴)), {R}〉 ∈ V | |
| 5 | 2, 3, 4 | fvmpt 6929 | . . . 4 ⊢ (𝐴 ∈ ℝ → (+∞eiτ‘𝐴) = 〈({R‘(1st ‘𝐴)), {R}〉) |
| 6 | opex 5404 | . . . . 5 ⊢ 〈({R‘(1st ‘𝑦)), {R}〉 ∈ V | |
| 7 | df-bj-inftyexpitau 37232 | . . . . 5 ⊢ +∞eiτ = (𝑦 ∈ ℝ ↦ 〈({R‘(1st ‘𝑦)), {R}〉) | |
| 8 | 6, 7 | dmmpti 6625 | . . . 4 ⊢ dom +∞eiτ = ℝ |
| 9 | 5, 8 | eleq2s 2849 | . . 3 ⊢ (𝐴 ∈ dom +∞eiτ → (+∞eiτ‘𝐴) = 〈({R‘(1st ‘𝐴)), {R}〉) |
| 10 | nrex1 10952 | . . . . . . . 8 ⊢ R ∈ V | |
| 11 | bj-nsnid 37103 | . . . . . . . 8 ⊢ (R ∈ V → ¬ {R} ∈ R) | |
| 12 | 10, 11 | ax-mp 5 | . . . . . . 7 ⊢ ¬ {R} ∈ R |
| 13 | 12 | intnan 486 | . . . . . 6 ⊢ ¬ (({R‘(1st ‘𝐴)) ∈ R ∧ {R} ∈ R) |
| 14 | opelxp 5652 | . . . . . 6 ⊢ (〈({R‘(1st ‘𝐴)), {R}〉 ∈ (R × R) ↔ (({R‘(1st ‘𝐴)) ∈ R ∧ {R} ∈ R)) | |
| 15 | 13, 14 | mtbir 323 | . . . . 5 ⊢ ¬ 〈({R‘(1st ‘𝐴)), {R}〉 ∈ (R × R) |
| 16 | df-c 11009 | . . . . . 6 ⊢ ℂ = (R × R) | |
| 17 | 16 | eleq2i 2823 | . . . . 5 ⊢ (〈({R‘(1st ‘𝐴)), {R}〉 ∈ ℂ ↔ 〈({R‘(1st ‘𝐴)), {R}〉 ∈ (R × R)) |
| 18 | 15, 17 | mtbir 323 | . . . 4 ⊢ ¬ 〈({R‘(1st ‘𝐴)), {R}〉 ∈ ℂ |
| 19 | eqcom 2738 | . . . . . 6 ⊢ ((+∞eiτ‘𝐴) = 〈({R‘(1st ‘𝐴)), {R}〉 ↔ 〈({R‘(1st ‘𝐴)), {R}〉 = (+∞eiτ‘𝐴)) | |
| 20 | 19 | biimpi 216 | . . . . 5 ⊢ ((+∞eiτ‘𝐴) = 〈({R‘(1st ‘𝐴)), {R}〉 → 〈({R‘(1st ‘𝐴)), {R}〉 = (+∞eiτ‘𝐴)) |
| 21 | 20 | eleq1d 2816 | . . . 4 ⊢ ((+∞eiτ‘𝐴) = 〈({R‘(1st ‘𝐴)), {R}〉 → (〈({R‘(1st ‘𝐴)), {R}〉 ∈ ℂ ↔ (+∞eiτ‘𝐴) ∈ ℂ)) |
| 22 | 18, 21 | mtbii 326 | . . 3 ⊢ ((+∞eiτ‘𝐴) = 〈({R‘(1st ‘𝐴)), {R}〉 → ¬ (+∞eiτ‘𝐴) ∈ ℂ) |
| 23 | 9, 22 | syl 17 | . 2 ⊢ (𝐴 ∈ dom +∞eiτ → ¬ (+∞eiτ‘𝐴) ∈ ℂ) |
| 24 | 0ncn 11021 | . . 3 ⊢ ¬ ∅ ∈ ℂ | |
| 25 | ndmfv 6854 | . . . 4 ⊢ (¬ 𝐴 ∈ dom +∞eiτ → (+∞eiτ‘𝐴) = ∅) | |
| 26 | 25 | eleq1d 2816 | . . 3 ⊢ (¬ 𝐴 ∈ dom +∞eiτ → ((+∞eiτ‘𝐴) ∈ ℂ ↔ ∅ ∈ ℂ)) |
| 27 | 24, 26 | mtbiri 327 | . 2 ⊢ (¬ 𝐴 ∈ dom +∞eiτ → ¬ (+∞eiτ‘𝐴) ∈ ℂ) |
| 28 | 23, 27 | pm2.61i 182 | 1 ⊢ ¬ (+∞eiτ‘𝐴) ∈ ℂ |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∅c0 4283 {csn 4576 〈cop 4582 × cxp 5614 dom cdm 5616 ‘cfv 6481 1st c1st 7919 Rcnr 10753 ℂcc 11001 ℝcr 11002 {Rcfractemp 37229 +∞eiτcinftyexpitau 37231 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-reg 9478 ax-inf2 9531 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-oadd 8389 df-omul 8390 df-er 8622 df-ec 8624 df-qs 8628 df-ni 10760 df-pli 10761 df-mi 10762 df-lti 10763 df-plpq 10796 df-mpq 10797 df-ltpq 10798 df-enq 10799 df-nq 10800 df-erq 10801 df-plq 10802 df-mq 10803 df-1nq 10804 df-rq 10805 df-ltnq 10806 df-np 10869 df-plp 10871 df-ltp 10873 df-enr 10943 df-nr 10944 df-c 11009 df-bj-inftyexpitau 37232 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |